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ABSTRACT
During the formation of the Milky Way, & 100 central black holes (BHs) may have
been ejected from their small host galaxies as a result of asymmetric gravitational wave
emission. We previously showed that many of these BHs are surrounded by a compact
cluster of stars that remained bound to the BH during the ejection process. In this
paper, we perform long termN -body simulations of these star clusters to determine the
distribution of stars in these clusters today. These numerical simulations, reconciled
with our Fokker-Planck simulations, show that stellar density profile follows a power-
law with slope ≈ −2.15, and show that large angle scattering and tidal disruptions
remove 20 − 90% of the stars by ∼ 1010 yr. We then analyze the photometric and
spectroscopic properties of recoiled clusters accounting for the small number of stars
in the clusters. We use our results to perform a systematic search for candidates
in the Sloan Digital Sky Survey. We find no spectroscopic candidates, in agreement
with our expectations from the completeness of the survey. Using generic photometric
models of present day clusters we identify ∼ 100 recoiling cluster candidates. Follow-up
spectroscopy would be able to determine the nature of these candidates.

Key words: galaxies:kinematics and dynamics–galaxies:nuclei–black hole physics–
gravitational waves–star clusters

1 INTRODUCTION

1.1 Motivation

In the standard cosmological context of hierarchical galaxy
formation, the first galaxies to form were small (∼ 108 M⊙)
and grew through subsequent accretion and mergers (Loeb
2010). If central black holes (BHs) were common in the ear-
liest epochs of galaxy formation, then for most major merg-
ers, the two BHs would also eventually merge. If there were
any asymmetry in the inspiral and coalescence of two BHs,
whether due to a difference in mass, or the alignment of the
BHs’ spin vectors, then there would inevitably be a net linear
momentum kick to the merger remnant (Peres 1962; Beken-
stein 1973; Fitchett 1983). This kick, which is typically hun-
dreds of km s−1 for mergers with comparable masses (Baker
et al. 2006; Campanelli et al. 2007b,a; Tichy & Marronetti
2007), is independent of the total mass of the BHs. Thus,
such kicks have the greatest dynamical effect in the small-
est galaxies (Madau & Quataert 2004; Libeskind et al. 2006;
Micic, Abel & Sigurdsson 2006; Volonteri 2007; Schnittman
2007; Blecha & Loeb 2008). Indeed, a major merger in the
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first galaxies would inevitably lead to the ejection of the
BH. Interestingly, the typical kick velocity is smaller than
the escape velocity of the Milky Way halo, and so, although
the first galaxies to merge would have lost their BHs, many
of these ’rogue’ BHs should remain in the Milky Way halo
today (Madau & Quataert 2004; Volonteri & Perna 2005;
Libeskind et al. 2006; Micic, Holley-Bockelmann & Sigurds-
son 2008; O’Leary & Loeb 2009).

Before coalescence, the BH-BH binary may be sur-
rounded by both a disk of dense gas and a dense cusp of
stars. For bound matter with orbital velocities larger than
the kick velocity, the gravitational wave kick perturbs the
orbit of the material, but does not unbind it from the re-
coiled BH even if the BH is ejected from the galaxy (Loeb
2007). For gas disks, viscosity eventually causes the BH to
accrete the surrounding gas on order of a few Myr, leav-
ing the BH as a short lived quasar (Loeb 2007; Blecha &
Loeb 2008; Guedes et al. 2010; Sijacki, Springel & Haehnelt
2010; Blecha et al. 2011). After depleting all bound gas, the
BHs will only be visible if they pass through dense gas in the
galaxy and reaccrete material (Islam, Taylor & Silk 2004b,a;
Volonteri & Perna 2005; Mii & Totani 2005; Bertone, Zent-
ner & Silk 2005; Blecha & Loeb 2008). Stars, on the other
hand, are effectively collisionless, and will remain bound as
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a long lived system (Gualandris & Merritt 2008; Komossa
& Merritt 2008; O’Leary & Loeb 2009; Merritt, Schnittman
& Komossa 2009), and may actually be tidally disrupted by
the BH after ejection (Komossa & Merritt 2008) or produce
winds providing a new source of gas accretion to the black
hole (O’Leary & Loeb 2009).

In O’Leary & Loeb (2009; hereafter as Paper I), we
used & 1000 merger tree histories of the Milky Way galaxy
to calculate the number and mass distribution of these re-
coiled BHs. We assumed that after a major merger,
with galaxy mass ratio greater than 1:10, the black
holes merged immediately. We found that & 100 BHs
with M• & 104 M⊙ should be in the halo today, surrounded
by compact star clusters that are ∼ 1% of their BH’s mass
(see Merritt, Schnittman & Komossa 2009, for a similar dis-
cussion applied to the nearby Virgo Cluster). These clus-
ters are expected to roughly follow the dark matter
distribution of the halo, since they have kick veloc-
ities typically less than the velocity dispersion of
the galaxy. At these distances dynamical friction is
not important over a Hubble time. The most massive
star clusters have a much higher internal velocity disper-
sion than globular clusters because they are gravitationally
bound by the BH at their center. Finding these clusters in
the Milky Way halo will allow us to peer back in time and
look at some of the first BHs to form. In this paper we re-
investigate the long term evolution of recoiled star clusters
using full N -body simulations, with a one-to-one correspon-
dence between stars and N -body particles. We also extend
the Fokker-Planck simulations from Paper I to include large-
angle scattering between stars in order to reconcile these
new simulations with our results from Paper I, and extend
the reach of our simulations to larger BHs. We use the re-
sults of these simulations to generate the photometric prop-
erties of recoiled clusters. Because these clusters have so few
stars, stochastic variation dominates over the dispersion of
the cluster colors. Instead of using averaged stellar evolution
tracks of old star systems, we use a Monte-Carlo approach to
generate individual star cluster colors and sizes to identify
the typical properties of these systems and compare them to
the properties of stars and galaxies in the the Sloan Digital

Sky Survey1 Data Release 7 (hereafter SDSS DR7 Abazajian
et al. 2009).

Our paper is organized as follows. In § 1.2, we describe
recoiled clusters and briefly summarize the main results from
Paper I. In § 2, we use N -body simulations to follow the
long term dynamical evolution of recoiled star clusters. We
then extend our previous Fokker-Planck analysis in § 3 to
include the ejection of stars from large angle scattering. In
§ 4, we develop a series of simple photometric models that
we use to search for recoiled clusters in § 5. In § 6, we search
the spectroscopic database of SDSS for candidate clusters.
Finally in § 8, we summarize our paper and describe the
main conclusions.

