SELF-INTERACTING DARK MATTER FROM GRAVITATIONAL SCATTERING

ABRAHAM LOEB

1Astronomy Department, Harvard University, 60 Garden St., Cambridge, MA 02138, USA

ABSTRACT

I show that gravitational scattering of massive objects provides the cross-section per unit mass required in self-interacting dark matter models that alleviate the small-scale structure problems of cold dark matter. For primordial objects of mass $10^4 M_\odot$, moving at the velocity dispersion characteristic of dwarf galaxies, $10v_1$ km s$^{-1}$, the cross-section per unit mass for gravitational scattering is $\sim 10 \left(M_4 / v_1^4 \right)$ cm2 g$^{-1}$. The steep decline in interaction with increasing velocity explains why self-interaction is not evident in data on massive galaxies and clusters of galaxies.
1. INTRODUCTION

Self-interacting dark matter (SIDM) (Spergel & Steinhardt 2000; Firmani et al. 2000) could solve the small-scale structure problems of the standard cosmological model of cold dark matter (Kaplinghat et al. 2016; Bullock & Boylan-Kolchin 2017). Many studies over the past two decades demonstrated that a self-interaction cross section per unit mass, σ/m, in the range (1–10) cm2 g$^{-1}$ modifies the expected dark matter cusps to central cores - as suggested by observations of dwarf galaxies (Dave et al. 2001; Colin et al. 2002; Vogelsberger et al. 2012; Rocha et al. 2013; Zavala et al. 2013; Vogelsberger et al. 2014; Fry et al. 2015; Kamada et al. 2017; Creasey et al. 2017; Robles et al. 2017; Sameie et al. 2018; Tulin & Yu 2018; Fitts et al. 2019; Sameie et al. 2020; Meskhidze et al. 2022; Silverman et al. 2022), and resolves the “too-big-to-fail” problem (Vogelsberger et al. 2012; Kaplinghat et al. 2019; Turner et al. 2021).

Since there is no apparent discrepancy with cold dark matter on the scales of massive galaxies or groups (with $v \gtrsim 10^2$ km s$^{-1}$) and clusters of galaxies (with $v \sim 10^3$ km s$^{-1}$), Loeb & Weiner (2011) proposed a decade ago that the interaction might be mediated by a Yukawa potential, declining inversely with velocity to the fourth power, $\propto v^{-4}$, as expected in some dark sector extensions to the standard model of particle physics. Most recently, velocity-dependent cross-sections with values $\gtrsim 5$ cm2 g$^{-1}$ at $v \lesssim 10$ km s$^{-1}$ were motivated to explain the dynamical properties of Milky-Way satellites (Silverman et al. 2022), but with the provision that the interaction must drop sharply with velocity to $\ll 1$ cm2 g$^{-1}$ in massive systems (Kaplinghat et al. 2016).

Here we point out that the normalization and velocity dependence of the cross-section per unit mass required to alleviate the small-scale structure problems of cold dark matter, is provided naturally by gravitational scattering if the dark matter is composed of objects in the mass range of 10^3–$10^4 M_\odot$ and a physical size $\lesssim 1$ pc. The considerations are presented in the next section and the implications are summarized in the concluding section.

2. CROSS-SECTION FOR GRAVITATIONAL SCATTERING

The gravitational cross-section for scattering of compact objects with mass m and characteristic velocity v is given by (Spitzer 1962; Binney & Tremaine 1987),

$$\sigma = 8\pi \times \left(\frac{Gm}{v^2}\right)^2 \ln \Lambda,$$

where $\ln \Lambda = \ln(b_{\text{max}}/b_{\text{min}})$ is the Coulomb Logarithm, determined by the ratio between the maximum and minimum values of the impact parameter, with $b_{\text{max}} \sim (4\pi \rho/3m)^{-1/3}$ being the average separation between objects at a mass density ρ, and $b_{\text{min}} \sim 2Gm/v^2$ is the impact parameter for a 90-degree deflection. The characteristic parameters in the cores of dwarf galaxies, $v \sim 10$ km s$^{-1}$ and $\rho \sim 3 \times 10^7 M_\odot$ kpc$^{-3}$, yield, $\ln \Lambda \sim 4$ for $m \sim 10^4 M_\odot$.
Dividing the cross-section by the object’s mass, we get,
\[
\frac{\sigma}{m} = 10 \text{ cm}^2 \text{ g}^{-1} \left[\frac{(m/10^4 M_\odot)}{(v/10 \text{ km s}^{-1})^4} \right].
\] (2)

Remarkably, for the mass range of \(m \sim (10^3-10^4) M_\odot \), gravitational scattering provides the normalization and velocity dependence required for alleviating the small-scale structure problems of cold dark matter.

