

Ideal Magnetohydrodynamics (MHD)

Nick Murphy

Harvard-Smithsonian Center for Astrophysics

Astronomy 253: Plasma Astrophysics

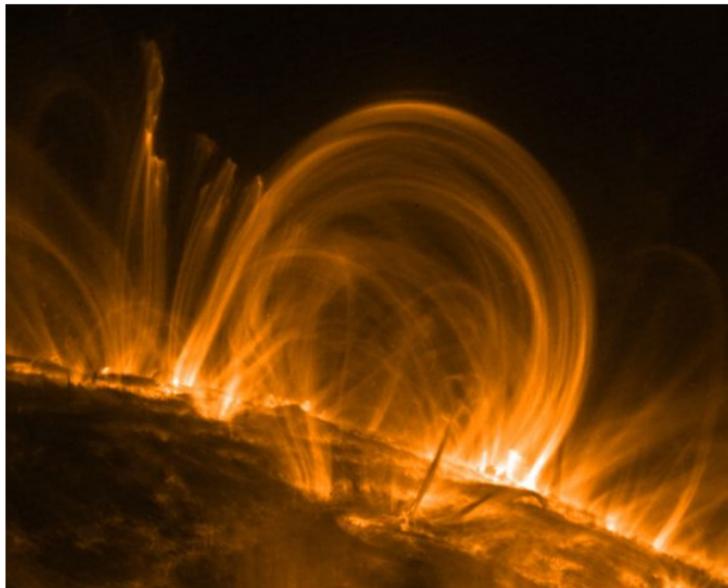
February 1, 2016

These lecture notes are largely based on *Lectures in Magnetohydrodynamics* by the late Dalton Schnack, *Ideal Magnetohydrodynamics* by Jeffrey Freidberg, *Plasma Physics for Astrophysics* by Russell Kulsrud, *Magnetic Reconnection* by Eric Priest and Terry Forbes, course notes from similar classes taught by Ellen Zweibel and Chris Hegna, and a picture of flying wombats that I found on the internet

Outline

- ▶ Introducing ourselves (since we forgot to on the first day!)
- ▶ Discuss location of course
- ▶ Overview of MHD
 - ▶ Approximation
 - ▶ Usefulness
 - ▶ Applications
- ▶ The equations of MHD and their physical meaning
 - ▶ Continuity equation
 - ▶ Momentum equation
 - ▶ Energy equation
 - ▶ Faraday's law
 - ▶ Ohm's law

What is MHD?



MHD couples Maxwell's equations with hydrodynamics to describe the macroscopic behavior of highly conducting fluids such as plasmas

Ideal MHD at a glance (cgs units)

Continuity Equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0$$

Momentum Equation

$$\rho \left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right) \mathbf{V} = \frac{\mathbf{J} \times \mathbf{B}}{c} - \nabla p$$

Ampere's law

$$\mathbf{J} = \frac{c}{4\pi} \nabla \times \mathbf{B}$$

Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E}$$

Ideal Ohm's law

$$\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = 0$$

Divergence constraint

$$\nabla \cdot \mathbf{B} = 0$$

Adiabatic Energy Equation

$$\frac{d}{dt} \left(\frac{p}{\rho^\gamma} \right) = 0$$

Definitions: \mathbf{B} , magnetic field; \mathbf{V} , plasma velocity; \mathbf{J} , current density; \mathbf{E} , electric field; ρ , mass density; p , plasma pressure; γ , ratio of specific heats (usually 5/3); t , time.

MHD is a low-frequency, long-wavelength approximation

- ▶ MHD is valid on time scales longer than the inverses of the plasma frequencies and cyclotron frequencies for both ions and electrons:

$$\tau \gg \omega_{pe}^{-1}, \omega_{pi}^{-1}, \Omega_{ce}^{-1}, \Omega_{ci}^{-1} \quad (1)$$

- ▶ MHD is valid on length scales longer than the Debye length and electron/ion gyroradii:

$$L \gg \lambda_D, r_{Le}, r_{Li} \quad (2)$$

- ▶ MHD assumes quasineutrality (since $L \gg \lambda_D$)

MHD is a low-frequency, long-wavelength approximation

- ▶ MHD assumes that collisions are frequent enough for the particle distribution function to be Maxwellian with $T_i = T_e$
- ▶ Ideal MHD assumes an adiabatic equation of state
 - ▶ No additional heating, cooling, or dissipation
- ▶ MHD assumes that the plasma is fully ionized
- ▶ MHD ignores the most important advances in physics since ~ 1860
 - ▶ Ignore relativity (assume $V^2 \ll c^2$)
 - ▶ Ignore quantum mechanics
 - ▶ Ignore displacement current in Ampere's law (assume $V^2 \ll c^2$)

When is MHD useful?

