Publications
. “Machine Learning Outperforms Thermodynamics In Measuring How Well A Many-Body System Learns A Drive”. Scientific Reports 11. Scientific Reports (2021): 9333. doi:10.1038/s41598-021-88311-7.
. “One Hundred Years Of Alfred Landé's G-Factor”. Natural Sciences 1, no. 2. Natural Sciences (2021): nils.20210068. doi:10.1002/ntls.20210068.
. “Radiofrequency Spectroscopy Of One-Dimensional Trapped Bose Polarons: Crossover From The Adiabatic To The Diabatic Regime”. New Journal Of Physics 23. New Journal Of Physics (2021): 043051. doi:10.1088/1367-2630/abe9d5.
. “Resource Theory Of Quantum Uncomplexity”. Arxiv E-Prints. Arxiv E-Prints (2021): arXiv:2110.11371.
. “Weak Measurement Of A Superconducting Qubit Reconciles Incompatible Operators”. Phys. Rev. Lett 126. Phys. Rev. Lett (2021): 100403. doi:10.1103/PhysRevLett.126.100403.
. “Weak Measurement Of A Superconducting Qubit Reconciles Incompatible Operators”. Phys. Rev. Lett 126. Phys. Rev. Lett (2021): 100403. doi:10.1103/PhysRevLett.126.100403.
. “Dipole-Dipole Interactions Between Neutrons”. In Recent {Progress} In {Few}-{Body} {Physics}, 238:873–877. Recent {Progress} In {Few}-{Body} {Physics}. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-32357-8_137.
. “Dipole-Dipole Interactions Between Neutrons”. In Recent {Progress} In {Few}-{Body} {Physics}, 238:873–877. Recent {Progress} In {Few}-{Body} {Physics}. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-32357-8_137.
. “Entangled Quantum Cellular Automata, Physical Complexity, And Goldilocks Rules”. Arxiv E-Prints. Arxiv E-Prints (2020). https://ui.adsabs.harvard.edu/abs/2020arXiv200501763H.
. “Learning About Learning By Many-Body Systems”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2004.03604.
. “Linear Polar Molecule In A Two-Color Cw Laser Field: A Symmetry Analysis”. Phys. Rev. A 102, no. 2. Phys. Rev. A (2020): 023110. doi:10.1103/PhysRevA.102.023110.
. “Quantifying Many-Body Learning Far From Equilibrium With Representation Learning”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2001.03623.
. “Revisiting The Formation Of Heh+ In The Planetary Nebula Ngc 7027”. The Astrophysical Journal 898. The Astrophysical Journal (2020): 86. doi:10.3847/1538-4357/ab9a50.
. “Weak Measurement Of Superconducting Qubit Reconciles Incompatible Operators”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2008.09131. https://ui.adsabs.harvard.edu/abs/2020arXiv200809131M.
. “Weak Measurement Of Superconducting Qubit Reconciles Incompatible Operators”. Arxiv E-Prints. Arxiv E-Prints (2020): arXiv:2008.09131. https://ui.adsabs.harvard.edu/abs/2020arXiv200809131M.
. “Crystallographic Orientation Dependence Of Work Function: Carbon Adsorption On Au Surfaces”. Molecular Physics. Molecular Physics (2019): 1-5. doi:10.1080/00268976.2019.1603409.
. “Dicarbon Formation In Collisions Of Two Carbon Atoms”. Ap. J 876. Ap. J (2019): 38. doi:10.3847/1538-4357/ab1088.
. “Effective Three-Body Interactions In Cs(6S)-Cs(Nd) Rydberg Trimers”. Phys. Rev. Lett 122. Phys. Rev. Lett (2019): 103001. doi:10.1103/PhysRevLett.122.103001.
. “Generation And Manipulation Of Schrödinger Cat States In Rydberg Atom Arrays”. Science 365. Science (2019): 570–574. doi:10.1126/science.aax9743.
. “Out-Of-Equilibrium Quantum Magnetism And Thermalization In A Spin-3 Many-Body Dipolar Lattice System”. Nature Communications 10. Nature Communications (2019). doi:10.1038/s41467-019-09699-5.
. “Pamop2: Towards Exascale Computations Supporting Experiments And Astrophysics”. In High {Performance} {Computing} In {Science} And {Engineering} ' 18. High {Performance} {Computing} In {Science} And {Engineering} ' 18. Cham: Springer, 2019. doi:10.1007/978-3-030-13325-2_3.
. “Pamop2: Towards Exascale Computations Supporting Experiments And Astrophysics”. In High {Performance} {Computing} In {Science} And {Engineering} ' 18. High {Performance} {Computing} In {Science} And {Engineering} ' 18. Cham: Springer, 2019. doi:10.1007/978-3-030-13325-2_3.
. “Photoionization Of Rb$^2$ Ions In The Valence Energy Region 37-44 Ev”. Journal Of Physics B: Atomic, Molecular And Optical Physics 52. Journal Of Physics B: Atomic, Molecular And Optical Physics (2019): 125201. doi:10.1088/1361-6455/ab1e99.
. “Radiative Association Of Atomic And Ionic Carbon”. The Astrophysical Journal 884. The Astrophysical Journal (2019): 155. doi:10.3847/1538-4357/ab43cb.
. “Roadmap On Photonic, Electronic And Atomic Collision Physics {Ii}. Electron And Antimatter Interactions”. Journal Of Physics B: Atomic, Molecular And Optical Physics. Journal Of Physics B: Atomic, Molecular And Optical Physics (2019). doi:10.1088/1361-6455/ab26e0.
. “Roadmap On Photonic, Electronic And Atomic Collision Physics {Ii}. Electron And Antimatter Interactions”. Journal Of Physics B: Atomic, Molecular And Optical Physics. Journal Of Physics B: Atomic, Molecular And Optical Physics (2019). doi:10.1088/1361-6455/ab26e0.
. “Single Photoionization Of The Kr-Like Rb Ii Ion In The Photon Energy Range 22–46.0 Ev”. Mnras 486. Mnras (2019): 245-250. doi:10.1093/mnras/stz790.
. “Mechanisms For Carbon Adsorption On Au(110)-(2 × 1): A Work Function Analysis”. Surface Science 677. Surface Science (2018): 232 - 238. doi:https://doi.org/10.1016/j.susc.2018.07.008.
. “Pamop: Large-Scale Calculations Supporting Experiments And Astrophysical Applications”. In High Performance Computing In Science And Engineering ' 17. High Performance Computing In Science And Engineering ' 17. Cham, Switzerland: Springer International Publishing, 2018.
. “Pamop: Large-Scale Calculations Supporting Experiments And Astrophysical Applications”. In High Performance Computing In Science And Engineering ' 17. High Performance Computing In Science And Engineering ' 17. Cham, Switzerland: Springer International Publishing, 2018.

] 