1.2 Stellar Cusps and Recoiled Black Holes

For a relaxed stellar system around a central massive BH,
Bahcall & Wolf (1976) found that the stellar density follows

1 http://www.sdss.org/dr7/

a power-law profile within the radius of influence of the BH,
ri = GM•/σ

2
⋆, where M• is the BH mass, and σ⋆ is the

stellar velocity dispersion. Out to the radius where the total
mass in stars around the BH is twice the mass of the BH
the density profile is

n⋆(r) =
M•

m⋆

3− α

2πr3i

(

r

ri

)−α

, (1)

where α = 1.75 for a cluster of single mass stars of mass
m⋆. If the binary black hole merges on a timescale
comparable to the relaxation time, then the Bahcall
& Wolf (1976) cusp will be regenerated as the bi-
nary inspirals. However, if the binary merges on a shorter
timescale than the relaxation time (e.g., from gas dynam-
ics), then the stellar density profile is expected to be much
shallower with α ≈ 1 and with fewer stars within ri (Merritt
& Szell 2006; Merritt, Mikkola & Szell 2007). For the BH
masses we consider here, the relaxation timescale is much
less than the age of the universe,

tr(r) ≈ 109 yr

(

M•

105 M⊙

)5/4 (
r

ri

)1/4

. (2)

The kick on the BH remnant occurs over a timescale
much shorter than the orbital time of the stars. Therefore,
in the frame of the BH, the stars all instantaneously receive a
kick, −vk. To first order, stars with a total energy . −m⋆v

2
k,

will remain bound to the BH as it is ejected from the galaxy.
For the Keplerian potential of the BH, this approximately
corresponds to all stars with r . rk = (vk/σ⋆)

−2ri. From
equation (1), this corresponds to a number of stars

Ncl ≈
2M•

m⋆

(

vk
σ⋆

)2α−6

≈ 4×103
(

M•

105 M⊙

)(

vk
5.6σ⋆

)−5/2

,

(3)
where we set α = 1.75, and used the M• − σ⋆ relation to
determine ri (Tremaine et al. 2002).

The star cluster will begin to expand away from the BH
immediately after it is ejected from the galaxy. In Paper I, we
followed the long term evolution of the star cluster by nu-
merically integrating the time dependent, one-dimensional
Fokker-Planck equation for stars around a central BH. We
found that the density cusp of stars around the BH quickly
expands to the point that the relaxation timescale of the
system tr is approximately its age tH. In our simulations,
the total mass in stars was roughly constant. However, our
calculations could not consistently account for either strong
encounters or resonant interactions between stars. In both
cases, we would expect a larger fraction of stars to be ejected
or destroyed.

We estimated the number of recoiled BHs in the Milky
Way Halo using an ensemble of & 103 merger tree histo-
ries of the Milky Way, convolved with the probability dis-
tribution of kick velocities (Schnittman & Buonanno 2007).
We found that a typical Milky Way like galaxy contains as
many as 100 recoiled BHs with M• & 104 M⊙, with a mass
spectrum dN/dM• ∝ M−1

• . Because the kick velocity distri-
bution peaks at low velocities, ∼ 102 km s−1, the majority
of recoiled clusters had the minimal kick velocity needed to
escape from the host galaxy. In Paper I, we estimated this
to be vesc ≈ 5.6σ⋆ immediately after the galaxy merger.
Overall, these results were consistent with previous stud-
ies that looked at a population of BHs in the Milky Way
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halo, whether from gravitational wave recoil, through three
body encounters, or as the remnants of the seed population
of black holes (Madau & Quataert 2004; Volonteri & Perna
2005; Libeskind et al. 2006; Micic, Holley-Bockelmann &
Sigurdsson 2008)

2 N-BODY SIMULATIONS

Small star clusters around recoiled BHs present an interest-
ing dynamical system that can be modeled directly in N -
body simulations, as well as through approximate methods
such as solving the Fokker-Planck equation. Because some
star clusters have only a few thousand stars, it is possible to
simulate the star clusters with a one to one correspondence
between stars and N -body particles. In this section, we sim-
ulate the star clusters directly, and compare the results to
our previous Fokker-Planck simulations from Paper I.

2.1 Method

We use the publicly available N -body code BHint
2

(Löckmann & Baumgardt 2008) to simulate the long term
evolution of star clusters around recoiled BHs. BHint was
developed to precisely integrate the equations of motion of
stellar systems around massive BHs, where the BH domi-
nates the motion of the stars.

The initial conditions for the recoiled BH and
star cluster are set up by first generating Bahcall
& Wolf (1976) stellar density cusps around a M• =
104 M⊙ BH, following equation (1), with n⋆ ∝ r−1.75,
such that the total mass of stars within ri is twice
that of the black hole. The stars’ velocities are ini-
tially selected from a Gaussian distribution with
σ2
⋆ = GM•/r/(1 + α), where α = 1.75, which is an

excellent approximation to the velocity distribution
of stars in a power-law density cusp. We use two
model mass functions for the stars. In Model I we
use equal-mass stars with m⋆ = 1M⊙. In Model II, we
use a more realistic mass function to model a pop-
ulation of old stars. Although massive stars likely
play an important role in the evolution of clusters,
they are short lived compared to the cluster lifetime.
Stars with mass . 20M⊙, evolve to form neutron
stars or white dwarfs, which are comparable in mass
to long lived main sequence stars, and so should not
significantly alter the dynamics of the system except
to increase the mass-to-light ratio3. More massive
stars form black holes, with mass ≈ 10M⊙, which
may dramatically alter the dynamics of the system.
These black holes may even segregate before the
binary merges (Morris 1993; Merritt 2009). If the
black holes dominate the dynamical evolution of the
system, such systems may not have any luminous
stars to observe. However the fraction of black holes
in the region immediately after reforming the cusp is

2 Available at http://www.astro.uni-bonn.de/english/

downloads.php
3 The total amount of mass lost is << M•, and will accordingly
only perturb the orbits of the stars.

highly uncertain, and so we take the extreme oppo-
site approach and ignore the black hole population.
Assuming that there are very few black holes, which
may be the case in a subset of the recoiled clusters,
we use a relatively flat mass function for low mass
stars (dN/dm⋆ ∝ m−1.35

⋆ ) with 0.2M⊙ < m⋆ < 1.0M⊙.
The mass of each star is generated randomly fol-
lowing this distribution until the total mass of the
cusp reaches 2M•. We use such a shallow power law
because of the break in the initial mass function at
≈ 0.5M⊙ (Kroupa 2001).

After generating the cusps for Models 1 & 2, we
then kick each star with a velocity vk = vkẑ, and re-
move all stars that are unbound to the BH. Approx-
imately 500M⊙ of stars remain bound to the black
hole. With these assumptions we do not account for
stars that are originally unbound to the black hole.
However, unbound stars do not contribute signifi-
cantly in numbers deep within a full cusp.

We run the simulations for 1010 yr, the approximate age
of the clusters. Stars are removed from the simulation if they
are ejected from the cluster, E > 0, if they reach a separa-
tion a > 10 pc, or if they are tidally disrupted by the central
BH4, rperi . rtid = R⋆(M•/m⋆)

1/3. For each star that is
tidally disrupted, we add its total mass to the BH. All of our
N -body simulations follow clusters with M• = 104 M⊙ and
vk = 5.6σ⋆ ≈ 105 km s−1. For all of the reported simu-
lations we set the time step criterion η = 0.1 and the
stars orbits were evaluated at minimum 80 times per
orbit. We have checked the simulations with more
precise parameters (η = 0.01 and 160 evaluations per
orbit) and found similar results. We simulate 40 differ-
ent cluster realizations for each Model and average over all
the runs. A typical simulation takes up to one month on a
single core of the Odyssey Cluster at Harvard University.

2.2 N-Body Results

2.2.1 Cluster Evolution and Expansion

Immediately after the recoil, the BH is ejected with
≈ 600M⊙ of bound stars, in rough agreement with our
initial estimates. In Figure 1, we plot the average number of
stars bound to the recoiled BH as a function of time for Mod-
els I & II. After a relaxation timescale, ∼ 106 − 107 yr, the
star cluster begins to expand as well as and lose stars as
a power-law with Ncl(t) ∝ t−1/2. Approximately 40% of the
stars are ejected from the cluster and another 40% of the
stars are tidally disrupted by the BH (see § 2.2.2). After
both Models begin to evolve, the ratio of the total mass of
stars in each Model remains constant in time.

