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The frozen-in condition doesn’t just apply to plasmas

I Ironically, few would call this weather ideal!



Outline

I Resistivity and Viscosity
I Dimensionless numbers/similarity scaling

I Generalized Ohm’s Law
I Hall effect
I Biermann battery

I Anisotropic thermal conduction



How do we approach a problem when MHD is insufficient?

I Extended MHD
I Keep the fluid approximation
I Add terms including effects beyond MHD
I Resistivity, viscosity, anisotropic thermal conduction, separate

ion and electron temperatures, neutrals, etc.

I Kinetic theory/particle-in-cell simulations
I Abandon the fluid approximation
I Keep track of particles/distribution functions directly

I A hybrid approach
I Keep some parts of the fluid approximation
I Express other parts kinetically



Key Properties of Ideal MHD

I Frozen-in condition: if two parcels of plasma are attached by
a field line at one time, they will continue to be attached by a
field line at future times

I Magnetic topology is preserved

I Mass, momentum, and energy are convserved

I Helicity and cross-helicity are conserved

I Only adiabatic heating/cooling

I No dissipation!

I The equations of ideal MHD have no inherent scale
(“scale-free”)



The ideal MHD Ohm’s law

I The ideal Ohm’s law is

E +
V × B

c
= 0 (1)

I By combining this equation with Faraday’s law, we arrive at
the induction equation for ideal MHD

∂B

∂t
= ∇× (V × B) (2)

I When these conditions are met, the frozen-in condition is
valid.



The resistive MHD Ohm’s law

I The resistive Ohm’s law is1

E +
V × B

c
= ηJ (3)

I By combining this equation with Faraday’s law, we arrive at
the induction equation for resistive MHD

∂B

∂t
= ∇× (V × B)− c∇× (ηJ) (4)

= ∇× (V × B)− c2

4π
∇× (η∇× B) (5)

where we allow η to vary in space.

1Kulsrud’s definition of η differs by a factor of c.



The induction equation with constant resistivity

I If η is constant, then the induction equation becomes

∂B

∂t
= ∇× (V × B)︸ ︷︷ ︸

advection

+ Dη∇2B︸ ︷︷ ︸
diffusion

(6)

where the electrical diffusivity is defined to be

Dη ≡
ηc2

4π
(7)

and has units of a diffusivity: length2

time or cm2 s−1 in cgs

I Annoyingly, conventions for η vary. Sometimes Dη is called η
in Eq. 6. In SI units, typically Dη ≡ η

µ0
.



Writing the induction equation as a diffusion equation

I If V = 0, the resistive induction equation becomes

∂B

∂t
= Dη∇2B (8)

I The second order spatial derivative corresponds to diffusion
I A fourth order spatial derivative corresponds to hyperdiffusivity

I This is a parabolic vector partial differential equation that is
analogous to the heat equation

I Let’s look at the x component of Eq. 8

∂Bx

∂t
= Dη

(
∂2Bx

∂x2
+
∂2Bx

∂y2
+
∂2Bx

∂z2

)
(9)

This corresponds to the diffusion of Bx in the x , y , and z
directions



How do we find the resistivity?

I Spitzer resistivity results from collisions between electrons and
ions and is given by

Dη ≡
ηc2

4π
≈ 0.42× 107

T
3/2
eV

cm2

s
(10)

where TeV is in eV and 104 K ≈ 1 eV
I The resistivity is actually anisotropic (η⊥ = 1.96η‖) but we

typically assume that η is isotropic
I The Eighth Bronze Rule of Astrophysics: 2 ≈ 1

I We will discuss collisions and transport in detail in a few weeks
I Though derived in the 1950s, Spitzer resistivity was not tested

experimentally until the 2000s!
I Trintchouk et al. (2003); Kuritsyn et al. (2006) at MRX



Resistive diffusion time

I Since we can put resistivity in units of length2/time, we can
formulate a resistive diffusion time scale:

tη ≡
L2

0

Dη
(11)

where L0 is the characteristic length scale of the problem

I As with any ‘normal’ diffusivity, tD depends quadratically on
the length scale



Application: the physics of cooking!

I The cooking time for potato cubes depends quadratically on
the length of one side

I This is another example of

diffusion time =
(length scale)2

diffusion coefficient
(12)



Viscosity. . . it’s such a drag!