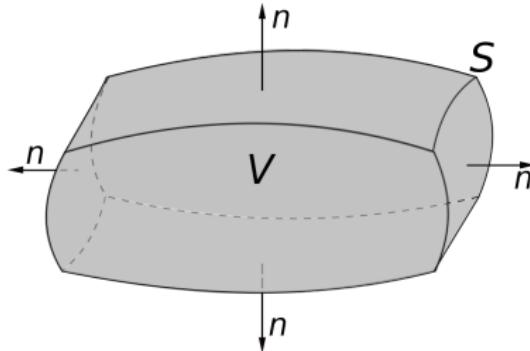
- ▶ MHD traditionally describes macroscopic force balance, equilibria, and dynamics
- ▶ MHD is a good predictor of stability
 - ▶ The most catastrophic instabilities are unstable in ideal MHD
 - ▶ Important in laboratory plasmas, solar atmosphere, etc.
- ▶ Systems that are often described using MHD include:
 - ▶ Solar wind, heliosphere, and Earth's magnetosphere¹
 - ▶ Inertial range of plasma turbulence
 - ▶ Neutron star magnetospheres
- ▶ MHD is a reasonably good approximation in many astrophysical plasmas
 - ▶ However, extensions are often needed

¹On large scales!

When is MHD not useful?

- ▶ MHD has limited applicability when:
 - ▶ Non-fluid or kinetic effects are important
 - ▶ Dissipation in the turbulent solar wind
 - ▶ Magnetic reconnection
 - ▶ Small-scale dynamics in Earth's magnetosphere
 - ▶ Particle distribution functions are non-Maxwellian
 - ▶ Cosmic rays
 - ▶ The plasma is weakly ionized
 - ▶ Solar photosphere/chromosphere, molecular clouds, protoplanetary disks, Earth's ionosphere, some laboratory plasmas
- ▶ MHD is mediocre at describing the dynamics of laboratory plasmas but remains a good predictor of stability

Deriving the continuity equation



- ▶ Pick a closed volume \mathcal{V} bounded by a fixed surface \mathcal{S} containing plasma with mass density ρ
- ▶ The total mass contained in the volume is

$$M = \int_{\mathcal{V}} \rho \, d\mathcal{V} \quad (3)$$

- ▶ The time derivative of the mass in \mathcal{V} is

$$\frac{dM}{dt} = \int_{\mathcal{V}} \frac{\partial \rho}{\partial t} \, d\mathcal{V} \quad (4)$$

The continuity equation describes conservation of mass

- ▶ The mass flowing through a surface element $d\mathbf{S} = \hat{\mathbf{n}}d\mathcal{S}$ is $\rho \mathbf{V} \cdot d\mathbf{S}$, where the unit vector $\hat{\mathbf{n}}$ is pointing outward
- ▶ The integral of $\rho \mathbf{V} \cdot d\mathbf{S}$ must equal $-dM/dt$:

$$\int_{\mathcal{V}} \frac{\partial \rho}{\partial t} d\mathcal{V} = - \oint_{\mathcal{S}} \rho \mathbf{V} \cdot d\mathbf{S} \quad (5)$$

This says that the change in mass inside \mathcal{V} equals the mass entering or leaving the surface.

- ▶ Using Gauss' theorem we arrive at

$$\int_{\mathcal{V}} \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) \right] d\mathcal{V} = 0 \quad (6)$$

- ▶ This must be true for all possible volumes so the integrand must equal zero

The continuity equation in conservative form

- ▶ The continuity equation in conservative form is

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \quad (7)$$

- ▶ Conservative form is usually given by

$$\frac{\partial}{\partial t} (\text{stuff}) + \nabla \cdot (\text{flux of stuff}) = 0 \quad (8)$$

- ▶ Source and sink terms go on the RHS

- ▶ *Example:* In a partially ionized plasma, there are continuity equations for both the ions and neutrals. Ionization acts as a source term in the ion continuity equation and a sink term in the neutral continuity equation.

- ▶ The mass flux is given by $\rho \mathbf{V}$

The second golden rule of astrophysics

The *density* of wombats

times the *velocity* of wombats

gives the *flux* of wombats.