In our simulations there are effectively only 3 param-
eters that determine the cluster evolution: the BH mass,
M•, the average stellar mass, m⋆, and the kick velocity
vk = 5.6σ⋆. All other scales in the simulation were deter-
mined through the M• − σ⋆ relation5. Since the required

4 We have also simulated clusters with a much smaller tidal dis-

ruption radius in order to look at how this may affect the inner
density profile.
5 The tidal disruption radius depends on the mass ratio of the
BH and star, however we found that the final number of stars
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4 O’Leary & Loeb

Figure 1. Evaporation of the star cluster in N -body simulations.
The number of stars in the cluster bound to the BH is plotted
as a function of time. The solid black line is for the cluster with
the flat mass function (Model II), the dotted red line is the clus-
ter with equal-mass stars (Model I), and for comparison, the
dashed blue line is Model I renormalized to have the
same number of initial stars as Model II. After ∼ 107 yr
the cluster decays as a power-law with time, N ∝ t−1/2. Model
I has approximately half the number of stars as Model
II, because the stars are, on average, twice as massive.

kick velocity to eject the BH scales with σ⋆, and the to-
tal number of stars in the cluster scales with the BH mass
(∝ M•), we can rescale the results of our simulations to find
the number of stars in a recoiled cluster as a function of time
(tr ∝ M

5/4
• ) at t & 106 yr,

Ncl(t) ≈ 20

(

M⊙

< m⋆ >

)3/2 (
M•

104 M⊙

)13/8 (
t

1010 yr

)−1/2

,

(4)
for a fixed vk = 5.6σ⋆, and where we have normalized
the scaling relation to match our N -body simulations. The
more massive the BH is, the fewer number of relaxation
timescales the cluster will undergo over a fixed duration in
time. Equations (3) & (4) are equivalent at t = 1010 yr when
M• ≈ 2×106 M⊙. For BHs with masses above this value, the
total number of stars in the cluster matches the initial num-
ber of stars at recoil. This has important implications for
recoiled clusters near elliptical galaxies and galaxy clusters
(see Merritt, Schnittman & Komossa 2009). For star clus-
ters with M• . 2× 106 M⊙, such as those we expect around
the Milky Way, the cluster will lose many of its initial stars
and have evolved from its original state. From equation 4,
and the power-law nature of Figure 1, we expect the
final number of stars in the cluster will not be sig-
nificantly larger even if the cluster had more initial

in our simulations was insensitive to the chosen tidal disruption
radius.

stars; it would instead begin to decay earlier, follow-
ing the same overall functional form N(t) ∝ t−1/2.

In Figure 2, we plot the normalized velocity spectrum of
stars ejected from Models I and II as a function of time, look-
ing at the first, second, and last third of stars ejected from
the cluster. The typical velocity of an ejected star is usually
a fraction of the velocity dispersion of the cluster, which de-
creases with time as the cluster expands. The total velocity
distribution of all the stars ejected from cluster appears al-
most log-normal, independent of the mass function of
stars, with a peak at ≈ 6 km s−1, and full-width half maxi-
mum an order of magnitude above the peak value. On av-
erage, nearly twice as many stars were ejected from
Model II (∼ 380 per cluster) compared to Model I
(∼ 220 per cluster). However, the total mass of stars
ejected is comparable. From the velocity spectrum, we
see that the slow diffusion of stars to higher energies can not
be the cause of the cluster evaporation. If this were the case,
the ejection spectrum would peak near zero velocity, as most
stars become unbound just as they approach the escape ve-
locity of the cluster. In fact, the peak velocity of the ejected
stars is near ∆v ∼ v ∼ σ, a reflection of large angle scat-
tering (Henon 1969; Lin & Tremaine 1980). Indeed, this is
confirmed by the pericenter distance of the stars before they
are ejected, which is always much smaller than the half-mass
radius of the cluster and the boundary of our simulations,
rperi << rh << 10 pc. Nearly all of the ejected stars will re-
main bound to the Milky Way halo (v < 500 km s−1). Only
a few of the earliest stars ejected from the cluster have large
enough velocities to constitute a hypervelocity star (Brown
et al. 2005; Yu & Tremaine 2003). This, of course, is a small
fraction of the number of hypervelocity stars that are ex-
pected to be produced during the inspiral of the BH binary
(Yu & Tremaine 2003).

After approximately one relaxation timescale,
the cluster begins to expand as it is heated by the in-
nermost star in the cluster as well as by tidal disrup-
tions. We find in our N-body simulations that radii
that enclose a fixed number of stars scale as a power-
law rN ∝ t2/3. The same relation is observed in our
Fokker-Planck simulations (see § 3.1), in previous
simulations of black holes in star clusters (see, e.g.,
Amaro-Seoane, Freitag & Spurzem 2004), as well as
in previous work exploring the expansion of a clus-
ter without a black hole post core-collapse (see, e.g.,
Hénon 1961; Goodman 1984, and citing articles.).
The power-law index can be obtained by looking at
the flow of energy through the cluster, so long as
the energy is generated in a sufficiently small vol-
ume. Following, Gieles, Heggie & Zhao (2011) (see
also, Hénon 1961, 1965), we can analyse the flow of
energy

Ė

E
= −2

Ṅ

N
+

ṙN
rN

=
ζ

tr(rN )
, (5)

at a radius that encloses a fixed number, N , of stars.
Here, ζ, is independent of N , rN and E. Under the
assumption that the rate of stars being ejected from
the cluster is small (Ṅ/N << ˙rN/rN), we can solve for
rN as a function of t. For a cluster in the Keplerian
potential of a black hole, tr(rN ) ∝ sigma(rN )3r3N ∝

r
3/2
N . Solving Eq. 5, then yields rN ∝ t2/3. A similar
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Figure 2. Velocity Spectrum of Ejected Stars. Plotted is the normalized velocity distribution of ejected stars from equal-mass clusters
(solid black line, left panel) as well as from clusters with a flat IMF (solid black line, right panel), Models I and II respectively. The red
dotted, green dashed, and blue long-dashed lines represent the velocity distribution of the first (ejection . 107 yr), second (∼ 107−108 yr),

and last third (& 108 yr) of stars ejected owing to two-body scattering, respectively. As the cluster expands, the typical velocity
of ejected stars decreases. The vast majority of stars are ejected with velocities less than the velocity dispersion of the Milky Way halo.
The stars with the largest ejection speeds are ejected early in the cluster evolution, typically at . 107 yr.

relation can be found for the expansion of a cluster
without a black hole post core-collapse (see, e.g.,
Hénon 1961, 1965; Goodman 1984, and citing arti-
cles.), which yields the same proportionality, how-

ever for a different reason (trh ∝ N1/2r
3/2
h ). As the

ejection of stars from the cluster becomes impor-
tant, however, we expect the cluster evolution to
deviate from rN ∝ t2/3.

2.2.2 Tidal Disruption of Stars & Resonant Relaxation

A star will be tidally disrupted by the BH if it comes within
a radius rtid ∼ R⋆(M•/M⋆)

1/3. Using this criterion, we re-
move stars that are disrupted by the black hole, and add
their mass to the black hole. In Figure 3, we plot the av-
erage tidal disruption rate of stars in Models I & II as a
function of time. We find that after the first relax-
ation timescale, the time evolution of the disruption
rate is well approximated as a power-law ∝ t−3/2.

