# File Fort_Sumner_balloon_Sep.amc - Model for the atmosphere above a
# balloon launched from Fort Sumner, at latitude 34.5 deg N, for the
# month of September.
#
?
? usage: am Fort_Sumner_balloon_Sep.amc fmin fmax df zenith_angle
?
? where: fmin = minimum frequency
?        fmax = maximum frequency
?        df   = frequency grid interval
?        za   = zenith angle
?
? example: am Fort_Sumner_balloon_Sep.amc 325 GHz 425 GHz 0.2 MHz 0 deg
? 
? Setting df = 0.2 MHz will resolve all lines to the lowest-pressure level
? (1 mbar) in this model.  Run time and output size can be considerably
? reduced by setting df = 1 MHz, for which only a small fraction of line
? cores will be unresolved.
?
? To use this file at a given flight pressure, comment out layers at
? higher pressure.  The comments in this file indicating the altitude for
? each pressure level follow the CIRA-86 reference atmosphere.
?
? Because Doppler broadening is neglected, it is recommended to use this
? file for frequencies fmax < 1000 GHz.
?
#
#
# Layer pressures and temperatures here are interpolated from the CIRA-86
# reference atmosphere for September, for 34.5 deg N latitude.
#
# Reference:
#
#   Committee on Space Research (COSPAR). The COSPAR International Atmosphere
#   (CIRA-86), [Internet]. NCAS British Atmospheric Data Centre, 2006-2011.
#   Available from
#     http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_CIRA .
#
#
# Ozone mixing ratios are interpolated from the Fortuin-Kelder ozone
# climatology for September, for 34.5 deg N latitude.
#
# Reference:
#
#   J. Paul F. Fortuin and Hennie Kelder 1998, "An ozone climatology based
#   on ozonesonde and satellite measurements."  JGR 103:31709.
#   Available from
#     http://www.knmi.nl/research/climate_chemistry/Data/FKClimatology/
#
#
# Water vapor mixing ratios are based on Fig. 5a in
#
#   K. H. Rosenlof, A. F. Tuck, K. K. Kelly, J. M. Russell III, and
#   M. P. McCormick 1997, "Hemispheric asymmetries in water vapor and
#   inferences about transport in the lower stratosphere."  JGR 102:13213
#
# Here, the h2o vmr has been approximated as linear in log(P) from 4 ppm at
# 100 mbar to 6 ppm at 1 mbar, and constant at 6 ppm for P < 1 mbar.
#
#
# Command-line input for frequency grid and zenith angle includes both
# value and unit.
#
f %1 %2  %3 %4  %5 %6
output f GHz  tau  Tb K
za %7 %8
tol 1.0e-4

T0 2.7 K

layer
Pbase 1.000 mbar  # z = 48.26 km
Tbase 265.602 K
column dry_air vmr
column o3 vmr 2.934e-06
column h2o vmr 6.0e-06

layer
Pbase 2.000 mbar  # z = 42.88 km
Tbase 259.846 K
column dry_air vmr
column o3 vmr 4.058e-06
column h2o vmr 5.8e-06

layer
Pbase 3.000 mbar  # z = 39.86 km
Tbase 252.715 K
column dry_air vmr
column o3 vmr 5.970e-06
column h2o vmr 5.6e-06

layer
Pbase 4.000 mbar  # z = 37.73 km
Tbase 247.248 K
column dry_air vmr
column o3 vmr 7.101e-06
column h2o vmr 5.5e-06

layer
Pbase 5.000 mbar  # z = 36.14 km
Tbase 243.057 K
column dry_air vmr
column o3 vmr 7.783e-06
column h2o vmr 5.3e-06

layer
Pbase 6.000 mbar  # z = 34.86 km
Tbase 239.955 K
column dry_air vmr
column o3 vmr 8.208e-06
column h2o vmr 5.3e-06

