The Solar Rotation and its Evolution During Cycle 23

Introduction

• We present the most exhaustive and accurate inferences of the internal solar rotation rate and its evolution during solar cycle 23.

Fig. 1: A full solar cycle of MDI observations has been analyzed using our state of the art fitting methodology.

• We computed and fitted power spectra derived from time series of varying lengths: from a single 4608-day long epoch $(64 \times 72 \text{ day or } 12.6 \text{ year})$ down to 64 segments each 72-day long.

• We carried out rotation inversions for all the available fitted mode sets and all available segments, including the MDI and GONG standard "pipe-line" sets.

The Fitting Method

This method fits *individual* modes, using an asymmetric profile, and an *optimal* multi-tapered spectral estimator.

It fits simultaneous all m for a given n, ℓ multiplet, uses an iterative scheme to include mode contamination, and a "sanity" rejection.

• Key elements of this method:

 \triangleright include leakage matrix, fit an asymmetric profile, use *optimal* multi-tapered spectral estimator, simultaneous fit of individual modes (all *m*) sanity rejection, and mode contamination (iterative), fit time-series of varying lengths.

• Use *improved* SHC time-series: 1996.05.01 -- 2008.12.12

▷ spatial decomposition includes our best estimate of the image plate scale and of the MDI instrumental image distortion.

• Use *improved* leakage matrix:

▷ includes effect of distortion by differential rotation (effective leakage matrix)

• Use varying time series lengths:

 $\triangleright 64 \times, 32 \times, 16 \times, 8 \times, 4 \times \& 2 \times 72$ -day long, overlapping, time-series, as well as 72-day long non-overlapping epochs.

Comparison with Standard "Pipe-Lines"

Frequencies Comparison

S.G. Korzennik⁽¹⁾, A. Eff-Darwich⁽²⁾ 1: Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 2: Instituto de Astrofísica de Canarias & Universidad de La Laguna, Tenerife

The Attrition Issue

Observed Mode Attrition

Fig. 3: Mode attrition for different mode fitting methods. Top: MDI and GONG pipe-lines; bottom: my method for different time series lengths. The colors represent how often a mode was fitted.

The Problem with Mode Attrition

- Inverse Theory
 - $y_i = \int K_i \, x(p) dp$
- Inverse problems are singular, require regularization,
 produce an *estimate* of the solution

 $\hat{x}(p_k) = \int R(p, p_k) x(p) dp$

- -R resolution kernels depend on the input set
- Solar Rotation

 $\delta\nu_{n,\ell,m} = \int K_{n,\ell,m}(r,\theta) \,\Omega(r,\theta) \,dr \,d\theta$

- input set is defined by $\{n, \ell, m\}$ or $\{n, \ell, a_i\}$
- temporal changes in the input set affect R, hence \hat{x}

⇒ We chose to invert a constant input set to avoid injecting change of the input sets into inverted rotation profile changes.

Other Issues

- Leakage matrix
 - closest leaks $-\Delta \nu_{\delta m=2,\delta \ell=0}$ are rarely resolved * $\Delta \nu \gg \Gamma$, $\Delta \nu \simeq 2 \times \frac{\Omega}{2\pi} \simeq 0.8 \,\mu\text{Hz}$
 - plate scale, image & eigen values distortions, orientation (B₀)
 * new MDI Sph. Harm. Coefs
 - accounts for plate scale and image distortion
 - * distortion by differential rotation
 - $* B_0 = B_0(t)$
 - * other geometric variations negligible
 - \Rightarrow very long time-series indicate remaining mismatch for f-mode

1 - 6% effect

3-15% effect

- Independent leakage computation
- * small differences

Leakage Matrix – f modes

Fig. 4: Data and model (top and middle respectively) of the f-mode

Mean Solar Rotation Rate for Cycle 23

The 12.6 year-long MDI Data Set

Fig. 6: Rotation rate (left) as a function of depth and latitude derived from a solar cycle worth of data. Right: The formal uncertainty of that inversion.

Rotation Rate Changes

GONG r/R = 1.00 - 0.71

Fig. 7: Change of the rotation rate, as a function of time and latitude, derived from inversions using Clebsch-Gordan coefficients, at four depths (r/R = 1, 0.95, 0.87, 0.71 top to bottom) and using either the GONG pipeline 9 term expansion, or my fit to GONG frequency tables using 9, 18 or 36 terms (left to right).

MDI/JS/TPL r/R = 1.00 - 0.71

Fig. 8: Change of the rotation rate, as a function of time and latitude, derived from inversions using Clebsch-Gordan coefficients, same four depths as in Fig. 7, but using MDI's tables (standard & improved sets, using symmetric or asymmetric profile – left to right).

MDI/SGK r/R = 1.00 - 0.71

Fig. 2: Top: mode coverage comparison. Bottom: frequencies and relative frequencies differences, as a function of mode frequency.

• Systematic differences between methodologies, even when asymmetry is included in pipe-line processing,

• Specific f-mode systematics.

Splittings Comparison: *a*₁

	δa_1	$\delta a_1/\sigma_{a_1}$
GONG/sym 64e vs SGK/asym 64e	-0.277 ± 0.984	-0.917 ± 1.279
TPL/sym 64e vs SGK/asym 64e	0.051 ± 0.635	0.534 ± 2.888
TPL/asym 32e vs SGK/asym 32e	0.096 ± 0.769	1.398 ± 2.384

at $\ell = 150$ & 250 (left & right resp.). Bottom: difference. Note the mismatch of the leaks at l = 250.

The Inversion Method

- The inversion methodology is an iterative methodology based on a least-squares regularization (Eff-Darwich & Korzennik, 2007).
- Implements a model grid optimization derived from the actual information in the input set. This optimized model grid is itself irregular, namely with a variable number of latitudes at different depths.

▷ Iterative approach

▷ optimal and non-uniform grid

Fig. 5: Model grid derived iteratively from the actual resolution potential of the input set.

Fig. 9: Change of the rotation rate, as a function of time and latitude, derived from inversions using individual frequency tables, same four depths, using results of my fit to MDI's 72d, and 2, 4, 8 & $16 \times 72d$ long epochs (left to right).

Conclusions

• Fitting: Issues still remain to be solved.

Mean rotation

- Very long time-series improved precision, resolution & extent
- Dip at $(0.4, 63^{\circ})$ a 1σ , rising branch of cycle
- Evolution
 - *Easy* at the surface, and low latitudes
 - Remains challenging down to base of CZ & difficult below CZ
 - A more consistent picture emerges when using longer time series