If a star has a small enough angular momentum such
that its pericenter distance is less than the tidal disrup-
tion radius, it will be disrupted in less than one orbital
period. Therefore, the tidal disruption rate is determined
by the flow of stars into the empty loss-cone6. The
stars can diffuse into the loss-cone through regular
two-body relaxation, large-angle scattering, or co-
herent effects such as resonant relaxation (Rauch &

6 The stars can also diffuse to higher specific energy, however the
fractional change in energy required is usually much larger than
the fractional change in angular momentum.

Tremaine 1996; Rauch & Ingalls 1998). We can hope
to determine the primary mechanism behind loss-
cone refilling using the time evolution of the system
(i.e., Ṅtd ∝ t−3/2 ∝ N/t).

The diffusion rate of stars into the empty loss-
cone from two-body relaxation scales approximately
as ∼ N/tr. After the cluster begins to expand,
the cluster should expand such that the relaxation
timescale follows the clusters age, tr ≈ t. Thus the
rate of tidal disruptions from regular relaxation is
∝ t−3/2, in agreement with our results. Large-angle
scattering will disrupt stars with a similar depen-
dence on time, but at a rate reduced by ∼ (lnΛ)−1.

For resonant relaxation, the tidal disruption rate
should be ≈ γN(< r)/trr(r), where trr(r) is the reso-
nant relaxation timescale, and γ normalizes the rate
and can be determined using numerical simulations
(Rauch & Ingalls 1998; Hopman & Alexander 2006a;
Komossa & Merritt 2008; Eilon, Kupi & Alexander
2009). If we exclude general relativistic precession,
the resonant relaxation timescale is determined by
the precession of stars from their own self-gravity,
and scales roughly as trr ≈ P (r)M•/m⋆, independent
of the density profile of the stars. For a homologously
expanding cluster around a black hole, the radius
that encloses a fixed number of stars scales as ∝ t2/3

(see § 2.2.1). Assuming that the orbits are nearly
Keplerian, P (r) ∝ r−3/2, the disruption rate from res-
onant relaxation will scale as N/(t2/3)3/2 ∝ N/t, the
same as for regular relaxation. As can be seen in Fig-
ure 3, the tidal disruption rate scales as N/t ∝ t−3/2

after t ∼ 107 yr, when the cluster begins to expand.
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6 O’Leary & Loeb

Figure 3. Tidal disruption rate of stars as a function of
time. We plot the average tidal disruption rate of the
star cluster as a function of time since it’s central BH
was kicked for Models I (single mass stars – dotted red
line) & II (solid black line). The long dashed line is a
t−3/2 power-law drawn for comparison. For resonant re-

laxation the tidal disruption rate scales as N/trr, which
is roughly constant at early times, and then scales as
t−3/2 during the expansion of the cluster. Interestingly,
although the intrinsic rate of tidal disruption events in a
given cluster is small, the total rate of all recoiling clus-
ters may contribute up to 10−6 −−10−7 yr−1, only one to
two orders of magnitude lower than the disruption rate of
black holes fixed in galactic nuclei. On the order . 104 yr,

there is an initial burst of tidal disruptions partially be-
cause we started with a full loss cone in our simulations,
however even if the loss cone is empty a burst may occur
because the kick can put stars into orbits within the loss
cone (Stone & Loeb 2010).

From scaling arguments alone, we can not determine
the relative contribution of tidally disrupted stars
from resonant relaxation or regular relaxation. Res-
onant relaxation should be more important on these
scales, however artificial numerical precession can
prevent resonant relaxation from occurring in sim-
ulations.

To determine the cause of the tidal disruption
events we can analyze the tidal disruption rates de-
pendence on m⋆. For resonant relaxation the disrup-
tion rate scales as ∝ m⋆, whereas for regular relax-
ation the rate scales as tr ∝ m2

⋆. Following Komossa
& Merritt (2008), we have performed smaller nu-
merical simulations for recoiling star clusters with
varying m⋆. These simulations had only ≈ 200M⊙ of
initial stars on an n ∝ r−1 density profile. This profile
was chosen so that the regular relaxation timescale
was shortest at largest radii. The tidal disruption
rate as a function of time and mass is shown in Fig-
ure 4. Despite the stochastic variations given the
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Figure 4. Tidal disruption rate as a function of stellar
mass. We plot the tidal disruption rate of stellar clus-
ters with m⋆ = 10, 1, and 0.1M⊙ as green (dash-dotted),

black (solid), and red (dashed) lines respectively. Ini-
tially, disruption scales approximately as ∝ m⋆. After ap-
proximately one relaxation timescale (∝ m2

⋆) the cluster
begins to expand, and the tidal disruption rate begins

to decrease as ∝ t−3/2. There is considerable scatter in these
figures because we used only one simulation for each line.

small number of stars, we see that the tidal dis-
ruption rate scales approximately as ∝ m⋆ at early
times, and falls off as t−3/2 after approximately one
relaxation timescale of the system (∝ m2

⋆). We have
confirmed that the disruptions are indeed caused by
resonant effects by observing that the stars that are
disrupted are preferentially from the inner most re-
gion of the cusp, and undergo angular momentum
evolution on a timescale much shorter than the re-
laxation timescale.

Because the timescale of large-angle scattering
ejecting stars is also proportional to the relaxation
timescale, both the tidal disruption rate and ejection
rate have the same functional dependence on time.
By the end of the simulations, approximately 40% of
the stars are disrupted by the BH. This is inconsis-
tent with the results of Lin & Tremaine (1980) who
found that the BHs in globular clusters are more
efficient at ejecting stars from density cusps than
consuming them. However, here we are analyzing
only a fraction of the entire density cusp.

The tidal disruption of a star from an offset BH is an
exciting possibility for detecting recoiled BHs (Komossa &
Merritt 2008). Previous work has so far focused on the dis-
ruption of stars from clusters that were recently ejected by
merger (Komossa & Merritt 2008), as it was thought that
the tidal disruption rate would decline exponentially with
time. This is in contrast with the power-law decline in tidal
disruptions found here. Although the tidal disruption rate
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Finding recoiled BHs in the Milky Way 7

peaks early in the cluster evolution, most recoiled BHs are
ejected from their host galaxy in the early Universe. Taking
the time evolution of the clusters from equation (4), the tidal
disruption rate of stars in a cluster today is approximately

Ṅtd ≈ 10−9 yr−1

(

M•

104 M⊙

)13/8 (
t

1010 yr

)−3/2

(6)

for each cluster with M• . 2 × 106 M⊙ and t & tr. In
Paper I, we found that there are perhaps tens of clusters
with M• & 105 M⊙, and hundreds with M• & 104 M⊙

around each Milky Way like galaxy. Thus, per Milky Way
galaxy, the tidal disruption rate of stars by rogue BHs
is approximately 10−6 yr−1 (10−7 yr−1) for M• & 105 M⊙

(& 104 M⊙). This is somewhat lower than the estimated
tidal disruption rate of stars by BHs that reside in galax-
ies ∼ 10−5 − 10−6 yr−1. Upcoming optical surveys, such
as PTF7, Pan-STARRS8, and LSST9 are most sensitive to
flares from BHs M• ∼ 105 − 106 M⊙ (Strubbe & Quataert
2009), precisely the range of BHs we expect to have the
highest present day tidal disruption rates. These events can
be identified as off-nuclear flares, which have broad emis-
sion lines with a mean redshift comparable to their nearby
galaxies10. Tidal disruption flares from low mass recoiled
BHs may be a promising avenue for detecting these unique
systems.

