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Why deploy an FTS?

* Broad spectral coverage (e.g. 200 um to 20 pum)
gives tightly-constrained atmospheric transmission

* Eliminates modeling uncertainty associated with
H O continuum absorption at low temperature

* FTS spectra combined with atmospheric sounding
data can validate absorption models

* Probes boundary layer in optically-thick spectral
range
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Example of an FTS interferogram — Sairecabur, Chile

* Polarizing Michelson
interferometer with He-
cooled bolometers

Sairecabur - 2005 Nov 14 02:40 UT
300

* Interferogram acquired in 200 |
10 minutes

. 100 |
* ~50 mm mirror travel

(100 mm delay)

sky - load [arb.]

* ~3 GHz resolution
100 | | | | |

0 10 20 30 40 50
— Large dynamic range Mirror Travel [mm]

* Things to note:

— Effect of flicker noise
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Example of an FTS spectrum — Sairecabur, Chile

Sairecabur - 2005 Nov 14 02:40 UT

* Fourier transformation 30
and calibration produces | |
T, spectrum. 200 |
* SNR degrades rapidly %
towards low frequency: 3 00 d
~30 for 650 GHz, 100 K o MJ
* Note baseline at boundary
layer temperature. "0 500 1000 1500 2000 2500 3000 3500

Frequency [GHZz]
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Example of an FTS spectrum — Sairecabur, Chile

Sairecabur - 2005 Nov 14 02:40 UT

Model fit with am 300

Initial profiles based on | [}

Chajnantor radiosonde archive 200

Fit four parameters: Y

- H,O profile scale factor

100 M JU
~— T in two layers for
440 mbar < P < 530 mbar

0 1 1 1 1 1 1
~ HZO mixing ratio in bottom layer 0 500 1000 1500 2000 2500 3000 3500

Frequency [GHZz]

H O continuum (MT_CKD) works well here, where THzO > 260 K
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An atmospheric model for Dome A

* Serves as a starting point for instrument design

* Use median winter profiles from NOAA CMDL
South Pole ozonesondes, which carry chilled-mirror
hygrometers.

* Ground point based on Dome A weather station data

* LLook at contributions from various constituents
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Dome A model profiles (winter median)

O3 vol. mixing ratio [ppm]
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*Model surface inversion is 10 mbar thick (e.g. J. S. Lawrence, PASP 116 482)

*Symbols indicate points used for am winter median model profiles.
*Model winter pwv quartiles are 115 Jm, 180 um, 270 um — this is probably an upper bound.
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Atmospheric model components

Use model profiles 1n radiative transter model with:

* Line absorption from H O, O, O,,N,O, CO, CH,
* H O continuum absorption

* Dry collision-induced absorption

The greatest uncertainty arises from H O continuum
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Dome A winter model (180 um pwyv)
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Dome A winter model (75 ym pwv)
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Collision-induced absorption (CIA)

* Broadband dry THz absorption is mainly N -N_, N -O, CIA.

* Forbidden electric quadrupole and 16-pole rotational
transitions acquire dipole coupling via polarization of
collision partner.

* Binary

process, so absorption depends on density squared.

* Collisions are brief (~10'? 8), so broad lines blend into an

* N-N,

unresolved band.

lab data 1s available to 90 K. 02—X 1s less well-

studied

, but contribution to atmospheric opacity 1s small.
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Laboratory N -N, CIA spectrum

(Stone, et al. 1984)
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Fi. 5.2. The collision-induced rotation band of pure nitrogen (nitrogen-nitrogen
collisions). The vertical axis is the binary absorption coefficient, as defined in (3.88). After
Stone et al. (1984).
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Dome A winter CIA transmittance
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HzO Continuum

* Associated with short-range collisions

* Dipole-allowed transitions are affected, may also have a CIA
component

* Difficult to study experimentally

— Hard to disentangle from allowed line spectrum

- H_ O vapor hard to control experimentally at low T

* Best model 1s MT_CKD (Mlawer, et al., see rtweb.aer.com)
— Self-continuum defined for 260 K < T < 298 K

— T-dependence not developed for air-induced continuum,
which dominates in the dry conditions at Dome A
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Dome A H,O transmittance (180 ym pwv)

H ;O continuum
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Accuracy of the T-independent MT_CKD self-continuum is questionable at such low
temperatures (T < 240 K). The band can be expected to move down in frequency and
sharpen. (Compare with line-by-line.)
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Planck T, for winter median P,T profile
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The optically-thick part of the spectrum gives some indication of the boundary-layer profile--
T, at the center of strong lines is the surface temperature, baseline is T at top of inversion.
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Planck T, (submillimeter)
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Radiance for winter median P, T profile
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Submillimeter radiance
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*Submillimeter radiance will drive instrument design
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Instrument design 1ssues

* SAO FTS summary
* Design constraints for Dome A
* Sensitivity estimates

* Other design 1ssues
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SAQ Site Testing FTS

Llano de Chajnantor (5050 m) — 1997 — 1999
Note NRAO 225 GHz and 350 pm tippers

Sairecabur (5525 m) — 2000 — present
Comparison with Chajnantor, and
RLT calibration
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SAQO FTS Characteristics

* Polarizing Michelson FTS

* Polarization chopping @ 95 Hz
* 300 GHz - 3.5 THz

* He cryostat, 35 days hold time
* 100 W power consumption

* Qutdoor operation to -25 C

* Biggest reliability 1ssue has been

the polarizing chopper
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SAQO FTS resolution and sensitivity

* Apodized resol

lution for 50 mm scan: 3 GHz

* Dual-polarized

| bolometers, NEP 1.2-10-> W Hz '

* Optical throughput per polarization channel: 0.11 cm? sr

* Efficiency ~20 %

* Typical SNR at 650 GHz, 100 K: ~30 1n 10 minutes at full
resolution, typically limited by flicker, not bolometer.
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Design constraints for Dome A

* Frequency coverage to 15 THz (20 um) 1s highly
desirable

— Cover entire HZO rotation band and rotational continuum
— Measure windows to f > 7.5 THz (A £ 40 um)

* Liquid cryogens or closed-cycle fridge not practical
In near term

— Forces use of ambient temperature (pyroelectric) detector

- NEP ~10° W/Hz"?, compared with ~10"> W/Hz"* for
cryogenic bolometer
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FTS sensitivity estimate

P
SNR_NEP-t_I/Z P=I-E-Af-n

I = radiance

A f=resolution bandwidth

E = optical throughput (assume 0.1 cm”sr)

n=efficiency (assume0.1)
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FTS sen81t1V1ty estimate
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(Power spectra computed using median model radiance at 180 um pwv)
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Other design 1ssues

* Two-mode operation

— High throughput with long-pass filter (A > ~100 yum) for
submillimeter measurement

— Lower throughput mode for measurement to ~20 yum
* Calibration with no cryogens, limited power

— May be able to use internal & external ambient loads
* Optimum measurement strategy

— Mix of short vs. long scans, submillimeter vs. FIR
spectral modes

Dome A Astronomy — Beijing — 2008 June 12



Conclusion and next steps

* The concept of a site-testing FT'S without cryogenics
appears feasible.

* Having the capability to measure both ends of H O
rotation band 1s desirable

* Next steps:

— Refine understanding of design tradeoffs

— Evaluate capabilities of commercial vendors
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