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What is MHD?

I MHD couples Maxwell’s equations with hydrodynamics to
describe the macroscopic behavior of highly conducting fluids
such as plasmas



Ideal MHD at a glance (cgs units)

Continuity Equation ∂ρ
∂t +∇ · (ρV) = 0

Momentum Equation ρ
(
∂
∂t + V · ∇

)
V = J×B

c −∇p

Ampere’s law J = c
4π∇× B

Faraday’s law ∂B
∂t = −c∇× E

Ideal Ohm’s law E + V×B
c = 0

Divergence constraint ∇ · B = 0

Adiabatic Energy Equation d
dt

(
p
ργ

)
= 0

Definitions: B, magnetic field; V, plasma velocity; J, current density; E, electric field;

ρ, mass density; p, plasma pressure; γ, ratio of specific heats (usually 5/3); t, time.



What is the MHD approximation?

I MHD is a low-frequency, long-wavelength approximation

I Valid on length scales longer than the Debye length and
electron/ion gyroradii: L� λD , ρe , ρi

I Valid on long time scales longer than the inverses of the
plasma frequency and the electron/ion cyclotron frequencies:
τ � ω−1

p ,Ω−1
i ,Ω−1

e

I Assume quasineutrality (since L� λD)

I Assume that collisions are frequent enough for the particle
distribution function to be Maxwellian and Ti = Te

I Assume an adiabatic equation of state (no additional heating)
and no dissipation

I Ignore the most significant physics advances since ∼1860:
I Relativity (V 2 � c2)
I Quantum mechanics
I Displacement current in Ampere’s law (again, since V 2 � c2)



When is MHD useful?

I MHD traditionally describes macroscopic force balance,
equilibria, and dynamics

I Describes dynamics reasonably well on large scales

I MHD is a good predictor of plasma stability
I The most catastrophic instabilities are unstable in ideal MHD
I Important in laboratory plasmas, solar atmosphere, etc.

I Systems that are described reasonably well by MHD include:
I Solar wind, heliosphere, and Earth’s magnetosphere1

I Inertial range of plasma turbulence
I Neutron star magnetospheres

I MHD is a reasonably good approximation in most
astrophysical plasmas

I However, extensions are often needed

1On large scales!



When is MHD not useful?

I MHD has limited applicability when:
I Non-fluid or kinetic effects are important

I Dissipation in the turbulent solar wind
I Magnetic reconnection
I Small-scale dynamics in Earth’s magnetosphere

I The particle distribution functions are not Maxwellian
I Cosmic rays

I The plasma is weakly ionized
I Solar photosphere/chromosphere, molecular clouds,

protoplanetary disks, Earth’s ionosphere, some laboratory
plasmas

I MHD is mediocre at describing the dynamics of laboratory
plasmas but remains a good predictor of stability



Deriving the continuity equation

I Pick a closed volume V bounded by a fixed surface S
containing plasma with mass density ρ

I The total mass contained in the volume is

M =

∫
ρdV (1)

I The time derivative of the mass in V is

dM

dt
=

∫
V

∂ρ

∂t
dV (2)



The continuity equation describes conservation of mass

I The mass flowing through a surface element dS = n̂dS is
ρV · dS, where the unit vector n̂ is pointing outward

I The integral of ρV · dS must equal −dM/dt:∫
V

∂ρ

∂t
dV = −

∮
S
ρV · dS (3)

This says that the change in mass inside V equals the mass
entering or leaving the surface.

I Using Gauss’ theorem we arrive at∫
V

[
∂ρ

∂t
+∇ · (ρV)

]
dV = 0 (4)

I This must be true for all possible volumes so the integrand
must equal zero



The continuity equation in conservative form

I The continuity equation in conservative form is

∂ρ

∂t
+∇ · (ρV) = 0 (5)

I Conservative form is usually given by

∂

∂t
(stuff) +∇ · (flux of stuff) = 0 (6)

I Source and sink terms go on the RHS
I Example: In a partially ionized plasma there continuity

equations for both the ions and neutrals. Ionization acts as a
source term in the ion continuity equation and a sink term in
the neutral continuity equation.

