A Fourier Spectrometer for Dome A – Atmospheric Modeling and Design Issues

Scott Paine Smithsonian Astrophysical Observatory Submillimeter Receiver Laboratory

Outline

- Why deploy a Fourier Transform Spectrometer (FTS)?
- FTS measurement example
- An atmospheric model for Dome A
- FTS design issues
 - Experience with SAO site-testing FTS
 - Design constraints and sensitivity estimates for Dome A

Why deploy an FTS?

- Broad spectral coverage (e.g. 200 μ m to 20 μ m) gives tightly-constrained atmospheric transmission
- Eliminates modeling uncertainty associated with H_2O continuum absorption at low temperature
- FTS spectra combined with atmospheric sounding data can validate absorption models
- Probes boundary layer in optically-thick spectral range

Example of an FTS interferogram – Sairecabur, Chile

- Polarizing Michelson interferometer with Hecooled bolometers
- Interferogram acquired in 10 minutes
- ~50 mm mirror travel (100 mm delay)
- ~3 GHz resolution
- Things to note:
 - Large dynamic range
 - Effect of flicker noise

Example of an FTS spectrum – Sairecabur, Chile

- Fourier transformation and calibration produces T_b spectrum.
- SNR degrades rapidly towards low frequency: ~30 for 650 GHz, 100 K
- Note baseline at boundary layer temperature.

Example of an FTS spectrum – Sairecabur, Chile

- Model fit with *am*
- Initial profiles based on Chajnantor radiosonde archive
- Fit four parameters:
 - H_2O profile scale factor
 - T in two layers for
 440 mbar < P < 530 mbar
 - H_2O mixing ratio in bottom layer

 H_2O continuum (MT_CKD) works well here, where $T_{H20} > 260$ K

An atmospheric model for Dome A

- Serves as a starting point for instrument design
- Use median winter profiles from NOAA CMDL South Pole ozonesondes, which carry chilled-mirror hygrometers.
- Ground point based on Dome A weather station data
- Look at contributions from various constituents

- •Model surface inversion is 10 mbar thick (e.g. J. S. Lawrence, PASP **116** 482)
- •Symbols indicate points used for am winter median model profiles.
- •Model winter pwv quartiles are 115 μ m, 180 μ m, 270 μ m this is probably an upper bound.

Atmospheric model components

Use model profiles in radiative transfer model with:

- Line absorption from H_2O , O_2 , O_3 , N_2O , CO, CH_4
- H₂O continuum absorption
- Dry collision-induced absorption

The greatest uncertainty arises from H₂O continuum

Dome A winter model (180 μ m pwv)

Dome A winter model (75 μ m pwv)

Collision-induced absorption (CIA)

- Broadband dry THz absorption is mainly N_2 - N_2 , N_2 - O_2 CIA.
- Forbidden electric quadrupole and 16-pole rotational transitions acquire dipole coupling via polarization of collision partner.
- Binary process, so absorption depends on density squared.
- Collisions are brief (~10⁻¹² s), so broad lines blend into an unresolved band.
- $N_2 N_2$ lab data is available to 90 K. O_2 -x is less wellstudied, but contribution to atmospheric opacity is small.

Laboratory N₂-N₂ CIA spectrum

(Stone, et al. 1984)

FIG. 5.2. The collision-induced rotation band of pure nitrogen (nitrogen-nitrogen collisions). The vertical axis is the binary absorption coefficient, as defined in (3.88). After Stone et al. (1984).

Dome A winter CIA transmittance

H₂O Continuum

- Associated with short-range collisions
- Dipole-allowed transitions are affected, may also have a CIA component
- Difficult to study experimentally
 - Hard to disentangle from allowed line spectrum
 - H₂O vapor hard to control experimentally at low T
- Best model is MT_CKD (Mlawer, et al., see rtweb.aer.com)
 - Self-continuum defined for 260 K < T < 298 K
 - T-dependence not developed for air-induced continuum, which dominates in the dry conditions at Dome A

Dome A H₂O transmittance (180 μ m pwv)

Accuracy of the T-independent MT_CKD self-continuum is questionable at such low temperatures (T < 240 K). The band can be expected to move down in frequency and sharpen. (Compare with line-by-line.)

Planck T_b for winter median P,T profile

The optically-thick part of the spectrum gives some indication of the boundary-layer profile- T_{b} at the center of strong lines is the surface temperature, baseline is T at top of inversion.

Planck T_b (submillimeter)

Radiance for winter median P,T profile

Submillimeter radiance

•Submillimeter radiance will drive instrument design

Instrument design issues

- SAO FTS summary
- Design constraints for Dome A
- Sensitivity estimates
- Other design issues

SAO Site Testing FTS

Llano de Chajnantor (5050 m) – 1997 – 1999 Note NRAO 225 GHz and 350 μ m tippers

Sairecabur (5525 m) – 2000 – present Comparison with Chajnantor, and RLT calibration

SAO FTS Characteristics

- Polarizing Michelson FTS
- Polarization chopping @ 95 Hz
- 300 GHz 3.5 THz
- He cryostat, 35 days hold time
- 100 W power consumption
- Outdoor operation to -25 C
- Biggest reliability issue has been the polarizing chopper

SAO FTS resolution and sensitivity

- Apodized resolution for 50 mm scan: 3 GHz
- Dual-polarized bolometers, NEP 1.2·10⁻¹² W Hz^{-1/2}
- Optical throughput per polarization channel: 0.11 cm² sr
- Efficiency ~20 %
- Typical SNR at 650 GHz, 100 K: ~30 in 10 minutes at full resolution, typically limited by flicker, not bolometer.

Design constraints for Dome A

- Frequency coverage to 15 THz (20 μ m) is highly desirable
 - Cover entire H₂O rotation band and rotational continuum
 - Measure windows to f \geq 7.5 THz ($\lambda \leq$ 40 μ m)
- Liquid cryogens or closed-cycle fridge not practical in near term
 - Forces use of ambient temperature (pyroelectric) detector
 - NEP ~10⁻⁹ W/Hz^{1/2}, compared with ~10⁻¹² W/Hz^{1/2} for cryogenic bolometer

FTS sensitivity estimate

$$SNR = \frac{P}{NEP \cdot t^{-1/2}} \qquad P = I \cdot E \cdot \Delta f \cdot \eta$$

I = radiance

 $\Delta f = \text{resolution bandwidth}$ $E = \text{optical throughput}(\text{assume } 0.1 \text{ cm}^2 \text{ sr})$ $\eta = \text{efficiency}(\text{assume } 0.1)$

FTS sensitivity estimate

(Power spectra computed using median model radiance at 180 μ m pwv)

Other design issues

- Two-mode operation
 - High throughput with long-pass filter ($\lambda > \sim 100 \ \mu m$) for submillimeter measurement
 - [–] Lower throughput mode for measurement to ~20 μ m
- Calibration with no cryogens, limited power
 - May be able to use internal & external ambient loads
- Optimum measurement strategy
 - Mix of short vs. long scans, submillimeter vs. FIR spectral modes

Conclusion and next steps

- The concept of a site-testing FTS without cryogenics appears feasible.
- Having the capability to measure both ends of H₂O rotation band is desirable
- Next steps:
 - Refine understanding of design tradeoffs
 - Evaluate capabilities of commercial vendors