2.2.3 Present State of Star Clusters

The purpose of these long-term N -body simulations is to
determine the present day distribution of stars around re-
coiled BHs, with the goal of optimizing the search strategies
for these clusters in § 4. In Figure 5, we plot the average
projected number of stars enclosed within a radius r from
the BH. In addition, we plot the results of our Fokker-Planck
simulations from § 3 and Paper I, rescaled in the final num-
ber of stars to match the N -body simulations. The stars
in the N -body simulations are distributed with the same
functional form and slope with α ≈ 2.15 near the half mass
radius, as we found in our initial simulations, despite the
total number of stars being 1/10 of that found in Paper I.
Regular relaxation, which was included in Paper I, appears
to determine the shape and expansion of the cluster, whereas
a combination of strong-encounters between stars and the
tidal disruption of stars from resonant relaxation,
neither of which were not included in our Fokker-
Planck simulations of Paper I, determine the final
number of stars in the cluster. We conclude from this
agreement that recoiled clusters of comparable mass stars
have power-law density profiles with α . 2.15.

We find only moderate evidence of mass-segregation in
these clusters, even though the stars spanned a factor of∼ 10
in mass, as shown in Figure 6. In our analysis of Model II,

7 http://www.astro.caltech.edu/ptf/
8 http://pan-starrs.ifa.hawaii.edu/
9 http://www.lsst.org/
10 Because the recoiling clusters are completely in the empty loss
cone regime, the typical pericenter distance of the tidally dis-

rupted star in a recoiled star cluster is always close to rtid. This
may result in a qualitatively different flare than associated with

a central black hole.

we binned the stars into shells around the BH, and found
that the average mass of stars in each shell decreased as a
shallow power-law of radius from 0.55M⊙ and 0.45M⊙. Be-
cause the massive stars are more luminous, this segregation
will steepen the light density profile in the cluster.

To check the robustness of our results on the
underlying assumptions of our simulations, we have
run additional simulations that i) start with a shal-
lower density profile, ii) include stellar evolution,
iii) include general relativistic effects to 2.5 post-
Newtonian order, iv) have a significantly smaller
loss-cone, or v) use a significantly different mass
function. In cases (i) – (iv) there was no discernible
effect on the stellar density distribution or final
number of stars in the simulations. In case (v),
where the average stellar mass was ten times larger,
the cluster dissolved in less than 1010 yr. This sim-
ulation started with 190 stars in orbit around the
black hole. At the end of the simulation, only two
bound stars remained.

3 FOKKER-PLANCK SIMULATIONS

We found in our direct N -body simulations that only ∼ 10%
of stars initially bound to a recoiled 104 M⊙ BHs remained
after 1010 yr. In contrast, our time-dependent Fokker-Planck
simulations in Paper I, had little mass loss. Nevertheless, the
N -body simulations and our results from Paper I agree on
the shape and slope of recoiled clusters. The N -body sim-
ulations show that strong encounters between stars as well
as an enhanced tidal disruption rate drive the evaporation
of the cluster on timescales much shorter than standard,
uncorrelated perturbative encounters (Henon 1969; Lin &
Tremaine 1980). Here we reintroduce the time-dependent
Fokker-Planck equation for stars around a central massive
object, as originally derived by Bahcall & Wolf (1976), with
the addition of two new sink terms in order to account
for mass loss caused by strong encounters and resonant
relaxation.

Following (Bahcall & Wolf 1976), we define the relax-
ation timescale of the initial cluster to be

tr =
3(2πσ2

⋆)
3/2

32π2G2m2
⋆n⋆ ln Λ

, (7)

where σ⋆ is the stellar velocity dispersion after the galaxies
merge, m⋆ is the average stellar mass, n⋆ is the number
density of stars at ri = GM•/σ

2
⋆, and lnΛ ≈ ln(M•/M⋆) is

the standard Coulomb logarithm. In the dimensionless units
of time, τ = t/tr, and energy, x = −E/(m⋆σ

2
⋆), the time-

dependent Fokker-Planck equation reduces to

∂g(x, τ)

∂τ
= −x5/2 ∂

∂x
Q(x)−Rlc(x)−Rrr(x)−Rss(x), (8)

where g(x, τ) = [(2πσ2
⋆)

3/2n−1
⋆ ]f(E) is the dimensionless

distribution function of the stars, Q(x) is the rate at which
stars flow to higher energies, Rlc(x) is the tidal disruption
rate of stars that diffuse into the BH loss cone via regular
two-body relaxation (Bahcall & Wolf 1977), Rrr(x) is
the tidal disruption rate of stars that fall into the BH
loss cone via resonant relaxation (Rauch & Tremaine
1996; Rauch & Ingalls 1998; Hopman & Alexander
2006a), and Rss(x) the rate that stars are ejected from the
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8 O’Leary & Loeb

Figure 5. The total projected mass in stars within a distance r of the BH. Plotted is the cumulative mass projected within a circle of
radius r for Model I (single mass: long-dashed red line) & Model II (flat IMF: solid black line) with M• = 104 M⊙. Fig. (a) shows the
result of the fiducial N -body simulation with the appropriate sized tidal disruption radius (see § 2.1). Overlayed, in the green dashed

line, is the result of our Fokker-Planck simulations from Paper I chosen to have the same half-mass radius as our N -body simulations and
renormalized to have the same total number of stars. The overall shape of the curve matches the N-body results remarkably
well until there is, on average, less than one star enclosed. Also plotted (blue dotted line) is the result from § 3

including large angle scattering and resonant relaxation. The line was chosen at the time where the total mass of stars
in the Fokker-Planck simulation matched the N-body simulation of Model II. The Fokker-Planck simulations with
resonant relaxation tend to clear out too many stars within the half-light radius, whereas the simulations without
resonant relaxation have too many stars and must be rescaled in size in order to match the distribution of stars in

the simulations. Fig. (b) shows a similar simulation of Model II with a much smaller tidal disruption radius rtid = 3Rs = 6GM•/c2.
The green dashed line in Fig. (b) doesn’t include two-body scattering. The smaller rtid results in a density profile with power-law slope
α = 2.15 throughout the entire cluster, where as, for a more realistic tidal disruption radius the density profile flattens within the
half-mass radius of the cluster.

cluster owing to strong encounters. Bahcall & Wolf (1976,
1977) found that

Q(x) =

∫ xtd

−∞

dy[max(x, y)]−3/2

(

g(x)
∂g(y)

∂y
− g(y)

∂g(x)

∂x

)

. (9)

and

Rlc(x) ≈
g(x)2

ln[Jc(x)/JLC]
, (10)

where Jc(x)/JLC ≈ (x/xtd)
1/2, and where xtd ≈

(M•/m⋆)
−1/3ri/R⋆ is the maximum specific energy of a star

before tidal disruption.
In systems with nearly Keplerian orbits, torques be-

tween the stars add coherently, and can efficiently ran-
domize the angular momentum of the stars on a timescale
much shorter than the regular (non-coherent) relaxation
time. This process, known as resonant relaxation (Rauch
& Tremaine 1996), can lead to an enhanced rate of tidal
disruptions as the stars enter the loss cone (Rauch & Ingalls
1998). We follow Hopman & Alexander (2006a), who de-
rived an approximate expression for the resonant relaxation
driven tidal disruption rate for Eq. 8. They found that the
rate is approximately

Rrr(x) ≈ χ
g(x)

τrr(x)
, (11)

where χ is an unknown efficiency factor of order unity, and
τrr(x) is the resonant relaxation timescale. In our numeri-
cal simulations we do not include general relativistic preces-
sion11, so the only form of precession that limits the resonant
relaxation is caused by the enclosed mass of the system. In
these circumstances Hopman & Alexander (2006a) found
τrr ≈ .0278x3/2.

