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Outline

I Background information
I Asymmetric magnetic reconnection
I Standard model of solar flares

I Recent results
I Observational signatures of asymmetric reconnection in solar

flares and coronal mass ejections (CMEs)
I The plasmoid instability during asymmetric inflow reconnection
I What does it mean for a magnetic null point to move?



Introduction

I Most models of reconnection assume symmetry

I However, asymmetric magnetic reconnection occurs in the
solar atmosphere, solar wind, space/astrophysical plasmas,
and laboratory experiments

I Asymmetric inflow reconnection occurs when the upstream
magnetic fields and/or plasma parameters differ

I Earth’s dayside magnetopause
I Tearing in tokamaks, RFPs, and other confined plasmas
I Solar jets
I ‘Pull’ reconnection in MRX

I Asymmetric outflow reconnection occurs when conditions in
the outflow regions are different

I Solar flare and CME current sheets
I Earth’s magnetotail
I Spheromak merging
I ‘Push’ reconnection in MRX



Cassak & Shay (2007) consider the scaling of asymmetric
inflow reconnection

I Assume Sweet-Parker-like reconnection with different
upstream magnetic fields (BL,BR) and densities (ρL, ρR)

I The outflow velocity scales as a hybrid Alfvén velocity:

Vout ∼ VAh ≡

√
BLBR (BL + BR)

ρLBR + ρRBL
(1)

I The X-point and flow stagnation point are not colocated



Flux rope models of CMEs predict a current sheet behind
the rising flux rope



A signature of reconnection: ‘current sheet’ structures

I White light, X-ray, and EUV observations show sheet-like
structures between the flare loops and the rising flux rope

I Much thicker than expected; the current sheet may be
embedded in a larger-scale plasma sheet

I Current sheets sometimes drift considerably → asymmetry?

I Key limitation: lack of coronal magnetic field diagnostics

‘Cartwheel CME’
Savage et al. (2010)
Hinode/XRT



How does magnetic asymmetry impact the standard model
of solar flare reconnection?

I Observational signatures of the standard model include:
I Ray-like structures (observed in X-rays, EUV, white light)
I Inflows/outflows
I Flare loops

I Hard X-ray emission at loop footpoints where nonthermal
particles hit chromosphere

I Apparent motion of footpoints of newly reconnected loops
away from each other

I We perform resistive MHD simulations of line-tied asymmetric
reconnection using NIMROD (Murphy et al. 2012)

I Initial X-line perturbation near wall representing photosphere
for Harris-like configuration with BL/BR ∈ {0.125, 0.25, 0.5, 1}

By (x) =
B0

1 + b
tanh

(
x

δ0
− b

)
(2)

I Caveats: β larger than reality for force balance, unphysical
upper wall BC, no vertical stratification/3D effects



The X-point is low so most released energy goes up

BL
BR

= 0.25

VAh = 0.5



There is significant plasma flow across the X-line in both
the inflow and outflow directions (see also Murphy 2010)

I Vx(xn, yn) and Vy (xn, yn) give the flow velocity at the X-line

I dxn/dt and dyn/dt give the rate of X-line motion

I For t & 25, the X-line moves upward against the bulk flow



The flare loops develop a skewed candle flame shape

I Dashed green line: loop-top positions

I Dotted red line: analytic asymptotic approximation



The Tsuneta (1996) flare is a famous candidate event

I Shape suggests north is weak B side



We fit simulated loops to multi-viewpoint observations to
constrain the magnetic asymmetry

STEREO ASolar Dynamics Observatory

With D. Ranquist and M. P. Miralles
I The most important constraints are

I Location of looptop relative to footpoints
I Different perspectives from STEREO A/B and SDO

I Results for two events: asymmetries between 1.5 and 4.0



Asymmetric speeds of footpoint motion

Tripathi et al. (2006)

I The footpoints of newly reconnected loops show apparent
motion away from each other as more flux is reconnected

I Equal amounts of flux reconnected from each side
⇒ Weak B footpoint moves faster than strong B footpoint

I Because of the patchy distribution of flux on the photosphere,
more complicated motions frequently occur



Asymmetric hard X-ray (HXR) footpoint emission

Melrose & White (1979, 1981)

I HXR emission at flare footpoints results from energetic
particles impacting the chromosphere

I Magnetic mirroring is more effective on the strong B side

I More particles should escape on the weak B side, leading to
greater HXR emission