The continuity equation

- ▶ Using vector identities we may write the continuity equation as

$$\frac{\partial \rho}{\partial t} + \underbrace{\mathbf{V} \cdot \nabla \rho}_{\text{advection}} = \underbrace{-\rho \nabla \cdot \mathbf{V}}_{\text{compression}} \quad (9)$$

- ▶ The advective derivative $\mathbf{V} \cdot \nabla \rho$ is a directional derivative that measures the change of ρ in the direction of \mathbf{V}
- ▶ The compression term
 - ▶ $\nabla \cdot \mathbf{V} < 0 \iff$ converging flow \iff compression
 - ▶ $\nabla \cdot \mathbf{V} > 0 \iff$ diverging flow \iff dilation
 - ▶ $\nabla \cdot \mathbf{V} \equiv 0 \iff$ the plasma is incompressible

The advective derivative $\mathbf{V} \cdot \nabla$ is used to describe the spatial variation of a field in the direction of the flow

- ▶ For a scalar quantity φ , the advective derivative is given by

$$\mathbf{V} \cdot \nabla \varphi = V_x \frac{\partial \varphi}{\partial x} + V_y \frac{\partial \varphi}{\partial y} + V_z \frac{\partial \varphi}{\partial z}, \quad (10)$$

which is also a scalar.

Advective derivatives in vector fields

- ▶ For a vector field \mathbf{F} , the advective derivative may be treated as either $(\mathbf{V} \cdot \nabla) \mathbf{F}$ or as the tensor derivative $\mathbf{V} \cdot (\nabla \mathbf{F})$. Both forms are equivalent, but $(\mathbf{V} \cdot \nabla) \mathbf{F}$ is easier to work with.

$$\begin{aligned} (\mathbf{V} \cdot \nabla) \mathbf{F} &= \left[\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} \cdot \begin{pmatrix} \partial_x \\ \partial_y \\ \partial_z \end{pmatrix} \right] \mathbf{F} \\ &= (V_x \partial_x + V_y \partial_y + V_z \partial_z) \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} \\ &= \begin{pmatrix} V_x \partial_x F_x + V_y \partial_y F_x + V_z \partial_z F_x \\ V_x \partial_x F_y + V_y \partial_y F_y + V_z \partial_z F_y \\ V_x \partial_x F_z + V_y \partial_y F_z + V_z \partial_z F_z \end{pmatrix} \quad (11) \end{aligned}$$

- ▶ The order of operations does not matter so we write $\mathbf{V} \cdot \nabla \mathbf{F}$
- ▶ See the *NRL Plasma Formulary* for curvilinear coordinates

The Eulerian and Lagrangian forms of the continuity equation are equivalent

- ▶ The Eulerian form follows the density at a fixed location in space:

$$\frac{\partial \rho}{\partial t} + \mathbf{V} \cdot \nabla \rho = -\rho \nabla \cdot \mathbf{V} \quad (12)$$

- ▶ The Lagrangian form allows us to follow a volume element that is co-moving with the fluid:

$$\frac{d\rho}{dt} + \rho \nabla \cdot \mathbf{V} = 0 \quad (13)$$

where the total derivative is given by

$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \quad (14)$$

and measures the change of a quantity as we move with the fluid. The advective derivative links the Eulerian and Lagrangian forms.

The momentum equation is derived from Newton's 2nd law

- ▶ Newton's second law of motion for a fluid element is

$$\rho \frac{d\mathbf{V}}{dt} = \mathbf{F} \quad (15)$$

where \mathbf{F} is the force per unit volume

- ▶ Example forces include
 - ▶ Lorentz force: $\mathbf{F}_L = \frac{\mathbf{J} \times \mathbf{B}}{c}$
 - ▶ Pressure gradient force: $\mathbf{F}_p = -\nabla p$
 - ▶ Gravity: $\mathbf{F}_g = -\rho \mathbf{g}$ or $\mathbf{F}_g = -\nabla \phi$ for gravitational potential ϕ
 - ▶ Viscosity: $\mathbf{F}_V = \nabla \cdot \boldsymbol{\Pi}$, where $\boldsymbol{\Pi}$ is the viscous stress tensor
- ▶ The ideal MHD momentum equation in Eulerian form is

$$\rho \left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right) \mathbf{V} = \frac{\mathbf{J} \times \mathbf{B}}{c} - \nabla p \quad (16)$$

where we neglect gravity and ignore viscous forces

The pressure gradient force $-\nabla p$ pushes plasma from regions of high plasma pressure to low plasma pressure



- ▶ The pressure gradient force is orthogonal to isobars
- ▶ This is the Restoring force for sound waves
- ▶ Resulting motions are not necessarily in the direction of the pressure gradient force (e.g., when other forces are acting on the fluid)

Where does the Lorentz force come from?