Although strong encounters are less important in cal-
culating the flow of stars to higher and lower energies, in
eq. (9), a single strong encounter can eject a star from the
cluster. Henon (1969) first calculated the escape rate of stars
from isolated star clusters for an arbitrary distribution of
stars. Lin & Tremaine (1980) extended this work to stars
around a central point mass. They found that strong en-
counters are important in calculating the flux of stars out
of the cusp, as confirmed in our N -body experiments in § 2.
By changing the limits of integration in equation (35) of Lin
& Tremaine (1980), we derive the rate that equal-mass stars

11 In § 2.2.3, we have included general relativistic precession and
found no quantitative different in the tidal disruption rate or the
distribution of stars in the cluster
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Finding recoiled BHs in the Milky Way 9

Figure 6. Mass segregation in recoiling clusters. Plotted is the
average mass of stars as a function of radius when t = 6× 108 yr.
The average mass (with 100 stars per bin) slowly declines as a

shallow power law out to the half-mass radius rh ≈ 0.2 pc. The
lowest mass stars are preferentially scattered onto eccentric orbits

with larger separation.

are ejected from the cluster as a function of energy,

Rss(x) =
3

2
x5/2 g(x)

(x− x0)2

∫

g(y)dy

(y + x− x0)3/2
1

lnΛ
, (12)

where x0 . 0 is the negative specific energy required to be
ejected. Note that in our dimensionless units, equation (12)
is suppressed by the Coulomb logarithm (lnΛ)−1, compared
to the rest of equation (8).

We determine the time evolution of the cluster by nu-
merically solving equation (8) with the boundary conditions
g(x < 0) = exp(x) and g(x > xtd) = 0 until τ = 2,
at which point we set g(x < 0) = 0. We remove stars
from the kick by scaling the distribution function of stars
as g(x) → g(x)z2.5/(1 + z2.5), where z = 2x/(vk/σ⋆)

2.
This yields an asymptotic density profile with n ∝ r−4

for r & rk, as expected immediately after the kick (Ko-
mossa & Merritt 2008). We use a variety of x0 = 0.01,
0.1, 0.25, 0.5, 1.0, 2.0, 10.0, to explore the importance of
x0 in matching the number of stars in § 2, as well as
χ = 0.1, 0.5, 0.7, 0.8, 0.9, 1.0, 2.0 to explore the uncer-
tainty in the efficiency of resonant relaxation. In all
of our calculations we set lnΛ = 10.

3.1 Fokker-Planck Results

In our calculations, we find reasonable agreement
between the N-body simulations and the numerical
solution of the Fokker-Planck equation only when
we include a new sink term, Rrr, which accounts for
the tidal disruption of stars owing to resonant relax-
ation. We find the best agreement when we set the
resonant relaxation parameter χ = 0.8. When we ex-

clude resonant relaxation, as we did in Paper I, we
only get the proper functional form of the N-body
solution to the density profile, but not the proper
number of stars. Without resonant relaxation, the
Fokker-Planck simulation expand too rapidly at the
half-mass radius. Indeed, when comparing the radii that
enclose the inner 1, 10, or 100 stars of the Fokker-Planck sim-
ulations to the N -body simulations we find complete agree-
ment that the cluster expands self-similarly as r ∝ t2/3 (see
the discussion in § 2.2.1). At the radius that encloses half
of the cluster mass, we find the Fokker-Planck simulations
still scale as t2/3, and the N -body simulations scales as t1/3.
The t1/3 scaling is in agreement with our expectation that
the relaxation timescale should be approximately the age of
the cluster (Paper I).

Resonant relaxation reconciles the two funda-
mental differences between our previous Fokker-
Planck simulations and our current N-body simula-
tions. Resonant relaxation destroys stars at a faster
rate than regular relaxation, reducing the number of
stars in the cluster. As a consequence of the depleted
stars, the outer cluster expands more slowly, match-
ing the N-body simulations. In Figure 5, we plot
the enclosed mass profile of the clusters from our
N-body simulations, along with our Fokker-Planck
simulations including and excluding resonant relax-
ation (with χ = 0.8). Resonant relaxation reduces
the number of stars in the simulation to the correct
value. Although including resonant relaxation in the
Fokker-Planck simulations does give a similar mass
density profile, there are too few stars in the in-
ner most region. Unfortunately, the Fokker-Planck
simulations are one-dimensional, and can not take
into account the anisotropy that must develop as
the cluster expands, or the preference to deplete ec-
centric orbits near the black hole.

The anisotropy of the cluster is often measured by the
parameter

β ≡ 1−
σ2
t

σ2
r

(13)

where σr is the radial velocity dispersion of the system, and
σt is the one-dimensional tangential velocity dispersion, such
that σ2

⋆ = σ2
r + 2σ2

t . For an isotropic cluster, σr = σt and
β = 0. A cluster with stars on only radial orbits will have
β = 1. We plot the anisotropy of the N -body simulations as
a function of radius in Figure 7. The cluster shows a large
degree of anisotropy at nearly all radii. From the innermost
stars outward, the stars in the cluster change from prefer-
entially tangential orbits (β < 0) to radial orbits (β ≈ 1).
Indeed, the development of anisotropy is a natural conse-
quence of the conservation of angular momentum in a Kep-
lerian potential. As the cluster expands, the outermost stars
must be on more radial orbits. The innermost stars, on the
other hand, have their eccentric orbits depleted when they
are tidally disrupted by the BH. In the our one dimensional
Fokker-Planck simulations, we assume isotropy, which effec-
tively relaxes the angular momentum of the stellar popula-
tion on a timescale much shorter than the actual relaxation
timescale. This causes the cluster to disrupt stars very close
to the black hole, that would otherwise remain on circular
orbits. This scenario can be tested with an appropriate two
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10 O’Leary & Loeb

Figure 7. Radial anisotropy of the expanding cluster. Plotted
is the anisotropy parameter, β ≡ 1 − σ2

t /σ
2
r as a function of

radius for Model II when t = 6 × 108 yr. The cluster shows a

large degree of anisotropy at nearly all radii. From the innermost
stars outward, the stars in the cluster move from preferentially
tangential orbits (β < 0) to radial orbits (β ≈ 1). In our Fokker-

Planck simulations we assume isotropy, i.e., β = 0, at all radii at
all times.

dimensional Fokker-Planck code (e.g., Cohn 1980; Takahashi
1995; Drukier et al. 1999), extended to include the effects
of resonant relaxation. Despite the anisotropy of the clus-
ter, the density profile predicted by the Fokker-Planck sim-
ulations matches the N -body simulations remarkably well,
except in the innermost region of the cusp.

The N -body simulations of § 2 are computationally
challenging given the long timescale of the calculation and
can not be easily extended to larger star clusters. Solving
the Fokker-Planck equations, however, does not depend on
Ncl. Rather, it is calculated on a fixed grid in energy space,
and takes only a short computational time to complete. We
therefore use the Fokker-Planck code to compute the evolu-
tion of more massive recoiled star clusters around M• = 105,
106, and 107 M⊙, all with kick velocity scaled to their re-
spective velocity dispersion, vk = 5.6σ⋆, and normalized
by the M• − σ⋆ relation. We set the free parameters
χ = 0.8 and x0 = 0.1, which give comparable time
evolution to the N-body simulations in § 2. In Fig-
ure 8, we plot the number of stars as a function of time
for these recoiled clusters. We find that the evolution of star
clusters around black holes withM• & 106 M⊙, lose less than
60% of their mass over 1010 yr. For the largest black holes
with M• & 107 M⊙, the clusters lose negligible mass over
the age of the universe. We can therefore expect that the
most massive clusters represent the conditions of the stellar
cusp when they were recoiled from their parent galaxy.

