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Shocks are important astrophysical phenomena

I Supernova remnant shock waves
I Deposit energy and high metallicity plasma into ISM
I Accelerate cosmic rays
I Instigate star formation

I Heliospheric shocks
I Frequently driven by solar eruptions
I Routinely observed at 1 AU
I The solar wind drives Earth’s bow shock and the heliospheric

termination shock

I Accretion shocks in clusters of galaxies

I Shocks in star formation regions

I Gamma ray bursts, supernovae, AGN jets, pulsar wind
nebulae, etc.



Definition of a shock

I A shock is a discontinuity separating two different regimes in
an otherwise continuous medium

I Shocks form when the velocities exceed the signal propagation
speed

I In hydrodynamics, the only wave speed is the sound speed, cs
I In MHD, there are different characteristic speeds for each of

the three modes
I Not all discontinuities are shocks

I Example: a static ideal gas where the pressure is uniform but
there is a sharp transition in density and temperature



Nonlinear steepening of longitudinal waves

I When the amplitude of a disturbance is small enough for
linear theory to apply, then it propagates as a wave

I If the disturbance becomes large enough, then nonlinear terms
become important

I The crest of a wave propagates faster than the leading or
trailing edge

I The sound speed cs ≡
√

γp
ρ is greater at the crest

I The wave front steepens and a shock may form



Strategy for finding the jump conditions across the shock

I Choose a reference frame that is co-moving with the shock
I Put the equations of HD or MHD in integral form

I Assume no time dependence

I Evaluate these integrals to find quantities that must be
conserved across the shock

I For example, matching the mass flux through the shock



Choose a reference frame that is co-moving with the shock

I Region 1 is the undisturbed fluid in front of the shock

I Region 2 as the disturbed fluid behind the shock

I Define U as the velocity field in the reference frame where the
shock is stationary. If Vs is the velocity of the shock, then

U ≡ V − Vs (1)

I Define x̂ as the shock propagation direction



Intuitively finding a relation for conservation of mass

I The mass flux approaching the shock is ρ1U1

I The mass flux leaving the shock is ρ2U2

I In a steady state, these quantities must be equal

I The jump condition for mass continuity must then be

ρ1U1 = ρ2U2 (2)



Put the continuity equation in integral form

I The continuity equation in conservative form is

∂ρ

∂t
+∇ · (ρV) = 0 (3)

I Set the time derivative equal to zero and use the divergence
theorem to put the continuity equation in integral form∮

S
dS · (ρV) = 0 (4)

where dS = n̂dS



Using integrals to find a relation for conservation of mass

I Choose a cylinder extending between regions 1 & 2, as above

I There is no flux through the surface parallel to the flow

I The only flux is through the ends:∮
dS · (ρU) = −

∫
1
ρ1U1dS +

∫
2
ρ2U2dS = 0 (5)

⇒ ρ1U1 = ρ2U2 (6)



Finding a jump condition for conservation of momentum

I The steady state momentum equation for HD in integral form
is ∮

dS · (ρVV + pI) = 0 (7)

where I is the identity dyadic tensor.

I Evaluating this integral over the same cylinder with B = 0
and velocity entirely in the x direction yields

ρ1U
2
1 + p1 = ρ2U2 + p2 (8)

I Recall that ρ1U1 is the momentum density which is multiplied
by U1 again to become a momentum flux



Notation and definitions

I There are several standard ways to write jump conditions
across a shock:

JφK = 0 (9)

[φ]21 = 0 (10)

[φ] = 0 (11)

φ2 − φ1 = 0 (12)

All of these notations are equivalent.

I Define the Mach number as

M ≡ U1

cs1
(13)

where the upstream sound speed is cs1 ≡
√

γp1
ρ1

.



The Rankine-Hugoniot jump conditions for a
hydrodynamic shock

I Conservation of mass yields

JρUxK = 0 (14)

I Conservation of momentum yields

q
ρU2

x + p
y

= 0 (15)

I Conservation of energy yields

s
ρIUx + pUx +

ρU3
x

2

{
= 0 (16)

where the internal energy density is

I ≡ p

(γ − 1) ρ
(17)



Properties of hydrodynamic shocks

I The density ratio across the shock is

r ≡ ρ2

ρ1
=

(γ + 1)M2

2 + (γ − 1)M2
(18)

I The velocity ratio is

U2

U1
=
ρ1

ρ2
= r−1 (19)

I The pressure ratio is

R ≡ p2

p1
=

2γM2 − (γ − 1)

γ + 1
(20)

I The shock speed must exceed the sound speed ahead of the
shock: M ≥ 1

I Shocks are compressive: ρ2 ≥ ρ1 and p2 ≥ p1

I Shocks must increase entropy



What happens in the hypersonic limit?