- ▶ The Lorentz force acting on a single particle is

$$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} \right) \quad (17)$$

- ▶ The current density is given by

$$\mathbf{J} = \sum_{\alpha} n_{\alpha} q_{\alpha} \mathbf{V}_{\alpha} \quad (18)$$

where α includes all species of ions and electrons. For a quasineutral plasma with electrons and singly charged ions, this becomes

$$\mathbf{J} = en (\mathbf{V}_i - \mathbf{V}_e) \quad (19)$$

where $n = n_e = n_i$, \mathbf{V}_i is the ion velocity, and \mathbf{V}_e is the electron velocity.

The Lorentz force includes a magnetic tension force and a magnetic pressure force

- ▶ Use Ampere's law and vector identities to decompose the Lorentz force term into two components

$$\underbrace{\frac{\mathbf{J} \times \mathbf{B}}{c}}_{\text{Lorentz force}} = \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi}$$
$$= \underbrace{\frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4\pi}}_{\sim \text{magnetic tension}} - \underbrace{\nabla \left(\frac{B^2}{8\pi} \right)}_{\sim \text{magnetic pressure}} \quad (20)$$

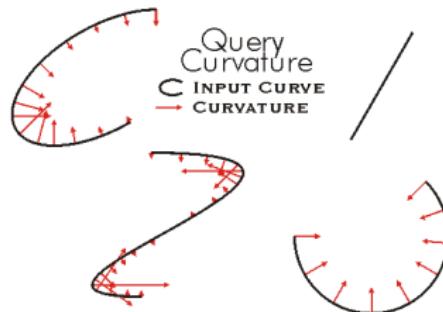
- ▶ While the Lorentz force must be orthogonal to be \mathbf{B} , both of these terms may have components along \mathbf{B} . The parallel component of the above tension term cancels out the parallel part of the magnetic pressure term (Kulsrud §4.2).

The curvature vector κ gives the rate at which the tangent vector turns

- ▶ Define $\hat{\mathbf{b}}$ as a unit vector in the direction of \mathbf{B} : $\hat{\mathbf{b}} \equiv \mathbf{B} / |\mathbf{B}|$
- ▶ The curvature vector κ points toward the center of curvature and is given by

$$\kappa \equiv \hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}} = -\frac{\mathbf{R}}{R^2} \quad (21)$$

where \mathbf{R} is a vector from the center of curvature to the point we are considering. Note that $|\kappa| = R^{-1}$ and $\kappa \cdot \hat{\mathbf{b}} = 0$.



The Lorentz force can be decomposed into two terms with forces orthogonal to \mathbf{B} using field line curvature

- ▶ Next use the product rule to obtain

$$\mathbf{B} \cdot \nabla \mathbf{B} = B \hat{\mathbf{b}} \cdot \nabla (B \hat{\mathbf{b}}) = \frac{\hat{\mathbf{b}}(\hat{\mathbf{b}} \cdot \nabla)B^2}{2} + B^2 \hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}} \quad (22)$$

- ▶ We can then write the Lorentz force as

$$\frac{\mathbf{J} \times \mathbf{B}}{c} = \underbrace{\kappa \frac{B^2}{4\pi}}_{\text{magnetic tension}} - \underbrace{\nabla_{\perp} \left(\frac{B^2}{8\pi} \right)}_{\text{magnetic pressure}} \quad (23)$$

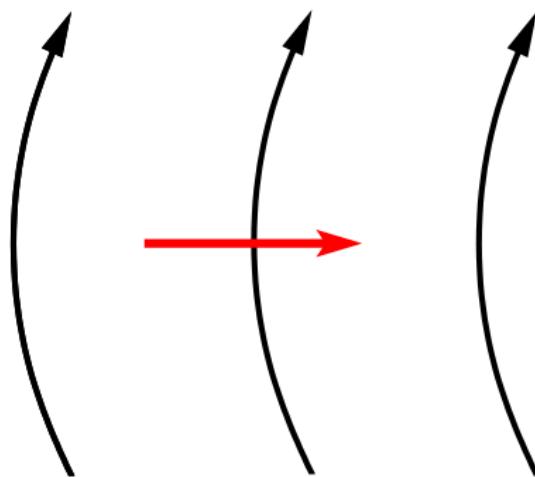
where all terms are orthogonal to \mathbf{B} .²

