Publications
. “Measuring The Spectral Form Factor In Many-Body Chaotic And Localized Phases Of Quantum Processors”. Phys. Rev. Lett 134, no. 1. Phys. Rev. Lett (2025). doi:10.1103/PhysRevLett.134.010402.
. “Measuring The Spectral Form Factor In Many-Body Chaotic And Localized Phases Of Quantum Processors”. Phys. Rev. Lett 134, no. 1. Phys. Rev. Lett (2025). doi:10.1103/PhysRevLett.134.010402.
. “Measuring The Spectral Form Factor In Many-Body Chaotic And Localized Phases Of Quantum Processors”. Phys. Rev. Lett 134, no. 1. Phys. Rev. Lett (2025). doi:10.1103/PhysRevLett.134.010402.
. “Observation Of Generalized T-J Spin Dynamics With Tunable Dipolar Interactions”. Science 388, no. 6745. Science (2025). doi:10.1126/science.adq0911.
. “Ultraprecise Determination Of $\mathrm{Cs}(N{S}_{1/2})$ And $\mathrm{Cs}(N{D}_{J})$ Quantum Defects For Sensing And Computing: Evaluation Of Core Contributions”. Phys. Rev. Lett 133, no. 23. Phys. Rev. Lett (2024). doi:10.1103/PhysRevLett.133.233005.
. “Artificial Atoms From Cold Bosons In One Dimension”. New Journal Of Physics . New Journal Of Physics (2022). doi:10.1088/1367-2630/ac78d8.
. “Correlated Many-Body Noise And Emergent $1/f$ Behavior”. Phys. Rev. A 105, no. 1. Phys. Rev. A (2022): L010402. doi:10.1103/PhysRevA.105.L010402.
. “Correlated Many-Body Noise And Emergent $1/f$ Behavior”. Phys. Rev. A 105, no. 1. Phys. Rev. A (2022): L010402. doi:10.1103/PhysRevA.105.L010402.
. “Experimentally Measuring Rolling And Sliding In Three-Dimensional Dense Granular Packings”. Phys. Rev. Lett 129, no. 4. Phys. Rev. Lett (2022): 048001. doi:10.1103/PhysRevLett.129.048001.
. “Microwave-Optical Coupling Via Rydberg Excitons In Cuprous Oxide”. Phys. Rev. Research 4, no. 1. Phys. Rev. Research (2022): 013031. doi:10.1103/PhysRevResearch.4.013031.
. “Microwave-Optical Coupling Via Rydberg Excitons In Cuprous Oxide”. Phys. Rev. Research 4, no. 1. Phys. Rev. Research (2022): 013031. doi:10.1103/PhysRevResearch.4.013031.
. “Negative Quasiprobabilities Enhance Phase Estimation In Quantum-Optics Experiment”. Phys. Rev. Lett 128, no. 22. Phys. Rev. Lett (2022): 220504. doi:10.1103/PhysRevLett.128.220504.
. “Negative Quasiprobabilities Enhance Phase Estimation In Quantum-Optics Experiment”. Arxiv E-Prints. Arxiv E-Prints (2021): arXiv:2111.01194.
. “Weak Measurement Of A Superconducting Qubit Reconciles Incompatible Operators”. Phys. Rev. Lett 126. Phys. Rev. Lett (2021): 100403. doi:10.1103/PhysRevLett.126.100403.
. “Fundamental Limitations On Photoisomerization From Thermodynamic Resource Theories”. Phys. Rev. A 101. Phys. Rev. A (2020): 042116. doi:10.1103/PhysRevA.101.042116.
. “Photo-Excitation Of Long-Lived Transient Intermediates In Ultracold Reactions”. Nature Physics. Nature Physics (2020).
. “Quantum Advantage In Postselected Metrology”. Nature Communications 11. Nature Communications (2020): 3775. doi:10.1038/s41467-020-17559-w.
. “Quantum Advantage In Postselected Metrology”. Nature Communications 11. Nature Communications (2020): 3775. doi:10.1038/s41467-020-17559-w.
. “Quantum Advantage In Postselected Metrology”. Nature Communications 11. Nature Communications (2020): 3775. doi:10.1038/s41467-020-17559-w.
. “Quantum Metasurfaces With Atom Arrays”. Nature Physics. Nature Physics (2020). doi:10.1038/s41567-020-0845-5.
. “Weak Measurement Of Superconducting Qubit Reconciles Incompatible Operators”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2008.09131. https://ui.adsabs.harvard.edu/abs/2020arXiv200809131M.
. “Contextuality Provides Quantum Advantage In Postselected Metrology”. Arxiv E-Prints. Arxiv E-Prints (2019): arXiv:1903.02563.
. “Contextuality Provides Quantum Advantage In Postselected Metrology”. Arxiv E-Prints. Arxiv E-Prints (2019): arXiv:1903.02563.
. “Contextuality Provides Quantum Advantage In Postselected Metrology”. Arxiv E-Prints. Arxiv E-Prints (2019): arXiv:1903.02563.
. “Dynamics Of An Itinerant Spin-3 Atomic Dipolar Gas In An Optical Lattice”. Phys. Rev. A 100. Phys. Rev. A (2019): 033609. doi:10.1103/PhysRevA.100.033609.
. “Dynamics Of An Itinerant Spin-3 Atomic Dipolar Gas In An Optical Lattice”. Phys. Rev. A 100. Phys. Rev. A (2019): 033609. doi:10.1103/PhysRevA.100.033609.
. “Generation And Manipulation Of Schrödinger Cat States In Rydberg Atom Arrays”. Science 365. Science (2019): 570–574. doi:10.1126/science.aax9743.
. “Generation And Manipulation Of Schrödinger Cat States In Rydberg Atom Arrays”. Science 365. Science (2019): 570–574. doi:10.1126/science.aax9743.
. “Out-Of-Equilibrium Quantum Magnetism And Thermalization In A Spin-3 Many-Body Dipolar Lattice System”. Nature Communications 10. Nature Communications (2019). doi:10.1038/s41467-019-09699-5.
. “Out-Of-Equilibrium Quantum Magnetism And Thermalization In A Spin-3 Many-Body Dipolar Lattice System”. Nature Communications 10. Nature Communications (2019). doi:10.1038/s41467-019-09699-5.

] 