What Can We Learn about the Solar Subsurface Large Scale Flows from Accurate High-Degree Modes Frequencies?

> Helas VI - SOHO 28 - SPACEINN Göttingen, GE
S.G. Korzennik

Harvard-Smithsonian Center for Astrophysics, USA.

September 2014

Contributors: A. Eff-Darwich (ULL, IAC)
T. Larson (Stanford)
M.C. Rabello-Soares (UFMG)
J. Schou (MPS)

Introduction

- High degrees "problem":
- modes blend into ridges ($\ell>200$, for p-modes, $\ell>300$ for f-modes),
- ridge characteristics (ν, A, Γ, α) are not the mode characteristics.
- Methodology
- Fit ridges $(100 \leq \ell \leq 1000)$,
- Use multi-taper estimator (to reduce realization noise).
- Apply a ridge to mode correction, based on best possible model of mode blending - dominated by the effective leakage matrix.
- Iterate on model input parameters to best match observations.
- Use the $100 \leq \ell \leq 300$ overlap for validation.

Coverage in the (ℓ, ν) Plane

- Red dots: low and intermediate degrees: fitting resolved modes.
- Black circles: high degrees modes: ridge fitting.

Data Sets Analyzed

	2001 90 day long	2002 98 day long	2010 67 day long
MDI	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
GONG		\checkmark	\checkmark
HMI			\checkmark

- All epochs correspond to MDI Dynamics epochs.
- Can extend the time series for HMI \& GONG.

Comparison with Resolved Modes

Year	Instrument	$\Delta \nu$ $[\mu \mathrm{Hz}]$	$\Delta \nu / \sigma_{\nu}$
2001	MDI	-0.220 ± 0.673	-0.880 ± 2.182
2002	MDI	-0.298 ± 0.966	-0.862 ± 2.631
	GONG	0.176 ± 0.769	0.517 ± 2.416
2010	MDI	-0.088 ± 1.087	-0.077 ± 2.766
	GONG	0.748 ± 1.186	2.751 ± 2.411
	HMI	0.269 ± 0.616	0.880 ± 2.044

- Mean and standard deviation of
- frequency differences, and
- frequency differences normalized by their uncertainties,
between estimated mode frequencies derived from ridge fitting and coeval resolved mode frequencies measurements,
- for the $100 \leq \ell \leq 200 \mid 300$ overlapping range.

Comparison with Resolved Modes (cont'd)

- Circles: frequency differences; dots: ridge to mode correction
- Differences are small, clustered near zero, with no discernible trends, and much smaller than the correction itself.
- The largest scatter is seen for the f-mode below $\ell=250$ or so.

Comparison with Resolved Modes (cont'd)

- Similar plot for MDI, GONG and HMI 2010.
- GONG comparison shows a larger bias (2.8 σ)
- Scatter for the f-mode remains large even above $\ell=250$.
- Is this the result of using a shorter time series? (67 versus 90 or 98 days).

Comparison at High Degree between Data Sets

Year	Instruments	$\Delta \nu$ $[\mu \mathrm{Hz}]$	$\Delta \nu / \sigma_{\nu}$
2002	GONG - MDI	-0.222 ± 0.460	-1.317 ± 1.470
2010	GONG - MDI	-0.982 ± 0.934	-4.260 ± 2.770
	HMI - MDI	-0.655 ± 1.117	-2.162 ± 1.572

- Mean and standard deviation of
- frequency differences, and
- frequency differences normalized by their uncertainties,
- between estimated mode frequencies derived from ridge fitting for different instruments and coeval epochs, with respect to MDI values.

Comparison of $\nu, \Gamma, \& \alpha, 2002$

Comparison of $\nu, \Gamma, \& \alpha, 2010$

- By contrast with the 2002 data, the frequency comparison shows a variation with degree, and some dependence on frequency.

Comparison of Clebsch-Gordan Coefficients

- Color dots: coefficients derived from ridge fitting.
- Black crosses: coefficients derived from coeval resolved mode fitting.
\Rightarrow Large offset between ridge and mode estimate, and between instruments.

- Color circles: coefficients derived from mode estimates, after correcting ridge fitting results.
- Black crosses: coefficients derived from coeval resolved mode fitting.
\Rightarrow Despite horns, both the offset high degree and mode estimate, and between instruments has vanished - no ad hoc fudging.

Rotation Inversions

- Inversion model grid (semi uniform in radius and latitude),
- shown in cartesian coordinates.

- A. Eff-Darwich inversion method.

Averaging Kernels

- Kernels for inversions using or not high degree modes (left vs right)

- Target location: black cross-diamond symbols,
- Kernel center of gravity and width: green crosses and circles.
- Inversion grid: black dots.

Averaging Kernels (Cont’d)

- Top 10\%

- Ratio of $\Gamma_{a k}$ and differences \wedge,
- for rotation inversions using or not high degree modes.

$$
\begin{gathered}
\Gamma_{a k}=\int K_{a}^{2}(r, \phi) D^{2}(r, \phi) d r d \phi / \int K_{a}^{2}(r, \phi) d r d \phi \\
\Lambda^{2}=\left(r_{t}-r_{c}\right)^{2}+\left(\left(\phi_{t}-\phi_{c}\right) /(\pi / 2)\right)^{2}
\end{gathered}
$$

where $D^{2}=\left(r-r_{c}\right)^{2}+\left(\left(\phi-\phi_{c}\right) /(\pi / 2)\right)^{2}$, and $\left(r_{c}, \phi_{c}\right)$ is an estimate of the center of gravity of the averaging kernel main peak; and $\left(r_{t}, \phi_{t}\right)$ is the inversion target location on the solution grid.

Rotation Rate in the Outer 10\% of the Solar Interior

- after subtracting a differential rotation profile, inferred using or not high degree modes (right and left panels).

Note

- (a) the "torsonial oscillations" signal stands out more clearly when including high degrees, and
- (b) the profiles are quite different in the top 5\%, esp. at high latitudes.

Medium- ℓ Only

High- and Medium- ℓ

Conclusions

- Can use ridge values to estimate mode parameter.
- Discrepancies remains, likely due to short time series, error in PSF, ...
- GONG, MDI \& HMI overlap can be leveraged to resolve this.
- Inclusion of high degree splittings affects solution in the top 10\%, and alters the solution in the top 5\%.
- Should produce and use high-degree mode estimates on a regular basis.

```
Tables are available at
    https://www.cfa.harvard.edu/~sylvain/research/
under
    https://www.cfa.harvard.edu/~sylvain/research/tables/HiL/
```


The End