- ▶ The operator ∇_{\perp} keeps only the derivatives orthogonal to \mathbf{B} :

$$\nabla_{\perp} \equiv \nabla - \hat{\mathbf{b}}(\hat{\mathbf{b}} \cdot \nabla) \quad (24)$$

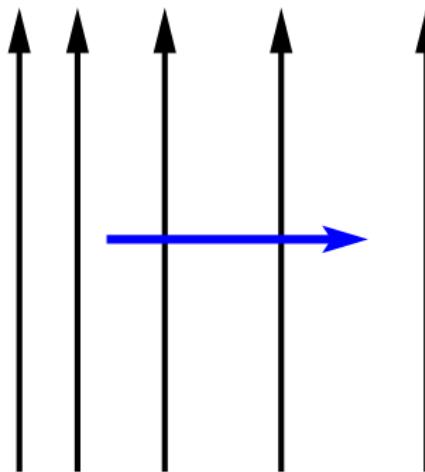
²Note: the terms in this formulation for magnetic tension and pressure differ from the corresponding terms in Eq. 20.

The magnetic tension force wants to straighten magnetic field lines



- ▶ The magnetic tension force is directed radially inward with respect to magnetic field line curvature

Regions of high magnetic pressure exert a force towards regions of low magnetic pressure



- ▶ The magnetic pressure is given by $p_B \equiv \frac{B^2}{8\pi}$

The ratio of the plasma pressure to the magnetic pressure is an important dimensionless number

- ▶ Define plasma β as

$$\beta \equiv \frac{\text{plasma pressure}}{\text{magnetic pressure}} \equiv \frac{p}{B^2/8\pi}$$

- ▶ If $\beta \ll 1$ then the magnetic field dominates
 - ▶ Solar corona
 - ▶ Poynting flux driven jets
 - ▶ Tokamaks ($\beta \lesssim 0.1$)
- ▶ If $\beta \gg 1$ then plasma pressure forces dominate
 - ▶ Stellar interiors
- ▶ If $\beta \sim 1$ then pressure/magnetic forces are both important
 - ▶ Solar chromosphere
 - ▶ Parts of the solar wind and interstellar medium
 - ▶ Some laboratory plasma experiments

The adiabatic energy equation provides the closure for ideal MHD

- ▶ The Lagrangian form of the adiabatic energy equation is

$$\frac{d}{dt} \left(\frac{p}{\rho^\gamma} \right) = 0 \quad (25)$$

- ▶ The Eulerian form of the adiabatic energy equation is

$$\left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \right) p = -\gamma \rho \nabla \cdot \mathbf{V} \quad (26)$$

where the term on the RHS represents heating/cooling due to adiabatic compression/expansion.

- ▶ The entropy of any fluid element is constant
- ▶ Ignores thermal conduction, non-adiabatic heating/cooling
- ▶ This is generally a mediocre approximation, but is useful for some situations (e.g., MHD waves)

Faraday's law tells us how the magnetic field varies with time

Faraday's law is unchanged from Maxwell's equations:

$$\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E} \quad (27)$$

But how do we get the electric field?

We get the electric field from Ohm's law

- ▶ The electric field \mathbf{E}' seen by a conductor moving with velocity \mathbf{V} is given by

$$\mathbf{E}' = \frac{\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c}}{\sqrt{1 - \frac{V^2}{c^2}}} \quad (28)$$

- ▶ This is Lorentz invariant, but the fluid equations are only Galilean invariant! Let's expand the denominator.

$$\begin{aligned} \mathbf{E}' &= \left(\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} \right) \left(1 - \frac{1}{2} \frac{V^2}{c^2} + \dots \right) \\ &= \mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} + \mathcal{O} \left(\frac{V^2}{c^2} \right) \end{aligned} \quad (29)$$

- ▶ By setting $\mathbf{E}' = 0$, we arrive at the ideal Ohm's law

$$\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = 0 \quad (30)$$

which ignores $\mathcal{O} \left(\frac{V^2}{c^2} \right)$ terms and is Galilean invariant.