I The mass flux is given by ρV



The second golden rule of astrophysics

“The density of wombats

times the velocity of wombats

gives the flux of wombats.”



The continuity equation

I Using vector identities, we may write the continuity equation
as

∂ρ

∂t
+ V · ∇ρ︸ ︷︷ ︸

advection

= −ρ∇ · V︸ ︷︷ ︸
compression

(7)

I The advective derivative V · ∇ρ is a directional derivative that
measures the change of ρ in the direction of V

I The compression term
I ∇ · V < 0 ⇐⇒ converging flow ⇐⇒ compression
I ∇ · V > 0 ⇐⇒ diverging flow ⇐⇒ dilation
I ∇ · V ≡ 0 ⇐⇒ the plasma is incompressible



The advective derivative V · ∇ is used to describe the
spatial variation of a field in the direction of the flow

I For a scalar quantity ϕ, the advective derivative is given by

V · ∇ϕ = Vx
∂ϕ

∂x
+ Vy

∂ϕ

∂y
+ Vz

∂ϕ

∂z
, (8)

which is also a scalar.



Advective derivatives in vector fields

I For a vector field F, the advective derivative may be treated
as either (V · ∇) F or as the tensor derivative V · (∇F). Both
forms are equivalent, but (V · ∇) F is easier to work with.

(V · ∇) F =

 Vx

Vy

Vz

 ·
 ∂x

∂y
∂z

F

= (Vx∂x + Vy∂y + Vz∂z)

 Fx
Fy
Fz


=

 Vx∂xFx + Vy∂yFx + Vz∂zFx
Vx∂xFy + Vy∂yFy + Vz∂zFy
Vx∂xFz + Vy∂yFz + Vz∂zFz

 (9)

I The order of operations does not matter so we write V · ∇F

I See the NRL Plasma Formulary for curvilinear coordinates



The Eulerian and Lagrangian forms of the continuity
equation are equivalent

I The Eulerian form follows the density at a fixed location in
space

∂ρ

∂t
+ V · ∇ρ = −ρ∇ · V (10)

I The Lagrangian form allows us to follow a volume element
that is co-moving with the fluid

dρ

dt
+ ρ∇ · V = 0 (11)

where the total derivative is given by

d

dt
≡ ∂

∂t
+ V · ∇ (12)

and measures the change of a quantity as we are moving with
the fluid. The advective derivative links the Eulerian and
Lagrangian forms.



Building up intuition for advective derivatives

I In a famous episode of I Love Lucy, Lucy and Ethel get a job
in a chocolate factory.

I After a series of mishaps, they get assigned to a conveyor belt
to wrap chocolates

I If one unwrapped chocolate gets past them, they’re fired!



A ∼real life example for total/advective derivatives

I Define x as position, V (t) as conveyor belt velocity, nc(x , t)
as the number density of chocolates, and L(x , t) as the rate
at which Lucy & Ethel wrap, hide, or eat chocolates

I In Lagrangian form, we stay at the same position along the
conveyor belt so that:

dnc
dt

= −L(x , t) (13)

I In Eulerian form, we stay at the same place and let the
conveyor belt move by:

∂nc
∂t

+ V
∂nc
∂x

= −L(x , t) (14)

where the advective derivative V ∂nc
∂x takes into account that

the conveyor belt may speed up, or the density of chocolates
may increase!



Let us now derive humor from this situation

I Put the equation in dimensionless form.
I Define n = n0ñ, t = t0t̃, L = L0L̃, . . . where ‘0’ represents a

characteristic quantity and ‘˜’ means the quantity is
dimensionless

I The equation becomes

n0

t0

∂ñc
∂ t̃

+
V0n0

x0
Ṽ
∂ñc
∂x̃

= L0L̃ (15)

∂ñc
∂ t̃

+
V0t0

x0
Ṽ
∂ñc
∂x̃

=
L0t0

n0
L̃ (16)

I Humor arises when losses cannot keep up with advection:

H ≡ V0n0/x0

L0
� 1 (17)

I This is analogous to deriving the Reynolds number and other
dimensionless parameters



