Atmospheric Phase Correction for Submillimeter Interferometry Using Stratospheric Ozone Line Emission

ul Yamaguchi ph

Scott Paine Smithsonian Astrophysical Observatory Submillimeter Receiver Laboratory

Outline

- Introduction comparing H_2O and O_3 radiometry for wet path delay mitigation
- Spatial and spectral properties of O_3 in the atmosphere
- Current progress at the SMA

The wet path delay problem

Example: At 690 GHz ($\lambda = 435 \ \mu m$), the excess path is 6.8 · PWV, leading to complete loss of coherence for line-of-sight PWV differences of ~50 μm

Water vapor radiometry

- Look at H₂O line (typically 22 GHz or 183 GHz) in emission with dedicated multi-channel receiver at each antenna.
- Line width \sim 3 GHz

Ozone radiometry

- Look at O₃ line in passband of astronomical receiver
- Foreground H₂O absorption reduces O₃ line contrast
- Line width $\sim 100 \text{ MHz}$

Comparing methods

- Water vapor radiometry
 - Measures H_2O in emission
 - Broader line offers better inherent sensitivity
 - Requires auxiliary broad band receiver
- Ozone radiometry
 - Measures H_2O in transmission
 - Narrower line offers better stability all analog elements of signal path are common-mode
 - Uses astronomical receiver, measures along same beam

O₃ column variability

- •OMI satellite data are assimilated into ESA TEMIS multi-day forecast model
- •Variations are slow (<10% /day), 95% range is $\pm 20\%$ over the year at Mauna Loa, Hawaii
- •Variations are common-mode over radio telescope array

Vertical profiles of H₂O and O₃

Mauna Kea, Hawaii. Quartile profiles compiled from NOAA CMDL ozonesonde data for 1984-2004.

Downwelling spectrum at tropopause

Mauna Kea - zenith downwelling radiation at 150 mbar

URSI General Assembly – Chicago – 2008 August 12

$Example-O_3 \ at \ 700.9 \ GHz$

- O₃ line in USB of SMA with CO 6→5 in LSB
- 100 μ m pwv change produces 680 μ m path change (560° phase change).
- Change in line contrast is 1.1 K DSB, when averaged over 100 MHz equivalent width.
- For $T_{sys} = 500$ K, t = 2.5 s, 100 MHz bandwidth, $\Delta T = 32$ mK.
- Equivalent sensitivity is 23 μ m path change (19° phase change).
- For two-antenna difference, phase sensitivity is 27°, corresponding to 11% loss.

Progress at the SMA

- New dedicated back end fed by IF tap
- 2 Gs / s , 16k channel FFT analyzer (Acqiris AC240)
- 1 GHz spectral window tunable across SMA IF by a programmable downconverter
- Single-antenna tests since January 2008, second system installed June 2008.

SMA O₃ line spectrum

- 1 s integration, 61 kHz channels, so noise is about 0.4 K / channel at T_{sys} = 100 K
- Note fast uncalibrated baseline ripple from subreflector reflection varies with elevation, focus tracking.
- Also RFI from digital clocks, but affected bandwidth is minimal.
- With an accurate atmospheric model, ripple and RFI which vary slowly in time can be rejected by recursive filtering.

Recursive Filtering

Next steps

- Begin two-antenna tests
 - Correlation of large-scale fluctuations between near antennas
 - Delay correction tests on quasar
- Improvements to SMA calibration
- Algorithm development
 - Track receiver gain fluctuations between cals
 - Make best use of real time meteorological data