What Can We Learn about the Solar Subsurface Large Scale Flows from Accurate High-Degree Modes Frequencies?

> Helas VI — SOHO 28 — SPACEINN Göttingen, GE

> > S.G. Korzennik

Harvard-Smithsonian Center for Astrophysics, USA.

September 2014

Contributors: A. Eff-Darwich (ULL, IAC) T. Larson (Stanford) M.C. Rabello-Soares (UFMG) J. Schou (MPS)

S.G. Korzennik (CfA)

What Can We Learn from High-Degree Modes?

▶ ≣ つへで Sep 2014 1/21 Introduction

Introduction

- High degrees "problem":
 - modes blend into ridges (ℓ > 200, for p-modes, ℓ > 300 for f-modes),
 - ridge characteristics (ν, A, Γ, α) are *not* the mode characteristics.

Methodology

- Fit ridges ($100 \le \ell \le 1000$),
- Use multi-taper estimator (to reduce realization noise).
- Apply a ridge to mode correction, based on *best* possible model of mode blending - dominated by the *effective* leakage matrix.
- Iterate on model input parameters to best match observations.
- Use the $100 \le \ell \le 300$ overlap for validation.

Introduction

Coverage in the (ℓ, ν) Plane

- Red dots: low and intermediate degrees: fitting resolved modes.
- Black circles: high degrees modes: ridge fitting.

(日)

Data Sets Analyzed

- ► All epochs correspond to MDI *Dynamics* epochs.
- Can extend the time series for HMI & GONG.

Comparison with Resolved Modes

Year	Instrument	$\Delta \nu$	$\Delta u / \sigma_{ u}$
		[µHz]	
2001	MDI	-0.220 ± 0.673	-0.880 ± 2.182
2002	MDI	-0.298 ± 0.966	-0.862 ± 2.631
	GONG	0.176 ± 0.769	0.517 ± 2.416
2010	MDI	-0.088 ± 1.087	-0.077 ± 2.766
	GONG	0.748 ± 1.186	2.751 ± 2.411
	HMI	0.269 ± 0.616	0.880 ± 2.044

- Mean and standard deviation of
 - frequency differences, and
 - frequency differences normalized by their uncertainties,

between estimated mode frequencies derived from ridge fitting and coeval resolved mode frequencies measurements,

• for the $100 \le \ell \le 200|300$ overlapping range.

A D A A B A A B A A B A

Comparison with Resolved Modes (cont'd)

- Circles: frequency differences; dots: ridge to mode correction
- Differences are small, clustered near zero, with no discernible trends, and much smaller than the correction itself.
- The largest scatter is seen for the f-mode below $\ell = 250$ or so.

S.G. Korzennik (CfA)

Sep 2014 6 / 21

Comparison with Resolved Modes (cont'd)

- Similar plot for MDI, GONG and HMI 2010.
- GONG comparison shows a larger bias (2.8σ)
- Scatter for the f-mode remains large even above $\ell = 250$.
- Is this the result of using a shorter time series? (67 versus 90 or 98 days).

S.G. Korzennik (CfA)

Sep 2014 7 / 21

Comparison at High Degree between Data Sets

Year	Instruments	Δu [μ Hz]	$\Delta u / \sigma_{ u}$
2002 2010	Gong - MDI Gong - MDI HMI - MDI	$\begin{array}{c} -0.222\pm 0.460\\ -0.982\pm 0.934\\ -0.655\pm 1.117\end{array}$	$\begin{array}{c} -1.317 \pm 1.470 \\ -4.260 \pm 2.770 \\ -2.162 \pm 1.572 \end{array}$

- Mean and standard deviation of
 - frequency differences, and
 - frequency differences normalized by their uncertainties,
- between estimated mode frequencies derived from ridge fitting for different instruments and coeval epochs, with respect to MDI values.

Comparison at High Degree between Data Sets

Comparison of ν , Γ , & α , 2002

What Can We Learn from High-Degree Modes?

Sep 2014 9 / 21

イロト イポト イヨト イヨト 二日

Comparison of ν , Γ , & α , 2010

By contrast with the 2002 data, the frequency comparison shows a variation with degree, and some dependence on frequency.

S.G. Korzennik (CfA)

What Can We Learn from High-Degree Modes?

Sep 2014 10 / 21

Comparison of Clebsch–Gordan Coefficients

- Color dots: coefficients derived from ridge fitting.
- Black crosses: coefficients derived from coeval resolved mode fitting.

 \Rightarrow Large offset between ridge and mode estimate, and between instruments,

S.G. Korzennik (CfA)

What Can We Learn from High-Degree Modes?

Sep 2014 11 / 21

Comparison at High Degree between Data Sets

- Color circles: coefficients derived from mode estimates, after correcting ridge fitting results.
- Black crosses: coefficients derived from coeval resolved mode fitting.
- \Rightarrow Despite *horns*, both the offset high degree and mode estimate, and between instruments has vanished no *ad hoc* fudging, *and the set all the*

S.G. Korzennik (CfA)

What Can We Learn from High-Degree Modes?

Sep 2014 12 / 21

- Inversion model grid (semi uniform in radius and latitude),
- shown in cartesian coordinates.

A. Eff-Darwich inversion method.

S.G. Korzennik (CfA)

Averaging Kernels

Kernels for inversions using or not high degree modes (left vs right)

- Target location: black cross-diamond symbols,
- Kernel center of gravity and width: green crosses and circles.
- Inversion grid: black dots.

Averaging Kernels (Cont'd)

► Top 10%

What Can We Learn from High-Degree Modes?

(ロ) (部) (E) (E) (E)

- Ratio of Γ_{ak} and differences Λ ,
- for rotation inversions using or not high degree modes.

$$\Gamma_{ak} = \int K_a^2(r,\phi) D^2(r,\phi) dr d\phi / \int K_a^2(r,\phi) dr d\phi$$
$$\Lambda^2 = (r_t - r_c)^2 + ((\phi_t - \phi_c)/(\pi/2))^2$$

where $D^2 = (r - r_c)^2 + ((\phi - \phi_c)/(\pi/2))^2$, and (r_c, ϕ_c) is an estimate of the center of gravity of the averaging kernel main peak; and (r_t, ϕ_t) is the inversion target location on the solution grid.

Rotation Rate in the Outer 10% of the Solar Interior

 after subtracting a differential rotation profile, inferred using or not high degree modes (right and left panels).

Note

- (a) the "torsonial oscillations" signal stands out more clearly when including high degrees, and
- ▶ (b) the profiles are quite different in the top 5%, esp. at high latitudes.

Medium-ℓ Only

What Can We Learn from High-Degree Modes?

Sep 2014 18/21

High- and Medium- ℓ

What Can We Learn from High-Degree Modes?

Sep 2014 19 / 21

Conclusions

Conclusions

- Can use ridge values to estimate mode parameter.
- ▶ Discrepancies remains, likely due to short time series, error in PSF, ...
- GONG, MDI & HMI overlap can be leveraged to resolve this.
- Inclusion of high degree splittings affects solution in the top 10%, and alters the solution in the top 5%.
- Should produce and use high-degree mode estimates on a regular basis.

Tables are available at

https://www.cfa.harvard.edu/~sylvain/research/
under

https://www.cfa.harvard.edu/~sylvain/research/tables/HiL/

The End

The End

What Can We Learn from High-Degree Modes?

Sep 2014 21 / 21

(ロ) (部)(注)(注)(注)