I This trend is observed in ∼2/3 of events (Goff et al. 2004)



The outflow plasmoid develops net vorticity because the
reconnection jet impacts it obliquely rather than directly

I Velocity vectors in reference frame of O-point
I Rolling motion observed in many prominence eruptions



Take away points

I Magnetic asymmetry leads to observational consequences
during solar reconnection

I Flare loops with skewed candle flame shape
I Asymmetric footpoint motion and hard X-ray emission
I Drifting of current sheet into strong field region
I Rolling motions in rising flux rope

I Important effects not included in these simulations:
I Realistic 3D magnetic geometry
I Patchy distribution of photospheric flux
I Vertical stratification of atmosphere
I Collisionless effects

I Comparing to observation is needed to understand 3D effects
I Need to systematically investigate multiple signatures together

and test falsifiable hypotheses

I Next topic: plasmoid instability during asymmetric inflow
reconnection



Elongated current sheets are susceptible to the plasmoid
instability (Loureiro et al. 2007)

Bhattacharjee et al. (2009)
Huang et al. (2010–2013)

I The reconnection rate levels off at ∼0.01 for S & 4× 104

I Shepherd & Cassak (2010) argue that this instability creates
small enough structures for collisionless reconnection to onset

I CME current sheet blobs may be plasmoids (Guo et al. 2013)



What are the dynamics of the plasmoid instability during
asymmetric inflow reconnection?

I Most simulations of the plasmoid instability assume
reconnection with symmetric upstream fields

I Simplifies computing and analysis
I Plasmoids and outflows interact in one dimension

I In 3D, flux ropes twist and writhe and sometimes bounce off
each other instead of merging

I Asymmetric simulations offer clues to 3D dynamics

I We perform NIMROD simulations of the plasmoid instability
with asymmetric magnetic fields (Murphy et al. 2013)

I (Hybrid) Lundquist numbers up to 105

I Two initial X-line perturbations along z = 0
I BL/BR ∈ {0.125, 0.25, 0.5, 1}; β0 ≥ 1; periodic outflow BCs



Plasmoid instability: symmetric inflow (BL0/BR0 = 1)

I X-points and O-points are located along symmetry axis

I X-points often located near one exit of each current sheet

I No net vorticity in islands



Plasmoid instability: asymmetric inflow (BL0/BR0 = 0.25)

I Displacement between X-point and O-points along z direction

I Islands develop preferentially into weak field upstream region

I Islands have vorticity and downstream regions are turbulent



Secondary merging is doubly asymmetric

I Bottom island is much larger ⇒ island merging is not head-on

I Flow pattern dominated by shear flow associated with island
vorticity ⇒ Partial stabilization of secondary reconnection



What insights do these simulations provide for the 3D
plasmoid instability?

I Daughton et al. (2011): plasmoids in 3D will be complicated
flux rope structures

I Outflow jets will generally impact flux ropes obliquely
I Momentum transport from outflow jets to flux ropes may be

less efficient
I Merging between colliding flux ropes may be incomplete due to

flux rope vorticity

I Questions that keep me awake at night:
I How does the plasmoid instability behave in 3D?
I What is the 3D reconnection rate?
I How do reconnection sites interact in 3D?
I What mistakes are we making by using 2D simulations to

interpret fundamentally 3D behavior?
I How will these effects change statistical models of islands?

I Final topic: motion of magnetic null points



What does it mean for a magnetic null point to move?

I In these simulations, the nulls move at velocities different
from the plasma flow velocity: dxn

dt 6= V(xn)
I Gap between flow stagnation point and magnetic field null
I Plasma flow and X-line motion often in different directions

I To understand this, we derive an exact expression describing
the motion of an isolated null point

I We consider isolated null points because null lines and null
planes are structurally unstable in 3D



Definitions

I The time-dependent position of an isolated null point is

xn(t) (3)

I The null point’s velocity is:

U ≡ dxn

dt
(4)

I The Jacobian matrix of the magnetic field at the null point is

M ≡

 ∂xBx ∂y Bx ∂zBx

∂xBy ∂y By ∂zBy

∂xBz ∂y Bz ∂zBz


xn

(5)



We derive an expression for the motion of a null point in an
arbitrary time-varying vector field with smooth derivatives

I First we take the derivative of the magnetic field following the
motion of the magnetic field null,

∂B

∂t

∣∣∣∣
xn

+ (U · ∇) B|xn
= 0 (6)

The RHS equals zero because the magnetic field will not
change from zero as we follow the null point.

