Publications
. “Linear Growth Of Quantum Circuit Complexity ”, 2022. doi:10.1038/s41567-022-01539-6.
. “Pattern Formation In One-Dimensional Polaron Systems And Temporal Orthogonality Catastrophe”. Atoms} 10, no. 3. Atoms} (2022). doi:10.3390/atoms10010003.
. “Realization Of Heisenberg Models Of Spin Systems With Polar Molecules In Pendular States” (2022). doi:10.1039/D2CP00380E .
. “Realization Of Heisenberg Models Of Spin Systems With Polar Molecules In Pendular States” (2022). doi:10.48550/ARXIV.2112.14981.
. “Realizing Distance-Selective Interactions In A Rydberg-Dressed Atom Array”. Phys. Rev. Lett 128, no. 11. Phys. Rev. Lett (2022): 113602. doi:10.1103/PhysRevLett.128.113602.
. “Theoretical And Numerical Evidence For The Potential Realization Of The Peregrine Soliton In Repulsive Two-Component Bose-Einstein Condensates”. Phys. Rev. A 105, no. 5. Phys. Rev. A (2022): 053306. doi:10.1103/PhysRevA.105.053306.
. “Theoretical And Numerical Evidence For The Potential Realization Of The Peregrine Soliton In Repulsive Two-Component Bose-Einstein Condensates”. Phys. Rev. A 105, no. 5. Phys. Rev. A (2022): 053306. doi:10.1103/PhysRevA.105.053306.
. “About Roy Glauber” (2023). doi:https://doi.org/10.1002/ntls.20220064.
. “Interactions And Dynamics Of One-Dimensional Droplets, Bubbles And Kinks”. Condensed Matter 8. Condensed Matter (2023). doi:10.3390/condmat8030067.
. “Interactions And Dynamics Of One-Dimensional Droplets, Bubbles And Kinks”. Condensed Matter 8. Condensed Matter (2023). doi:10.3390/condmat8030067.
. “Solitary Waves In A Quantum Droplet-Bearing System”. Phys. Rev. A 107, no. 6. Phys. Rev. A (2023): 063308. doi:10.1103/PhysRevA.107.063308.
. “Solitary Waves In A Quantum Droplet-Bearing System”. Phys. Rev. A 107, no. 6. Phys. Rev. A (2023): 063308. doi:10.1103/PhysRevA.107.063308.
. “Solitary Waves In A Quantum Droplet-Bearing System”. Phys. Rev. A 107, no. 6. Phys. Rev. A (2023): 063308. doi:10.1103/PhysRevA.107.063308.
. “Stability And Dynamics Across Magnetic Phases Of Vortex-Bright Type Excitations In Spinor Bose-Einstein Condensates”. Phys. Rev. A 107, no. 1. Phys. Rev. A (2023): 013313. doi:10.1103/PhysRevA.107.013313.
. “Stability And Dynamics Across Magnetic Phases Of Vortex-Bright Type Excitations In Spinor Bose-Einstein Condensates”. Phys. Rev. A 107, no. 1. Phys. Rev. A (2023): 013313. doi:10.1103/PhysRevA.107.013313.
. “Multiphoton-Dressed Rydberg Excitations In A Microwave Cavity With Ultracold Rb Atoms”. Phys. Rev. A 110, no. 6. Phys. Rev. A (2024). doi:10.1103/PhysRevA.110.L061301.
. “Nonconventional Thermal States Of Interacting Bosonic Oligomers”. Phys. Rev. Res 6, no. 4. Phys. Rev. Res (2024). doi:10.1103/PhysRevResearch.6.043282.
. “Universality Class Of A Spinor Bose--Einstein Condensate Far From Equilibrium”. Nature Physics. Nature Physics (2024). doi:10.1038/s41567-023-02339-2.
. “Competition Of Light- And Phonon-Dressing In Microwave-Dressed Bose Polarons”. Scipost Phys 19. Scipost Phys (2025). doi:10.21468/SciPostPhys.19.4.093.
. “Efficiently Measuring $D$-Wave Pairing And Beyond In Quantum Gas Microscopes”. Phys. Rev. Lett 135, no. 12. Phys. Rev. Lett (2025). doi:10.1103/dqyf-kl8x.
. “Efficiently Measuring $D$-Wave Pairing And Beyond In Quantum Gas Microscopes”. Phys. Rev. Lett 135, no. 12. Phys. Rev. Lett (2025). doi:10.1103/dqyf-kl8x.
. “Terahertz Chiral Photonic-Crystal Cavities For Dirac Gap Engineering In Graphene”. Nature Communications 16, no. 2041-1723. Nature Communications (2025). doi:10.1038/s41467-025-60335-x.

] 