The momentum equation is derived from Newton’s 2nd law

I Newton’s second law of motion for a fluid element is

ρ
dV

dt
= F (18)

where F is the force per unit volume acting on the element.
I Example forces include

I Lorentz force: FL = J×B
c

I Pressure gradient force: Fp = −∇p
I Gravity: Fg = −ρg or Fg = −∇φ for gravitational potental φ
I Viscosity: FV = ∇ ·Π, where Π is the viscous stress tensor

I The ideal MHD momentum equation in Eulerian form is

ρ

(
∂

∂t
+ V · ∇

)
V =

J× B

c
−∇p (19)

where we neglect gravity and ignore viscous forces



The pressure gradient force −∇p pushes plasma from
regions of high plasma pressure to low plasma pressure

I The force is orthogonal to isobars

I Restoring force for sound waves

I Resulting motions are not necessarily in the direction of the
pressure gradient force if other forces are acting on the fluid



Where does the Lorentz force come from?

I The Lorentz force acting on a single particle is

F = q

(
E +

V × B

c

)
(20)

I The current density is given by

J =
∑
α

nαqαVα (21)

where α includes all species of ions and electrons. For a
quasineutral plasma with electrons and singly charged ions,
this becomes

J = en (Vi − Ve) (22)

where n = ne = ni , Vi is the ion velocity, and Ve is the
electron velocity.



The Lorentz force includes a magnetic tension force and a
magnetic pressure force

I Use Ampere’s law and vector identities to decompose the
Lorentz force term into two components

J× B

c︸ ︷︷ ︸
Lorentz force

=
(∇× B)× B

4π

=
B · ∇B

4π︸ ︷︷ ︸
magnetic tension

− ∇
(
B2

8π

)
︸ ︷︷ ︸

magnetic pressure

(23)

I While the Lorentz force must be orthogonal to be B, both of
these terms may have components along B. The parallel
component of the above tension term cancels out the parallel
part of the magnetic pressure term (Kulsrud §4.2).



The curvature vector κ gives the rate at which the tangent
vector turns

I Define b̂ as a unit vector in the direction of B: b̂ ≡ B/ |B|
I The curvature vector κ points toward the center of curvature

and is given by

κ ≡ b̂ · ∇b̂ = − R

R2
(24)

where R is a vector from the center of curvature to the point
we are considering. Note that |κ| = R−1 and κ · b̂ = 0.



The Lorentz force can be decomposed into two terms with
forces orthogonal to B using field line curvature

I Next use the product rule to obtain

B · ∇B = Bb̂ · ∇(Bb̂) =
b̂(b̂ · ∇)B2

2
+ B2b̂ · ∇b̂ (25)

I We can then write the Lorentz force as

J× B

c
= κ

B2

4π︸ ︷︷ ︸
magnetic tension

− ∇⊥
(
B2

8π

)
︸ ︷︷ ︸

magnetic pressure

(26)

where all terms are perpendicular to B.2

I The operator ∇⊥ keeps only the derivatives orthogonal to B:

∇⊥ ≡ ∇− b̂(b̂ · ∇) (27)

2Note: the terms in this formulation for magnetic tension and pressure differ
from the corresponding terms in Eq. 23.



The magnetic tension force wants to straighten magnetic
field lines

I The magnetic tension force is directed radially inward with
respect to magnetic field line curvature



Regions of high magnetic pressure exert a force towards
regions of low magnetic pressure

I The magnetic pressure is given by pB ≡ B2

8π



The ratio of the plasma pressure to the magnetic pressure
is an important dimensionless number

I Define plasma β as

β ≡ plasma pressure

magnetic pressure
≡ p

B2/8π

I If β � 1 then the magnetic field dominates
I Solar corona
I Poynting flux driven jets
I Tokamaks (β . 0.1)

I If β � 1 then plasma pressure forces dominate
I Stellar interiors

I If β ∼ 1 then pressure/magnetic forces are both important
I Solar chromosphere
I Parts of the solar wind and interstellar medium
I Some laboratory plasma experiments



The adiabatic energy equation provides the closure for
ideal MHD

I The Lagrangian form of the adiabatic energy equation is

d

dt

(
p

ργ

)
= 0 (28)

I The Eulerian form of the adiabatic energy equation is(
∂

∂t
+ V · ∇

)
p = −γρ∇ · V (29)

where the term on the RHS represents heating/cooling due to
adiabatic compression/expansion.