I Viscosity transports momentum between parts of the fluid
that are in relative motion

I Viscosity results from particle collisions

I The momentum equation with viscosity is given by

ρ

(
∂

∂t
+ V · ∇

)
V =

J× B

c
−∇p + ρν∇2V (13)

Here, ν is the kinematic viscosity



Putting the momentum equation in dimensionless form

I Define V ≡ V0Ṽ. . . where V0 is a characteristic value and Ṽ is
dimensionless, and use V0 ≡ L0/t0

I Use these definitions in the momentum equation while
including only the viscosity term on the RHS

ρ
∂V

∂t
+ V · ∇V = ρν∇2V (14)

V0

t0

∂Ṽ

∂ t̃
+

V 2
0

L0
Ṽ · ∇̃Ṽ =

νV0

L2
0

∇̃2Ṽ

∂Ṽ

∂ t̃
+ Ṽ · ∇̃Ṽ =

ν

V0L0
∇̃2Ṽ (15)

where the Reynolds number is

Re ≡ V0L0

ν
(16)



The Reynolds number gauges the importance of the
advective term compared to the viscous term

I We can rewrite the momentum equation with only viscosity as

∂Ṽ

∂ t̃
+ Ṽ · ∇̃Ṽ︸ ︷︷ ︸

advection

=
1

Re
∇̃2Ṽ︸ ︷︷ ︸

viscous diffusion

(17)

I A necessary condition for turbulence to occur is if

Re� 1 (18)

so that the viscous term is negligible on scales ∼ L0.
I In astrophysics, usually Re ≡ L0V0

ν ≫≫ 1

I The only scale in this equation is the viscous scale



Physics of cooking, part 2!

I The Reynolds number is

Re ≡ L0V0

ν
(19)

I If you want to make peanut butter turbulent, you can either
I Get a humongous vat of it (increase L0), or
I Stir it up really quickly (increase V0)

I Alternatively, since viscosity is a function of temperature (as a
in a plasma), you could also heat it up (decrease ν)



Putting the induction equation in dimensionless form

I The induction equation with uniform resistivity is

∂B

∂t
= ∇× (V × B) + Dη∇2B (20)

I Again, define B ≡ B0B̃. . . with V0 ≡ L0/t0

B0

t0

∂B̃

∂ t̃
=

V0B0

L0
∇̃ ×

(
Ṽ × B̃

)
+

DηB0

L2
0

∇̃2B̃ (21)

∂B̃

∂ t̃
= ∇̃ ×

(
Ṽ × B̃

)
+

Dη
L0V0

∇̃2B̃ (22)



Defining the magnetic Reynolds number and Lundquist
number

I We define the magnetic Reynolds number as

Rm ≡ L0V0

Dη
(23)

I The Alfvén speed is

VA ≡
B√
4πρ

(24)

I We define the Lundquist number as

S ≡ L0VA

Dη
(25)

where we use that the characteristic speed for MHD is
V0 = VA



Rm and S gauge the relative importance between the
advection term and the resistive diffusion term

I We can write the induction equation as

∂B̃

∂ t̃
= ∇̃ ×

(
Ṽ × B̃

)
+

1

Rm
∇̃2B̃ (26)

I If Rm� 1 then advection is more important (ideal MHD limit)
I IF Rm� 1 then diffusion is more important

I Usually in astrophysics, Rm ≫≫ 1
I Example: T ∼ 104 K, L0 ∼ 1 pc, V ∼ 1 km/s. Then

Rm ∼ 1016

Interstellar plasmas are extremely highly conducting!



Re, Rm, and S can also be expressed as the ratio of
timescales

I The Reynolds number is

Re ≡ L0V0

ν
=

viscous timescale

advection timescale
(27)

I The magnetic Reynolds number is

Rm ≡ L0V0

Dη
=

resistive diffusion timescale

advection timescale
(28)

I The Lundquist number is

S ≡ L0VA

Dη
=

resistive diffusion timescale

Alfvén wave crossing time
(29)



The relative importance of viscosity vs. resistivity is given
by the magnetic Prandtl number

I The magnetic Prandtl number is

Pm ≡ ν

Dη
=

resistive diffusion timescale

viscous timescale
(30)

where ν and Dη are both in units of a diffusivity: length2/time

I Usually Pm 6≈ 1, but people doing simulations (like me) often
set Pm = 1 for simplicity (sigh)

I In plasma turbulence, the Prandtl number determines which
scale is larger: the viscous dissipation scale or the resistive
dissipation scale

I Helps determine the physics behind dissipation of energy in
turbulence!



Is there flux freezing in resistive MHD?

I Short answer: no!

I Long answer: let’s modify the frozen-flux derivation!

I The change of flux through a co-moving surface bounded by a
contour C is

dΨ

dt
= −c

∮
C

(
E +

V × B

c

)
· dl (31)

I In ideal MHD, the integrand is identically zero.

I In resistive MHD, the integrand is ηJ!

I The change in flux becomes

dΨ

dt
= −c

∮
C
ηJ · dl (32)

This is generally 6= 0, so flux is not frozen-in.