I By solving for U in Eq. 6, we arrive at the exact relation

U = −M−1 ∂B

∂t

∣∣∣∣
xn

(7)

I Independent of Maxwell’s equations
I Assumes C 1 continuity of B about xn

I Unique, well-defined velocity when M is non-singular



We use Faraday’s law to get an expression for the motion
of a null point that remains independent of Ohm’s law

I Faraday’s law is given exactly by

∂B

∂t
= −∇× E (8)

I By applying Faraday’s law to Eq. 7, we arrive at

U = M−1 ∇× E|xn
(9)



In resistive MHD, null point motion results from a
combination of advection by the bulk plasma flow and
resistive diffusion of the magnetic field

I Next, we apply the resistive MHD Ohm’s law,

E + V × B = ηJ (10)

where we assume the resistivity to be uniform.

I The expression for the rate of motion of a null point becomes

U = V − ηM−1∇2B (11)

where all quantities are evaluated at the magnetic null point.
The terms on the RHS represent null point motion by

I Bulk plasma flow
I Resistive diffusion of the magnetic field



Murphy (2010): 1D X-line retreat via resistive diffusion

I Bz is negative above and below the X-line

I Diffusion of Bz leads to the current X-line position having
negative Bz at a slightly later time

I The X-line moves to the right as a result of diffusion of the
normal component of the magnetic field

dxn

dt
= Vx(xn)− η

[
∂2Bz
∂x2 + ∂2Bz

∂z2

∂Bz
∂x

]
xn

(12)



What does it mean for a magnetic null point to move?

I The velocity of a null point depends intrinsically on local
plasma parameters evaluated at the null

I Global dynamics help set the local conditions

I A unique null point velocity exists if M is non-singular
I Nulls are not objects and cannot be pushed by, e.g., pressure

gradient forces
I Indirect coupling between the momentum equation and the

combined Faraday/Ohm’s law
I Plasma not permanently affixed to nulls in non-ideal cases

I How do we connect this local expression into global models?



Appearance and disappearance of null points

I In resistive MHD, nulls must diffuse in and out of existence
I Not accounted for in bifurcation theory/topological analysis

I At instant of formation, a null is degenerate
I The Jacobian M is singular

I Bifurcating null-null pairs will go in the directions along which
B and ∂B

∂t have opposite sign

I The instantaneous velocity of separation is infinite



Can we perform a similar local analysis to describe the
motion of separators?

I A separator is a magnetic field line connecting two null points
I These are often important locations for reconnection.

I Suppose that there is non-ideal behavior only along one
segment of a separator.

I At a slightly later time, the field line in the ideally evolving
region will in general no longer be the separator, even though
the evolution was locally ideal

I Therefore, it is not possible to find an exact expression
describing separator motion based solely on local parameters.

I However, a global approach could lead to an exact expression
by taking into account connectivity changes along the
separator as well as motion of its endpoints.



Conclusions

I Magnetic asymmetry during solar eruptions lead to
observational consequences

I Flare loops have a skewed candle flame shape
I Asymmetric footpoint motion and hard X-ray emission
I Drifting of current sheet into strong field region
I Rolling motions in rising flux rope

I Magnetic asymmetry qualitatively changes the dynamics of
the plasmoid instability

I Islands develop into weak field upstream region
I Jets impact islands obliquely ⇒ net vorticity
I Secondary merging is less efficient

I We derive an exact expression to describe the motion of
magnetic field lines

I The motion of magnetic null point depends on parameters
evaluated at the null

I Null point motion in resistive MHD is caused by bulk plasma
flow and diffusion of the component of B orthogonal to the
motion



Ongoing and Future Work

I HiFi simulations of reconnection in partially ionized
chromospheric plasmas (with Slava Lukin)

I Effects of asymmetry?
I Does chromospheric reconnection lead to elemental

fractionation?

I Non-equilibrium ionization modeling of coronal mass ejection
plasma (e.g., Murphy et al. 2011) and current sheets (e.g.,
Shen et al. 2013)

I Eigenmode analysis of asymmetric plasmoid instability to get
linear properties (with Yi-Min Huang)

I Analytic expression for the motion of separators
I On my “to do” list for 2016.


