Publications
“Experimentally Measuring Rolling And Sliding In Three-Dimensional Dense Granular Packings”. Phys. Rev. Lett 129, no. 4. Phys. Rev. Lett (2022): 048001. doi:10.1103/PhysRevLett.129.048001.
. “Linear Growth Of Quantum Circuit Complexity ”, 2022. doi:10.1038/s41567-022-01539-6.
. “Conditions Tighter Than Noncommutation Needed For Nonclassicality”. Journal Of Physics A: Mathematical And Theoretical 54. Journal Of Physics A: Mathematical And Theoretical (2021): 284001. doi:10.1088/1751-8121/ac0289.
. “Entangled Quantum Cellular Automata, Physical Complexity, And Goldilocks Rules”. Quantum Science And Technology. Quantum Science And Technology (2021).
. “How To Build Hamiltonians That Transport Noncommuting Charges In Quantum Thermodynamics”. Arxiv E-Prints. Arxiv E-Prints (2021): arXiv:2103.14041.
. “Linear Growth Of Quantum Circuit Complexity”. Arxiv E-Prints. Arxiv E-Prints (2021): arXiv:2106.05305.
. “Machine Learning Outperforms Thermodynamics In Measuring How Well A Many-Body System Learns A Drive”. Scientific Reports 11. Scientific Reports (2021): 9333. doi:10.1038/s41598-021-88311-7.
. “Negative Quasiprobabilities Enhance Phase Estimation In Quantum-Optics Experiment”. Arxiv E-Prints. Arxiv E-Prints (2021): arXiv:2111.01194.
. “Nonlinear Bell Inequality For Macroscopic Measurements”. Phys. Rev. A 103. Phys. Rev. A (2021): L010202. doi:10.1103/PhysRevA.103.L010202.
. “Resource Theory Of Quantum Uncomplexity”. Arxiv E-Prints. Arxiv E-Prints (2021): arXiv:2110.11371.
. “Weak Measurement Of A Superconducting Qubit Reconciles Incompatible Operators”. Phys. Rev. Lett 126. Phys. Rev. Lett (2021): 100403. doi:10.1103/PhysRevLett.126.100403.
. “Conditions Tighter Than Noncommutation Needed For Nonclassicality”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2009.04468.
. “Entangled Quantum Cellular Automata, Physical Complexity, And Goldilocks Rules”. Arxiv E-Prints. Arxiv E-Prints (2020). https://ui.adsabs.harvard.edu/abs/2020arXiv200501763H.
. “Fundamental Limitations On Photoisomerization From Thermodynamic Resource Theories”. Phys. Rev. A 101. Phys. Rev. A (2020): 042116. doi:10.1103/PhysRevA.101.042116.
. “Learning About Learning By Many-Body Systems”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2004.03604.
. “Noncommuting Conserved Charges In Quantum Many-Body Thermalization”. Phys. Rev. E 101. Phys. Rev. E (2020): 042117. doi:10.1103/PhysRevE.101.042117.
. “Quantifying Many-Body Learning Far From Equilibrium With Representation Learning”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2001.03623.
. “Quantum Advantage In Postselected Metrology”. Nature Communications 11. Nature Communications (2020): 3775. doi:10.1038/s41467-020-17559-w.
. “Weak Measurement Of Superconducting Qubit Reconciles Incompatible Operators”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2008.09131. https://ui.adsabs.harvard.edu/abs/2020arXiv200809131M.
. “Contextuality Provides Quantum Advantage In Postselected Metrology”. Arxiv E-Prints. Arxiv E-Prints (2019): arXiv:1903.02563.
. “Entropic Uncertainty Relations For Quantum Information Scrambling”. Communications Physics 2. Communications Physics (2019): 92. doi:10.1038/s42005-019-0179-8.
. “Equilibration To The Non-Abelian Thermal State In Quantum Many-Body Physics”. Arxiv E-Prints. Arxiv E-Prints (2019): arXiv:1906.09227.
. “Nonlinear Bell Inequality For Macroscopic Measurements”. Arxiv E-Prints. Arxiv E-Prints (2019): arXiv:1911.09122.
. “Quantum Engine Based On Many-Body Localization”. Phys. Rev. B 99. Phys. Rev. B (2019): 024203. doi:10.1103/PhysRevB.99.024203.
. “Quantum Information In The Posner Model Of Quantum Cognition”. Annals Of Physics 407. Annals Of Physics (2019): 92 - 147. doi:https://doi.org/10.1016/j.aop.2018.11.016.
. “Fundamental Limitations On Photoisomerization From Thermodynamic Resource Theories”. Arxiv E-Prints. Arxiv E-Prints (2018): arXiv:1811.06551.
.