The physical size of the dark matter object, \(R \), must be smaller than the minimum impact parameter for their gravitational scattering,
\[
R_{\text{max}} = \left(\frac{2Gm}{v^2} \right) = 1 \text{ pc} \left[\frac{(m/10^4 M_\odot)}{(v/10 \text{ km s}^{-1})^2} \right],
\] (3)

implying a mass density inside each object that exceeds the value,
\[
\rho_{\text{min}} = \left[\frac{m}{(4\pi/3)R_{\text{max}}^3} \right] = 2 \times 10^{12} \text{ M}_\odot \text{ kpc}^{-3} \left[\frac{(v/10 \text{ km s}^{-1})^6}{(m/10^4 M_\odot)^2} \right].
\] (4)

This minimum density of a characteristic value, \(\sim 2 \times 10^{-19} \text{ g cm}^{-3} \), is \(7 \times 10^{10} \) larger than the mean cosmic density of matter in the present-day universe and corresponds to a minimum formation redshift of \(\gtrsim 700 \), around the cosmic epoch of hydrogen recombination. The origin of such dark matter objects must therefore be primordial since the standard power-spectrum of density fluctuations forms the first virialized mini-halos at redshifts \(z \sim 70 \) (Loeb 2010; Loeb & Furlanetto 2013; Loeb 2014).

3. IMPLICATIONS

We have shown that gravitational scattering of compact objects could provide the cross-section per unit mass required in self-interacting dark matter models that alleviate the small-scale structure problems of cold dark matter. For primordial objects of mass \(10^3-10^4 M_\odot \), the cross-section for gravitational scattering is \(\sim 1-10 \text{ cm}^2/\text{g} \), at the velocity dispersion characteristic of dwarf galaxies, \(\sim 10 \text{ km s}^{-1} \). The sharp decline in the cross-section at higher velocities, \(\propto v^{-4} \), explains why self-interaction is not evident in data on massive galaxies or clusters of galaxies (Kaplinghat et al. 2016). Much larger values of the cross-section, corresponding to a higher mass \(m \), are disfavored since they trigger gravothermal core collapse (Turner et al. 2021).

Primordial black holes (PBHs) in the required mass range are constrained by microlensing of supernovae and of stars, as well as by wide binaries and X-ray binaries; for a compilation of all related limits, see Figure 1 in Carr & Kuhnel (2021). The characteristic value of \(R_{\text{max}} \) in equation (3) is larger than the Einstein radius of microlenses or the typical separation of wide binaries; in addition, extended objects need not trigger substantial X-ray luminosity from accretion of baryons. Therefore, the above PBH constraints might be relaxed for objects that are not as compact as black holes. In order to resolve the small-scale structure challenges, the objects under consideration here must make most of the dark matter.
If the required objects resulted from a cosmological phase transition at a temperature T, then their mass is expected to reflect the horizon mass,

$$m_H \sim 10^4 M_\odot \left(\frac{T}{2 \text{ MeV}} \right)^{-2}.$$ \tag{5}

Interestingly, the required mass range is naturally realized during the weak-interaction epoch, after the QCD phase transition at $T \sim 200$ MeV and before neutrino decoupling at ~ 1 MeV. This is well above the minimum redshift for the production of cold dark matter (Sarkar et al. 2015).

ACKNOWLEDGEMENTS

This work was supported in part by Harvard’s Black Hole Initiative, which is funded by grants from JFT and GBMF. I thank Sunny Vagnozzi for helpful comments on the final manuscript.

REFERENCES

Binney, J., & Tremaine, S. 1987, Galactic dynamics

Loeb, A. 2010, How Did the First Stars and Galaxies Form?

Loeb, A., & Furlanetto, S. R. 2013, The First Galaxies in the Universe

https://arxiv.org/abs/2203.06035

https://arxiv.org/abs/2203.10104

Spergel, D. N., & Steinhardt, P. J. 2000, PhRvL, 84, 3760, doi: 10.1103/PhysRevLett.84.3760

Spitzer, L. 1962, Physics of Fully Ionized Gases