layer
Pbase 7.000 mbar  # z = 33.75 km
Tbase 237.406 K
column dry_air vmr
column o3 vmr 8.376e-06
column h2o vmr 5.2e-06

layer
Pbase 8.000 mbar  # z = 32.86 km
Tbase 235.447 K
column dry_air vmr
column o3 vmr 8.434e-06
column h2o vmr 5.1e-06

layer
Pbase 9.000 mbar  # z = 32.02 km
Tbase 233.632 K
column dry_air vmr
column o3 vmr 8.381e-06
column h2o vmr 5.1e-06

layer
Pbase 10.000 mbar  # z = 31.33 km
Tbase 232.281 K
column dry_air vmr
column o3 vmr 8.329e-06
column h2o vmr 5.0e-06

layer
Pbase 11.000 mbar  # z = 30.65 km
Tbase 230.930 K
column dry_air vmr
column o3 vmr 8.230e-06
column h2o vmr 5.0e-06

# layer
# Pbase 12.000 mbar  # z = 30.09 km
# Tbase 229.731 K
# column dry_air vmr
# column o3 vmr 8.085e-06
# column h2o vmr 4.9e-06
# 
# layer
# Pbase 13.000 mbar  # z = 29.57 km
# Tbase 228.583 K
# column dry_air vmr
# column o3 vmr 7.940e-06
# column h2o vmr 4.9e-06
# 
# layer
# Pbase 14.000 mbar  # z = 29.04 km
# Tbase 227.434 K
# column dry_air vmr
# column o3 vmr 7.795e-06
# column h2o vmr 4.9e-06
# 
# layer
# Pbase 15.000 mbar  # z = 28.59 km
# Tbase 226.648 K
# column dry_air vmr
# column o3 vmr 7.649e-06
# column h2o vmr 4.8e-06
# 
# layer
# Pbase 16.000 mbar  # z = 28.18 km
# Tbase 226.160 K
# column dry_air vmr
# column o3 vmr 7.504e-06
# column h2o vmr 4.8e-06
# 
# layer
# Pbase 17.000 mbar  # z = 27.78 km
# Tbase 225.671 K
# column dry_air vmr
# column o3 vmr 7.359e-06
# column h2o vmr 4.8e-06
# 
# layer
# Pbase 18.000 mbar  # z = 27.38 km
# Tbase 225.182 K
# column dry_air vmr
# column o3 vmr 7.214e-06
# column h2o vmr 4.8e-06
# 
# layer
# Pbase 19.000 mbar  # z = 27.02 km
# Tbase 224.677 K
# column dry_air vmr
# column o3 vmr 7.069e-06
# column h2o vmr 4.7e-06
# 
# layer
# Pbase 20.000 mbar  # z = 26.71 km
# Tbase 224.150 K
# column dry_air vmr
# column o3 vmr 6.924e-06
# column h2o vmr 4.7e-06
# 
# layer
# Pbase 21.000 mbar  # z = 26.40 km
# Tbase 223.624 K
# column dry_air vmr
# column o3 vmr 6.733e-06
# column h2o vmr 4.7e-06
# 
# layer
# Pbase 22.000 mbar  # z = 26.09 km
# Tbase 223.098 K
# column dry_air vmr
# column o3 vmr 6.496e-06
# column h2o vmr 4.7e-06
# 
# layer
# Pbase 23.000 mbar  # z = 25.78 km
# Tbase 222.571 K
# column dry_air vmr
# column o3 vmr 6.259e-06
# column h2o vmr 4.6e-06
# 
# layer
# Pbase 24.000 mbar  # z = 25.49 km
# Tbase 222.076 K
# column dry_air vmr
# column o3 vmr 6.022e-06
# column h2o vmr 4.6e-06
# 
# layer
# Pbase 25.000 mbar  # z = 25.25 km
# Tbase 221.723 K
# column dry_air vmr
# column o3 vmr 5.785e-06
# column h2o vmr 4.6e-06
#