I The hypersonic limit is when M →∞
I The density ratio becomes

r =
γ + 1

γ − 1
(21)

I If γ = 5
3 , then the pressure increases without limit but density

is only enhanced by a factor of 4
I In the isothermal limit of γ → 1, the density ratio may

become huge
I Effective radiative cooling and thermal conduction allow

greater density ratios



From HD to MHD

I Conservation of mass relation is unchanged

I Conservation of momentum must include the Lorentz force

I Conservation of energy must include magnetic energy
I Need additional constraints related to:

I Divergence constraint
I Conservation of magnetic flux



Modifying the conservation of momentum relation

I The steady state momentum equation for MHD is∮
dS ·

[
ρVV +

(
p +

B2

8π

)
I− BB

4π

]
= 0 (22)

which includes contributions from the Maxwell and Reynolds
stresses in the form of dyadic tensors.

I The integration process yields the corresponding jump
condition

s
ρU (U · n̂) +

(
p +

B2

8π

)
n̂− (B · n̂)B

4π

{
= 0 (23)



The divergence constraint

I The divergence constraint in integral form is∮
S
dS · B = 0 (24)

I Perform this integral over the same cylinder as before

I The contributions from the side parallel to the flow cancel out
due to symmetry, so only the end contributions remain:∫

1
B · n̂dS +

∫
2
B · n̂dS = 0 (25)

⇒ JBxK = 0 (26)

The normal component of B remains constant across a shock



Continuity of the tangential component of E

I From Faraday’s law for a steady state, we need

∇× E = 0 (27)

I The ideal Ohm’s law in the shock frame is

E +
U× B

c
= 0 (28)

I Integrate Eq. 27 over a thin strip including the shock, and use
Stokes’ theorem to convert it to a line integral

I The component of E tangential to the shock must be
continuous

Jn̂× (U× B)K = 0 (29)

This jump condition accounts for conservation of flux



Jump conditions for MHD shocks - Part 1

I Conservation of mass yields

JρU · n̂K = 0 (30)

I Conservation of momentum yields

s
ρU (U · n̂) +

(
p +

B2

8π

)
n̂− (B · n̂)B

4π

{
= 0 (31)

I Conservation of energy yields

s
U · n̂

{(
ρI +

ρU2

2
+

B2

8π

)
+

(
p +

B2

8π

)}
− (B · n̂) (B ·U)

4π

{
= 0

(32)



Jump conditions for MHD shocks - Part 2

I Continuity of the normal component of B yields

JB · n̂K = 0 (33)

I Continuity of the tangential component of E yields

Jn̂× (U× B)K = 0 (34)



Examples

I The jump conditions contain rich physics related to different
wave modes in MHD

I Define θ as the angle between B1 and n̂
I θ = 0 corresponds to a parallel shock
I θ = π

2 corresponds to a perpendicular shock
I 0 < θ < π

2 corresponds to an oblique shock

I The jump conditions allow three types of discontinuities that
are not shocks:

I Contact discontinuity
I Tangential discontinuity
I Rotational discontinuity



Parallel shocks (θ = 0)

I Here, θ = 0 and both U1 and B1 are parallel to n̂

I Often favorable to particle acceleration (e.g., SN 1006)
I Simplest case: the magnetic field is parallel to the shock

velocity and constant in front of and behind the shock
(B1 = B2)

I B drops out of the jump conditions
I This solution reduces to a hydrodynamic shock

I Other possibility: a switch-on shock where |B2| > |B1|
I The normal component of B is conserved (JB · n̂K = 0)
I B2 has a tangential component
I Some of the flow energy is converted into magnetic energy



Perpendicular shocks (θ = π
2 )

I The upstream and downstream magnetic fields are both
tangential to the shock front: B1 = B1ŷ and B2 = B2ŷ

I Flow energy is converted to magnetic energy and heat



Perpendicular shocks (θ = π
2 )

I The shock speed must exceed the fast magnetosonic speed
ahead of the shock:

U2
1 > V 2

A + c2
s (35)

I The magnetic field is constant in direction and increases in
magnitude by the same ratio as the density

