Atmospheric Modeling and Instrument Design for the Dome A FTS

Scott Paine Smithsonian Astrophysical Observatory Submillimeter Receiver Laboratory

Outline

- An atmospheric model for Dome A
 - Estimated vertical profiles
 - Absorption by water vapor and other gases
 - Model radiance and transmittance
- FTS Design
 - Design constraints for Dome A
 - Optical layout
 - Sensitivity analysis
- Next steps

An atmospheric model for Dome A

- Serves as a starting point for instrument design
- Model profiles
 - Start with median winter profiles from NOAA CMDL South Pole ozonesondes, which carry chilled-mirror hygrometers.
 - Ground point based on Dome A weather station data
- Clear sky radiative transfer
 - Show contributions of different components
 - Most uncertain is H_2O continuum
- Compute using *am* code

Dome A model profiles (winter median)

- •Model surface inversion is 10 mbar thick (e.g. J. S. Lawrence, PASP 116 482 2004)
- Symbols indicate points used for *am* winter median model profiles.
- •Model winter pwv quartiles are 115 μ m, 180 μ m, 270 μ m
- •Dome A should be drier, and early Pre-HEAT data do imply lower median pwv, so use 75 μ m in examples

Atmospheric model absorption

Use model profiles in a radiative transfer model with:

- Dry line-by-line absorption $-O_2, O_3, N_2O, CO, CH_4$
- Dry collision-induced absorption $-N_2, O_2$
- H_2O line-by-line and continuum absorption

Look at each of these in turn, then put it all together...

Dome A dry line-by-line transmittance

Mainly $O_2 O_3$ pure rotation bands – occupied bandwidth is small

Collision-induced absorption (CIA)

- Broadband dry THz absorption is mainly N_2-N_2 , N_2-O_2 CIA.
- Forbidden electric quadrupole and 16-pole rotational transitions acquire dipole coupling via polarization of collision partner.
- Binary process, so absorption depends on density squared.
- Collisions are brief (~10⁻¹² s), so broad lines blend into an unresolved band.
- N_2 - N_2 lab data is available to 90 K. N_2 - O_2 can be estimated by scaling.
- O_2 -x is less well-studied, but its contribution to atmospheric opacity is small.

Laboratory N₂-N₂ CIA spectrum (Stone, et al. 1984)

FIG. 5.2. The collision-induced rotation band of pure nitrogen (nitrogen-nitrogen collisions). The vertical axis is the binary absorption coefficient, as defined in (3.88). After Stone et al. (1984).

Dome A winter CIA transmittance

H₂O Continuum

- Associated with short-range collisions
- Dipole-allowed transitions are affected, may also have a CIA component
- Difficult to study experimentally
 - Hard to disentangle from allowed line spectrum
 - H₂O vapor hard to control experimentally at low T
- Best model is MT_CKD (Mlawer, et al., see rtweb.aer.com)
 - Self-continuum defined for 260 K < T < 298 K
 - T-dependence not developed for air-induced continuum, which dominates in the dry conditions at Dome A
 - Probably not accurate at low Dome A temperatures
 - Improvements needed for RT component of climate models

Dome A H₂O transmittance (75 μ m pwv)

Accuracy of the T-independent MT_CKD self-continuum is questionable at such low temperatures (T < 240 K). The band can be expected to move down in frequency and sharpen. (Compare with line-by-line.)

Net model transmittance (75 μ m pwv)

Net model transmittance (75 μ m pwv)

Net model transmittance (75 μ m pwv)

Net model radiance

- The large dynamic range in this spectrum is a key design driver for the FTS
- Solution split into bands

FTS design considerations

- Dome A requires low power, and no cryogens
 - ambient temperature pyroelectric detector
 - passive calibration loads
- Broad spectral coverage (0.75 THz 10 THz)
 - cover both sides of H_2O rotation band
 - split into bands to reduce dynamic range and maximize low frequency throughput
- Measurement time ≈ 10 minutes / spectrum
 - drives optical throughput, spectral resolution, and low-frequency cutoff

Optical design concept

- CL Outside passive calibration load D1, D2 Pyroelectric detectors and Winston cones
- F1, F2 Low-pass filters
- M1 Tipping mirror
- M2 Paraboloidal mirror
- P1, P2, P3 Wire grid polarizer
- RL Reference load
- RM1, RM2 Roof mirrors
- TL1, TL2 Background termination loads
- Based on JASCO-built NRO site testing interferometer design (Matsuo, et al. PASJ 50 359 1998)
- Commercialized by JASCO as FARIS-1 lab spectrometer
- Modify for access to both polarizations at input and output

FTS sensitivity

$$SNR = \frac{P}{NEP \cdot t^{-1/2}}$$

$$P = I \cdot E \cdot \Delta f \cdot \eta$$

I = radiance

 $\Delta f = \text{resolution bandwidth}$ E = optical throughput $\eta = \text{efficiency}(\text{assume 0.1})$

FTS dynamic range

Measured interferogram

Resulting spectrum

Because of the large dynamic range of the interferogram, good linearity and stability are needed to achieve theoretical sensitivity.

Low band sensitivity

Assumptions:

 $E_{low} = 0.79 \text{ cm}^2 \cdot \text{sr}$ (maximum possible for JASCO interferometer) $NEP_{low} = 3.5 \cdot 10^{-10} \text{ watt} \cdot \text{Hz}^{-1/2} \text{ (DLATGS detector)}$ $\Delta f = 10 \text{ GHz}$

High band sensitivity

Assumptions:

 $E_{high} = 0.18 \text{ cm}^2 \cdot \text{sr}$ (limited by shortest wavelength) $NEP_{high} = 1.7 \cdot 10^{-10} \text{ watt} \cdot \text{Hz}^{-1/2} \text{ (DLATGS detector)}$ $\Delta f = 10 \text{ GHz}$

Next steps

- Meet with vendor to finalize spectrometer design
 - This week
- Establish integration and deployment timeline

- This week

- Window, sky mirror, and cal load design and fabrication
 - copy pre-HEAT tipping mirror design?
- Computing and software
 - Migrate vendor system to low-power embedded hardware and OS compatible with existing systems at Dome A