Ohm's law can be combined with Faraday's law for the induction equation

- ▶ Using $\mathbf{E} + \frac{\mathbf{V} \times \mathbf{B}}{c} = 0$ and $\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E}$, we arrive at

$$\frac{\partial \mathbf{B}}{\partial t} = \underbrace{\nabla \times (\mathbf{V} \times \mathbf{B})}_{\text{advection}} \quad (31)$$

- ▶ The ideal Ohm's law neglects contributions to \mathbf{E} from resistivity, the Hall effect, electron inertia, and (in partially ionized plasmas) ambipolar diffusion
- ▶ As we will soon see, the ideal Ohm's law leads to the magnetic field and plasma being frozen into each other so that magnetic topology is preserved
- ▶ Ideal MHD plasmas are perfectly conducting

The low-frequency Ampere's law

- ▶ Ampere's law without displacement current is

$$\mathbf{J} = \frac{c}{4\pi} \nabla \times \mathbf{B} \quad (32)$$

- ▶ There is no time-dependence, so we can replace \mathbf{J} in other equations using this expression
- ▶ This formulation implies that

$$\nabla \cdot \mathbf{J} = 0 \quad (33)$$

which is a necessary condition for quasineutrality

- ▶ MHD treats the plasma as a single fluid, but recall that \mathbf{J} also represents the relative drift between ions and electrons

$$\mathbf{J} \equiv \sum_{\alpha} n_{\alpha} q_{\alpha} \mathbf{v}_{\alpha} \quad (34)$$

And of course, the most boringest of Maxwell's equations must remain satisfied

- ▶ The divergence constraint , also known as Gauss' law for magnetism. Huzzah! ...

$$\nabla \cdot \mathbf{B} = 0 \quad (35)$$

- ▶ Magnetic monopoles do not exist
- ▶ The magnetic charge density equals zero
- ▶ \mathbf{B} is a *solenoidal* (divergence-free) field
- ▶ We might as well put it in integral form while we're here...

$$\begin{aligned} \int_V (\nabla \cdot \mathbf{B}) dV &= 0 \\ \oint_S \mathbf{B} \cdot d\mathbf{S} &= 0 \end{aligned} \quad (36)$$

The magnetic field going into a closed volume equals the magnetic field going out of it.

If the magnetic field is initially divergence free, then it will remain divergence free because of Faraday's law

- ▶ Take the divergence of Faraday's law:

$$\begin{aligned}\frac{\partial \mathbf{B}}{\partial t} &= -c \nabla \times \mathbf{E} \\ \nabla \cdot \left(\frac{\partial \mathbf{B}}{\partial t} \right) &= \nabla \cdot (-c \nabla \times \mathbf{E}) \\ \frac{\partial}{\partial t} (\nabla \cdot \mathbf{B}) &= 0\end{aligned}$$

since the divergence of a curl is identically zero. Well, I guess that's kind of cool.

Writing \mathbf{B} in terms of a vector potential \mathbf{A} automatically satisfies the divergence constraint

- ▶ The magnetic field can be written as

$$\mathbf{B} = \nabla \times \mathbf{A} \quad (37)$$

Take the divergence:

$$\nabla \cdot \mathbf{B} = \nabla \cdot \nabla \times \mathbf{A} = 0 \quad (38)$$

- ▶ The vector potential formulation allows gauge freedom since $\nabla \times \nabla \phi = 0$ for a scalar function ϕ . Let $\mathbf{A}' = \mathbf{A} + \nabla \phi$:

$$\begin{aligned}\mathbf{B} &= \nabla \times \mathbf{A}' \\ &= \nabla \times \mathbf{A} + \nabla \times \nabla \phi \\ &= \nabla \times \mathbf{A}\end{aligned}$$

Summary of Ideal MHD

- ▶ MHD couples Maxwell's equations with hydrodynamics to describe macroscopic behavior in highly conducting plasmas
- ▶ MHD uses the *low-frequency, long wavelength* approximation
- ▶ Each term in the ideal MHD equations has an important physical meaning
- ▶ Extensions to MHD are often needed to describe plasma dynamics
- ▶ Next up:
 - ▶ Conservation laws
 - ▶ Virial theorem
 - ▶ Extensions to MHD
 - ▶ Waves, shocks, & instabilities
 - ▶ More space wombats

Useful References on MHD

- ▶ *The Physics of Plasmas* by Boyd & Sanderson (Ch. 3)
- ▶ *Magnetohydrodynamics of the Sun* by Priest (Ch. 2)
- ▶ *Lectures in Magnetohydrodynamics* by Schnack
 - ▶ Lecture 2 reviews the math of plasma physics
 - ▶ Lectures 3–9 discuss the equations of MHD
- ▶ *Plasma Physics for Astrophysics* by Kulsrud (Ch. 3)