I The entropy of any fluid element is constant
I Ignores thermal conduction, non-adiabatic heating/cooling

I This is generally a mediocre approximation, but is useful for
some situations (e.g., MHD waves)



Faraday’s law tells us how the magnetic field varies with
time

Faraday’s law is unchanged from Maxwell’s equations:

∂B

∂t
= −c∇× E (30)

But how do we get the electric field?



We get the electric field from Ohm’s law

I The electric field E′ seen by a conductor moving with velocity
V is given by

E′ =
E + V×B

c√
1− V 2

c2

(31)

I This is Lorentz invariant, but the fluid equations are only
Galilean invariant! Let’s expand the denominator.

E′ =

(
E +

V × B

c

)(
1− 1

2

V 2

c2
+ . . .

)
= E +

V × B

c
+O

(
V 2

c2

)
(32)

I By setting E′ = 0, we arrive at the ideal Ohm’s law:

E +
V × B

c
= 0 (33)

which ignores O
(
V 2

c2

)
terms and is Galilean invariant.



Ohm’s law can be combined with Faraday’s law for the
induction equation

I Using E + V×B
c = 0 and ∂B

∂t = −c∇× E, we arrive at

∂B

∂t
= ∇× (V × B)︸ ︷︷ ︸

advection

(34)

I The ideal Ohm’s law neglects contributions to E from
resistivity, the Hall effect, electron inertia, and (in partially
ionized plasmas) ambipolar diffusion

I As we will soon see, the ideal Ohm’s law leads to the
magnetic field and plasma being frozen into each other so
that magnetic topology is preserved

I Ideal MHD plasmas are perfectly conducting



The low-frequency Ampere’s law

I Ampere’s law without displacement current is given by

J =
c

4π
∇× B (35)

I There is no time-dependence, so we can replace J in other
equations using this expression

I This formulation implies that

∇ · J = 0 (36)

which is a necessary condition for quasineutrality

I MHD treats the plasma as a single fluid, but recall that J also
represents the relative drift between ions and electrons

J ≡
∑
α

nαqαVα (37)



And of course, the most boringest of Maxwell’s equations
must remain satisfied

I The divergence constraint, also known as Gauss’ law for
magnetism. Huzzah! . . .

∇ · B = 0 (38)

I Magnetic monopoles do not exist
I The magnetic charge density equals zero
I B is a solenoidal (divergence-free) field

I We might as well put it in integral form while we’re here. . .∫
V

(∇ · B) dV = 0∮
S

B · dS = 0 (39)

The magnetic field going into a closed volume equals the
magnetic field going out of it.



If the magnetic field is initially divergence free, then it will
remain divergence free because of Faraday’s law

I Take the divergence of Faraday’s law:

∂B

∂t
= −c∇× E

∇ ·
(
∂B

∂t

)
= ∇ · (−c∇× E)

∂

∂t
(∇ · B) = 0

since the divergence of a curl is identically zero. Well, I guess
that’s kind of cool.



Writing B in terms of a vector potential A automatically
satisfies the divergence constraint

I The magnetic field can be written as

B = ∇× A (40)

Take the divergence:

∇ · B = ∇ · ∇ × A = 0 (41)

I The vector potential formulation allows gauge freedom since
∇×∇φ = 0 for a scalar function φ. Let A′ = A +∇φ:

B = ∇× A′

= ∇× A +∇×∇φ
= ∇× A



Summary of Ideal MHD

I MHD couples Maxwell’s equations with hydrodynamics to
describe macroscopic behavior in highly conducting plasmas

I MHD uses the low-frequency, long wavelength approximation

I Each term in the ideal MHD equations has an important
physical meaning

I However, extensions to MHD are often needed to describe
plasma dynamics

I Next up:
I Conservation laws
I Virial theorem
I Extensions to MHD
I Waves, shocks, & instabilities
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