We find that the total number of stars at the end of
the simulations is only weakly dependent on the value we
choose for x0. Indeed, over two orders of magnitude in x0,

Figure 8. The fate of stars surrounding recoiled BHs. The num-
ber of stars in the cluster bound to the BH is plotted as a func-
tion of time for BHs with M• = 107 M⊙ to 104 M⊙ from top

to bottom. The evaporation of the clusters was calculated
with the Fokker-Planck simulations including the tidal
disruption of stars from resonant and regular relaxation
(χ = 0.8), as well as the loss of stars from strong encoun-
ters (x0 = 0.1). For M• & 106 M⊙, the cluster loses no more
than ≈ 60% of its original mass.

the final number of stars in the cluster changed by only
10−20%. This is because for most of the range of x0 values,
the corresponding velocity for stars ejected with energy x0,
was less than mean ejection velocity as seen in Figure 2. In
the limit x0 → ∞, equation (12) goes to zero, and we recover
the results of our simulations from Paper I. Unfortunately,
we can not use these simulations to calibrate x0 for BHs in
galactic nuclei, where there is a reservoir of stars outside of
ri. When x0 ≈ 0, equation (12) is not accurate because it
does not account for the flux of stars to lower energy states
from outside of the cusp or the return of stars that are still
bound to the cusp of stars (Lin & Tremaine 1980).

The evolution of the star clusters is sensitive to
the value of χ. For sufficiently small, χ . 0.1, clusters
of stars around 104 M⊙ BHs only lose ≈ 60% of their
mass over 1010 yr. Likewise, for χ & 5, the cluster loses
mass so rapidly, that it has . 1 star after 4 × 109 yr.
Such a scenario may represent a cluster with high
concentration of stellar mass black holes.

4 PHOTOMETRIC PROPERTIES OF OLD
CLUSTERS

SDSS DR7 (Abazajian et al. 2009) has ∼ 3.6 × 108 unique
photometric objects that we would like to sort through in
order to find ∼ 100 candidate recoiled star clusters. Our goal
is to develop the most general photometric model possible
for recoiled star clusters in SDSS, while eliminating false
positives as efficiently as possible. Generally, we expect the
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Finding recoiled BHs in the Milky Way 11

clusters to contain as few as ∼ 20 stars for the smallest BHs
M• = 104 M⊙, up to ∼ 104 stars for the most massive BH
in the halo M• = 5 × 105 M⊙. These clusters should have
a power-law density profile with α ≈ 2.15, but certainly
1.75 < α < 2.25, which corresponds to a cusp of stars which
flows away from the BH. Since the Milky Way has not had
a recent major merger, we expect the clusters to be old.
In this section, we develop such a model, focusing on the
photometric properties of a stochastic cluster of old stars
with a power-law density profile. Their spectra should indi-
cate a large σ⋆ for clusters around the most massive BHs,
and large mass-to-light ratio at redshift z = 0, but we focus
on photometric identification of candidates for spectroscopic
follow-up.

4.1 Cluster Models

We generate model star clusters by randomly selecting stars
from a Kroupa initial mass function of stars (Kroupa & Wei-
dner 2003) using two main modes of star formation. For
Model A, we assume that the stars formed continuously in
time with a constant star formation rate until the BH was
ejected, ∼ 5 × 109 yr. This is consistent with the estimated
star formation history of the MW galactic center (Alexan-
der & Sternberg 1999; Genzel et al. 2003). We contrast this
with Model B, where the stars formed simultaneously with
the BH merger, as galaxy mergers are often associated star-
bursts. In all instances we assume that the time between the
merger of the galaxy and the merger of the BHs is negligible.

The precise photometric properties of the stars depends
on their metallicity and age. We consider three different
metallicity histories of stars: (I) solar metallicity (Z = 0.02),
(II) sub-solar metallicity (Z = 2× 10−4), and (III) the esti-
mated time evolution of metallicity of the galactic center.

In all of our calculations we use the online single star
population synthesis code BaSTI

12 (Pietrinferni et al. 2004;
Cordier et al. 2007), and convert all observables to the SDSS
color system using Table 1 of Jester et al. (2005). The typical
uncertainty in the colors from our conversion scheme is much
smaller than the intrinsic variation in the colors of the star
clusters.

In Figure 9, we plot a color-color diagram of our Model
Clusters with Ncl = 100, and teject ∼ 1010 yr after ejec-
tion. Overall, the loci of star clusters follow the distribution
of galactic stars identified by SDSS, however, they visually
appear to be well separated from SDSS galaxies. In the fig-
ure, it is clear that many clusters contain a star on the giant
branch. Because such stars are more luminous than all of the
other stars in the cluster, these systems are likely indistin-
guishable from the population of late-type stars in the halo.
Clusters with Ncl = 10− 1000 follow a similar distribution.

Because the star clusters can not be distinguished from
individual stars based on their colors alone, a successful pho-
tometric search needs to exclude point sources, and use a
magnitude system which doesn’t depend on the exact light
profile of the object. We therefore focus on the photometric
properties of resolved objects, using the Petrosian magni-
tude system (Blanton et al. 2001; Yasuda et al. 2001). This

12 Available at http://astro.ensc-rennes.fr/basti/synth_

pop/index.html

Table 1. Best fit SDSS light profiles to find mock clusters. Be-

cause the cumulative light profiles are not corrected for seeing, we
search for candidates by focusing on a range of properties that de-
pend on the observed Petrosian Radius, rp. See § 4.1 for detailed

definitions of the parameters.

rp Γ4 Γ5 Γ6 Γ7

(arcsec)

2.0–3.013 0.78 – 0.88 ... ... ...
2.0–3.214 & .85 & 0.05 ... ...
3.0–4.5 ... 0.25 – 0.5 0.10–0.25 ...
4.0–6.0 ... 0.35 – 0.70 0.28 – 0.45 0.1 – 0.2

system is is defined by the Petrosian ratio,

RP (r) ≡

∫ 1.25r

0.8r
dr′2πr′I(r′)/[π(1.252 − 0.82)r2]
∫ r

0
dr′2πr′I(r′)/(πr2)

, (14)

where I(r) is azimuthally averaged surface brightness profile
in any particular band. The Petrosian radius, rp, is defined
by Rp(rp) = 0.2 in the SDSS system. The total Petrosian
flux (and magnitude) from the object is calculated as the
total integrated light within 2rp, where rp is determined in
the r-band alone.

We use the azimuthally averaged cumulative light
profile to distinguish candidates from galaxies and point
sources. The SDSS catalog has the mean flux of light in
annuli around the peak of the photometric object. We add
the light in these annuli to recreate the total amount of
light within radii ri ≈ 0.22, 0.67, 1.03, 1.75, 2.97, 4.59, 7.36
arcsec. We use these bins to calculate the logarithmic
slope of the cumulative light profile, Γi ≡ d ln Ii/d ln r ≈

ln(Ii+1/Ii)/ ln (ri+1/ri), For a completely resolved star clus-
ter with power-law density profile n ∝ r−α, we expect the
light profile to approach 3− α ≈ 0.85 where α ≈ 2.15. Out-
side the half-light radius of the cluster, however, the slope of
the profile changes significantly from a single power-law. To
model this we use the distribution of stars from our N -body
simulations and generate mock light density profiles with a
variety of PSFs and angular sizes. To facilitate the search in
§ 5, we have split our mock profiles into bins of varying rp.
The best fit parameters are detailed in Table 1.