I Perpendicular shocks are fast mode shocks

I There is no perpendicular shock corresponding to the slow
wave because it does not propagate orthogonal to B



Oblique shocks (0 < θ < π
2 )

I Both U and B may change direction across the shock

I Must account for the tension force acting across a plane

I The jump conditions are simplified by choosing the de
Hoffmann-Teller frame with U1 × B1 = 0



Fast mode shocks and slow mode shocks are analogs of
fast mode and slow mode waves

I Fast shocks increase the tangential component of B
I Magnetic field is refracted away from the shock normal
I The total magnetic field strength increases

I Slow shocks decrease the tangential component of B
I Magnetic field is refracted toward the shock normal
I The total magnetic field strength decreases

I Each type of shock must exceed the characteristic velocity of
the corresponding wave mode



Switch-on shocks and switch-off shocks

I Switch-on shocks
I Tangential B develops as a result of the shock
I Example of a fast mode shock

I Switch-off shocks
I Tangential B disappears as a result of the shock
I Example of a slow mode shock

I Remember: JB · n̂K = 0! Only the tangential component of B
may change.



Contact discontinuity

I All quantities except the density (and therefore temperature)
are continuous across a contact discontinuity

I No flow across the discontinuity
I Because JT K 6= 0, fast parallel thermal conduction will not let

a contact discontinuity last long



Tangential discontinuity

I Both B and U are tangential to the discontinuity

I No flow across the discontinuity

I The total pressure must be continuous across the discontinuity
s
p +

B2

8π

{
= 0 (36)

I In the perpendicular limit (θ → π
2 ), the slow shock reduces to

a tangential discontinuity



Rotational discontinuity

I The magnetic field and plasma flow change direction but not
magnitude

I There is mass flow across the discontinuity but both the
density and normal component of velocity are constant:
JρK = 0 and JUxK = 0

I Incompressible like a shear Alfvén wave

I Not a shock; and M1 = M2 = 1

I Frequently observed in the fast solar wind



What are the limits of this analysis?

I The ideal MHD approximation breaks down near the
discontinuity

I Need kinetic theory

I May need to consider effects such as
I Radiative cooling
I Partial ionization
I Thermal conduction

I Shocks may propagate into a non-uniform or clumpy medium
and/or

I Particle acceleration & energetic particles not considered
I Shocks may give rise to various instabilities

I Weibel instability
I Streaming instabilities
I Bell’s instability
I Rayleigh-Taylor



What sets the shock thickness?

I The shock thickness δ depends on the dominant dissipation
mechanism(s)

I Order of magnitude estimate for kinetic viscosity

I The viscosity ν is often given in units of length2

time
I Dimensional analysis yields

δ ∼ ν

U1
(37)

The thickness is the scale that yields Re ∼ 1
I From kinetic theory, this yields δ of order an ion mean free path



What governs the structure of collisionless shocks?

I Shock thickness depends on β, θ, M, type of shock, and other
parameters

I Laminar collisionless shocks often have a thickness of order an
ion inertial length: di = c/ωpi

I There will typically be structure on multiple scales [e.g., the
ion and electron Larmor radii (rLi , rLe), and the electron
inertial length (de = c/ωpe)]

I Understanding the structure of collisionless shocks requires
I Kinetic simulations/kinetic theory
I Space & laboratory observations
I Astrophysical observations

I Energetic particles modify the shock structure by generating
instabilities while getting bounced back and forth



Simulating shocks provides significant numerical challenges

I Numerical schemes with inadequate dissipation often lead to
unphysical grid scale oscillations near steep gradients

I Similar to Gibbs phenomena

I High order numerical methods are often reduced to first order
accuracy near discontinuities

I Adding uniform viscosity smooths out low M shocks but is
insufficient for high M shocks

I Modern schemes with improved accuracy for shock capturing
I Total variation diminishing (TVD) schemes
I Essentially Non-Oscillatory (ENO) schemes
I Monotonic Upstream-centered Schemes for Conservation Laws

(MUSCL)
I Discontinuous Galerkin method



Application: Supernova remnant (SNR) shock waves

I Supernovae cause chemical enrichment, energy input, heating,
turbulence, and particle acceleration in the ISM

I Above: A composite of multiwavelength observations of
Cassiopeia A (red: infrared from Spitzer; orange: visible from
HST, and blue/green: X-rays from Chandra)



How do supernova remnant shock waves fit in with the
rest of astrophysics?