Viscous and resistive heating

I Ohmic (resistive) heating is given by

Qη = E · J = ηJ2 (33)

This shows up as a source term in the energy equation

I Heating preferentially occurs in regions of very strong current,
but those regions typically have small volumes

I Viscous heating is of the form

Qν = ρν∇VT :∇V (34)



Key Properties of Resistive MHD

I Magnetic topology is not preserved

I Mass, momentum, and energy are conserved

I Helicity and cross-helicity are approximately conserved

I There is Ohmic (resistive) and viscous heating

I There’s dissipation!

I The scales in the problem are set by viscosity and resistivity



The resistive term allows magnetic reconnection to happen

I Magnetic reconnection is the breaking and rejoining of field
lines in an otherwise highly conducting plasma

I Reconnection preferentially occurs in current sheets: regions
where there are sharp changes in B

I Resistive diffusion is usually negligible outside of these regions



But there’s more!

I The resistive MHD Ohm’s law is

E +
V × B

c
= ηJ (35)

I However, there are additional terms that contribute to the
electric field!

I The generalized Ohm’s law is derived from the electron
equation of motion



The electron equation of motion

I The electron equation of motion is

neme

(
∂

∂t
+ V · ∇

)
Ve =

−ene
(
E +

Ve × B

c

)
−∇ · Pe + pie (36)

where
I Pe is the electron pressure tensor
I pie represents the exchange of momentum between ions and

electrons due to collisions (this leads to resistivity)

I To derive the generalized Ohm’s law, solve for E



The generalized Ohm’s law

I The generalized Ohm’s law is given by

E +
V × B

c
= ηJ +

J× B

enec︸ ︷︷ ︸
Hall

− ∇ · Pe

neec︸ ︷︷ ︸
elec. pressure

+
me

nee2

dJ

dt︸ ︷︷ ︸
elec. inertia

(37)

I The frozen-in condition can be broken by
I The resistive term
I The divergence of the electron pressure tensor term
I Electron inertia

I These additional terms introduce new physics into the system
at short length scales



Each of the terms in the generalized Ohm’s law enters in
at a different scale

I The Hall and electron pressure terms enter in at the ion
inertial length,

di ≡
c

ωpi
=

√
c2mi

4πniZ 2e2
, (38)

which is the characteristic length scale for ions to be
accelerated by electromagnetic forces in a plasma

I The electron inertia term enters in at the electron inertial
length

de ≡
c

ωpe
=

√
c2me

4πnee2
. (39)

I The electron inertia term is usually negligible, so we can
typically assume massless electrons (since di ≈ 43de)



What are typical ion and electron inertial lengths in
astrophysics?

I ISM: n ∼ 1 cm−3 ⇒ di ∼ 200 km, de ∼ 5 km

I Solar corona: n ∼ 109 cm−3 ⇒ di ∼ 7 m, de ∼ 20 cm

I Solar wind at 1 AU: n ∼ 10 cm−3 ⇒ di ∼ 70 km, de ∼ 2 km
I That’s ridiculous! These scales are tiny! Why should

astrophysicists care about them at all?
I These are comparable to dissipation length scales in MHD

turbulence!
I When current sheets thin down to these scales, reconnection

becomes explosive and fast!
I The Hall effect can modify the magnetorotational instability in

protoplanetary/accretion disks
I The Earth’s magnetosphere has ∼ISM/solar wind densities,

and 200 km is actually not ridiculously small!



Consequences of the Hall term

I In Hall MHD, the Ohm’s law becomes

E +
Vi × B

c
=

J× B

enec
(40)

I The magnetic field becomes frozen into the electron fluid
rather than the bulk plasma flow:

E +
Ve × B

c
= 0. (41)

I The Hall term introduces dispersive whistler waves
I Higher frequency waves go faster (unlike sound, Alfvén waves)



Situations where the Hall term may be important

I Planetary magnetospheres

I Dissipation scales in MHD turbulence

I Collisionless (fast) magnetic reconnection

I Accretion disks/protoplanetary disks

I Laboratory plasma experiments

I Hall thrusters (ion propulsion)

I Neutron star atmospheres/magnetospheres

I Our class’s final exam



How do you get off-diagonal terms in the electron pressure
tensor?

I Rapid variation of E or other fields can lead to bunching of
electrons in the phases of their gyration about magnetic field
lines

I This results in more electrons around one particular phase in
their orbits than at other phases

I These agyrotropies are captured by off-diagonal terms in the
electron pressure tensor



How did the magnetic field arise in the early universe?

I Evolutionary models of magnetic fields in galaxies must be
able to explain coherent ∼µG fields by z ∼ 2

I Dynamos require a seed field to exist before it can be amplified
I The seed field can be small, but must have been above some

minimum value
I Estimates vary!

I Most terms in the generalized Ohm’s law rely on magnetic
fields already being present for stronger fields to be generated

I But not all!



Open questions about primordial magnetic fields2

I How did the first magnetic fields in the universe originate?