I Transport of enriched mass from supernovae into the ISM

I Energy input into ISM
I Acceleration of cosmic rays (CRs)

I Need ∼10% of shock energy to go into CRs
I CRs increase pressure support of ISM
I CRs cause slight ionization of gas in molecular clouds

I The physics of SNR shock waves has significant consequences
on star formation and galactic structure/evolution



First phase: Free expansion

I Mass of ejecta > swept-up mass

I Shock velocity remains roughly constant

R(t) ≈ V0t (38)

I Dynamics determined primarily by energy of explosion (V0)

I Free expansion stage lasts hundreds of years

SN 1987A



Second phase: Adiabatic expansion (Sedov-Taylor)

I Mass of ejecta < swept-up mass

I Cooling time is typically longer than age of remnant

I Lasts tens of thousands of years

I Above: SN 1006. Red corresponds to X-ray emission from hot
plasma and blue corresponds to X-ray emission from energetic
electrons. Particle acceleration is seemingly most efficient
when the shock is ∼parallel.

SN 1006



Using dimensional analysis to determine an expression for
self-similar expansion

I Start from an expression that goes as

R(t) ∼ Eαρβtγ (39)

where R(t) is the radius of the remnant, E is the supernova
energy, ρ is the density of the ambient ISM, and t is time.

I Using dimensional analysis, we find that

α =
2

5
, β =

1

5
, γ = −1

5
(40)

I The Sedov solution for self-similar expansion is

R(t) ∼
(
E

ρ

)1/5

t2/5 (41)



Third phase: radiative (snowplow)

I Mass of ejecta � swept-up mass

I The expansion slows
I Radiative cooling is important energy loss mechanism

I The shock becomes ‘isothermal’
I Allows a high compression ratio

I Lasts hundreds of thousands of years

I Hot diffuse plasma inside remnant has not had time to cool
I Expansion velocity eventually becomes comparable to

characteristic ISM velocities → remnant fades away
I The shock eventually becomes a wave



The structure of the ambient medium will normally be
inhomogeneous

I Instabilities will also lead to structure in the shock and ejecta



Kinetic processes govern the partition between electron
and ion heating, as well as equilibration between species

I The jump conditions include the total pressure, but do not say
anything about the partition between pe and pi

I More effective electon heating in slower shocks
I Slow temperature equilibration between ions and electrons will

occur due to Coulomb collisions
I Is quicker equilibration possible due to collisionless plasma

processes?



Open questions on supernova remnant shock waves

I How are cosmic rays accelerated?

I What instabilities arise near the shock?

I What processes govern the magnetic field strength and
structure near the shock?

I How is energy partitioned between ions, electons, and cosmic
rays?

I How is energy transferred between ions and electrons behind
the shock?



Shocks driven by solar flares and coronal mass ejections

I The outward shocks precede the main ejecta and contribute
to solar energetic particle (SEP) events

I Slow mode and fast mode shocks may develop below the
prominence due to reconnection

I Right: An erupting prominence observed by SDO at 30.4 nm
(He II Lyα; plasma at . 105 K)



Collisionless shocks in near-Earth space plasmas

I In situ measurements by spacecraft in the magnetosphere and
nearby solar wind allow detailed study of interplanetary shocks
driven by solar eruptions and Earth’s bow shock



Laser produced plasmas allow the study of astrophysically
relevant collisionless shocks

I Left: Schematic of (a) Large Plasma Device and (b) the laser-target and
diagnostics configuration.

I Right: (a) Magnetic stack plots of Bz as a function of time for various distances
from the target. (b) Comparison of Bz (t) at x = 35 cm with (black) and
without (red) the ambient plasma. (c) Structure of the pulse before (t = 0.3
µs) and after a shock is formed (t = 0.7 µs).



Summary

I Shocks are discontinuities that separate two different regimes
in an otherwise continuous medium

I The jump conditions across a hydrodynamic shock are
described by the Rankine-Hugoniot relations

I Conservation of mass, momentum, and energy

I In MHD shocks, the jump conditions account for B and E
I The component of B normal to the shock remains constant
I The component of E tangential to the shock remains constant

I The MHD jump conditions allow for shocks that correspond
to different wave modes

I Contact, tangential, and rotational discontinuities are
solutions that are not shocks

I Collisionless processes govern shocks in supernova remnants,
solar/space plasmas, laser-produced plasmas, and elsewhere in
astrophysics