I Were they created during the Big Bang, or did they develop
afterward?

I How coherent were the first magnetic fields? Over what
length scales?

I Are galactic magnetic fields top-down or bottom-up
phenomena?

I Is there a connection between the creation of the first fields
and the formation of large-scale structure?

I Did primordial magnetic fields affect galaxy formation?

I Did early fields play a role in magnetic braking/angular
momentum transport in Pop III stars?

2From Widrow (2002)



The Biermann battery is a promising mechanism for
generating seed magnetic fields in the early universe

I If you assume a scalar electron pressure, your Ohm’s law will
be

E +
V × B

c
= −∇pe

ene
. (42)

If you combine this with Faraday’s law, you will arrive at

∂B

∂t
= ∇× (V × B)− c

∇ne ×∇pe
n2
ee

(43)

I The Biermann battery term can generate magnetic fields
when none were present before!



How do we generate conditions under which the Biermann
battery can operate?

I The Biermann battery requires that ∇ne &∇pe not be parallel

I Vorticity (ω ≡ ∇× V) can generate such conditions

I Kulsrud’s example: a shock of limited extent propagates into
a cold medium

Cold, unshocked Cold, unshocked

Hot, dense
shocked plasma

Less dense
Cold, unshocked

Shock front

∇ρ

∇T



How does the Biermann battery fit into the big picture?

I The Biermann battery can yield B ∼ 10−18 G
I This is plus or minus a few orders of magnitude

I Galactic magnetic fields are ∼ 10−6 G

I Dynamo theory must be able to explain magnetic field
amplification of ∼12 orders of magnitude within a few Gyr

I There are other candidate mechanisms for magnetic field
formation (e.g., Naoz & Narayan 2013)

I Key difficulty: lack of observational constraints!



The Biermann battery in laser-produced plasmas as an
analog for magnetic field generation in the early universe
(Gregory et al. 2012)

I Shoot two lasers at an inanimate carbon rod

I Resulting shock waves produce vorticity

I Vorticity leads to magnetic field generation



Anisotropic thermal conduction

I Ideal MHD assumes an adiabatic equation of state
I No additional heating/cooling or thermal diffusion

I In real plasmas, charged particles are much more free to
propagate along field lines than across them

I There is fast thermal transport along field lines

I Thermal transport across field lines is suppressed
I Confinement of fusion plasmas requires closed flux surfaces

I When the magnetic field becomes stochastic, heat is able to
rapidly escape to the wall



How do we include anisotropic thermal conduction in the
energy equation?

I The energy equation can be written as

∂

∂t
(ρε) +∇ · (ρεV) = −p∇ · V︸ ︷︷ ︸

compression

− ∇ · q︸ ︷︷ ︸
heat flux

+ Q − Λ︸ ︷︷ ︸
heating/cooling

(44)

where ε is the energy per unit mass so that ρε = p/(γ − 1) is
the energy per unit volume and ρεV is the internal energy flux

I Heating can come from resistive/viscous heating, etc.

I The perpendicular and parallel thermal heat flux vectors are

q‖ = −κ‖b̂b̂ · ∇T (45)

q⊥ = −κ⊥
(
I− b̂b̂

)
· ∇T (46)

where κ‖ � κ⊥



How does stochasticity in the field modify thermal
conduction?

I Electrons may jump from one field line to a neighboring one

I In a chaotic system, the field lines exponentially separate

I This results in a net effective thermal diffusion and may be
important in galaxy clusters



Plasmas can have different ion and electron temperatures

I Some heating mechanisms primarily affect either ions or
electrons

I There will be separate energy equations for ions and electrons
I Different heating terms, heat flux vectors, etc.

I Equilibration occurs through collisions

I Important in collisionless or marginally collisional plasmas like
the solar wind, supernova remnants, etc.



There are additional forms of viscosity that we have not
covered

I These can be included in the viscous stress tensor

ρ

(
∂

∂t
+ V · ∇

)
V =

J× B

c
−∇p +∇ ·Π (47)

I For example, gyroviscosity results from electron gyration
about magnetic field lines

I These are fundamentally important for magnetically confined
fusion plasmas

I These viscosities are important on dissipation scales in plasma
turbulence in the solar wind, ISM, and elsewhere



Summary

I Resistivity leads to diffusion of B

I Viscosity leads to diffusion of V

I Re, Rm, S , and Pm are dimensionless numbers that gauge
the importance of viscosity and resistivity

I The generalized Ohm’s law includes the Hall effect, the
divergence of the electron pressure tensor, and electron inertia

I These additional terms become important on short length
scales and introduce new waves into the system

I The Biermann battery may be the source of seed magnetic
fields in the early Universe

I Thermal conduction in plasmas is much faster along magnetic
field lines than across them