5 PHOTOMETRIC SEARCH

SDSS has imaged approximately one quarter of the sky to
a limiting magnitude r ≈ 22.2. As the largest database of
photometric and spectroscopic objects in the sky , it presents
a prime opportunity to search for recoiled clusters. In § 4.1
we developed a simple photometric model of recoiled star
clusters in Milky Way like galaxies. Here we use this model
to systematically search for photometric candidates in SDSS
DR7.

We use the SDSS DR7 CasJobs
15 photometry database

to select objects by size, shape, color, and azimuthally av-
eraged light profile. We limit our search to resolved objects
with a Petrosian radius rp > 2′′ in the g band.

Our color selection criteria is illustrated by the trape-
zoids in Figure 9. We use the Petrosian magnitude system

15 Located at http://casjobs.sdss.org/CasJobs/
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12 O’Leary & Loeb

Figure 9. Color-color diagrams of model recoiled clusters. Plotted is the distribution of recoiled star clusters with Ncl = 100 at
teject ∼ 1010 yr with Z = .02 (Black Crosses), Z = .0004 (Red Crosses), and Varying Z (see text; Blue Crosses), along with a random
selection of galaxies (magenta points) and stars (green points) from SDSS. The trapezoids correspond to our color-color selection (see

§ 5).

color corrected for extinction (Schlegel, Finkbeiner & Davis
1998). Our criteria focus on an old population of metal-poor
to solar metallicity stars but excludes clusters with a star
on the red giant branch. We choose our candidate clusters
out of the parallelogram defined by 1.25 < u − g < 1.75,
0.5(u − g) − .225 < g − r < 0.5(u − g) − 0.075. Addition-
ally, we require that the shape of the candidates be circular
by selecting for objects with ratio of semi-minor to semi-
minor axes greater than 0.7. These criteria select ∼ 70, 000
resolved photometric objects as candidate recoiled clusters,
with photometric properties of stars. We limit our sample
further by using the azimuthally averaged cumulative light
profile (Γi) of the remaining objects as detailed in Table 1.
In addition we search for simpler model clusters with Γ4 and
Γ5 between 0.6 and 0.9.

Using these criteria, we are left with ∼ 1, 000 candi-
dates, which we visually inspect to remove obvious interlop-
ers. These tend to be individual or binary stars in crowded
fields, face-on disk galaxies, and cuspy elliptical galaxies.
We are left with ∼ 100 objects, which we list in Tables 2
& 3. Thumbnails of a selection of candidates is shown in
Figure 10. The number of candidates that remain is likely a
reflection of our ability to visually inspect the candidates. It
is impossible to visually inspect the 70, 000 objects selected
through color alone, and we had to use some model depen-
dent choices for the light profile to obtain a more reasonable
number of photometric candidates (∼ 1, 000).

6 SPECTROSCOPIC SEARCH

The selection of spectroscopic objects in SDSS DR7 is not
ideal for serendipitously locating the star cluster around a
recoiled BH. Indeed, many of the main science objectives for

spectroscopic targets specifically exclude objects with the
photometric properties similar to the recoiled clusters we
search for. Nevertheless, resolved recoiled clusters would be
identified in SDSS photometrically as a galaxy because of its
extended size, but unlike galaxies, would have an extremely
low redshift, z . 10−3.

We use SDSS spectroscopy to select candidate clus-
ters by their identified redshift with −0.002 < z < 0.002,
corresponding to radial velocities with magnitude less than
600 km s−1. To exclude single and unresolved binary stars,
we restrict our results to objects with Petrosian radii, rp >
3.0 ′′ in both the r and g bands. We then remove blended ob-
jects, which are mostly galaxies with foreground stars. This
results in approximately 270 objects identified by SDSS pho-
tometry as galaxies, and 18 identified as stars. We have vi-
sually inspected all 290 objects. All of the remaining objects
in the sample have two main features: (i) a star like object
on a diffuse source or (ii) featureless and diffuse source. In
case (i), the spectral identification of the source is always
stellar. The majority of objects that fall into category (ii)
were incorrectly identified with z = 0. The remaining cases
were not spherical in shape or clumpy, and therefore not
classified as recoiled cluster candidates.

7 LITERATURE SEARCH

We have also explored the literature for galaxies that were
spectroscopically identified as stars owing to their low red-
shift. Sargent (1970) took low-dispersion spectra of 141 ob-
jects selected from Zwicky’s catalogs of compact galaxies
(available in Zwicky & Zwicky 1971), and found that 14 ob-
jects had near-zero redshifts and identified the galaxies as
having a foreground star. We have reanalyzed newer digital
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Figure 10. Thumbnails of a diverse selection of candidates. From left to right and top to bottom these are SDSS
J114607.52+135233.1, SDSS J130154.22-031323.3, SDSS J052222.65-013302.9, SDSS J084034.69+162319.5, SDSS J084822.47+355630.4,
SDSS J093815.82+231234.8, SDSS J121414.73+161215.4, and SDSS J123544.93+193016.9. The scale is the same for all images, with the
photometric object located at the center.

images and spectra of these objects. In some cases the fore-
ground star has moved and new spectra show the objects
are extragalactic. However, most were visually identified as
galaxies because of their disk like shape. Only one object,
IV Zw 26, could not be excluded as a candidate owing to
insufficient resolution in any survey.

8 SUMMARY AND CONCLUSIONS

We have followed the long term evolution of star clusters
around recoiled BHs using long term N -body simulations,
with a one-to-one correspondence between the stars and N -
body particles. We have found that forM• = 104 M⊙,∼ 40%
of the stars are ejected from the star cluster, and ∼ 40%
of the stars are tidally disrupted by the central BH within
1010 yr. We have scaled these results to BHs with masses
M• . 2 × 106 M⊙, finding that Ncl = 840(M•/10

5 M⊙)
13/8

stars remain around the BH today for a typical recoiled
BH. For more massive BHs, the cluster should eject or dis-
rupt few stars over ∼ 1010 yr. Although a single BH has a
small tidal disruption rate, we have found that the total rate
for all clusters in Milky Way like galaxies is ∼ 10−7 yr−1,
which is only a factor of ∼ 10 lower than expected in the
galactic center.We have extended our one-dimensional
Fokker-Planck treatment in Paper I to include res-
onant relaxation and large-angle scattering to ac-
count for the dominate mass loss mechanisms of
the cluster. Using this treatment, we were able to
get satisfactory agreement between the N-body sim-
ulations and Fokker-Planck simulations. Some dis-
crepancy remained, which we attribute to the large
amount of anisotropy in realistic clusters.

We used our N -body simulations to generate random
realizations of star clusters today, which guided our search
for star clusters around recoiled BHs in SDSS. In our pho-

tometric search through SDSS data, we assumed that the
star clusters have a power-law density profile and that they
have colors comparable to an old population of stars. We
used these criteria to find ∼ 70, 000 candidates of which
only ∼ 1000 had a light density profile out to 4′′ consistent
with a recoiled star cluster with power-law density slope.
We visually inspected all candidates, and found that many
were the bulges of nearby face-on spirals. The remaining 100
candidates were faint, and difficult to distinguish from dis-
tant galaxies. Follow-up spectroscopy is necessary to identify
their nature. If any of them are a star cluster around a re-
coiled BH, it would show unusually high velocity dispersion
σ⋆ at z ≈ 0, with a spectrum of a population of old stars.

We also searched the spectroscopic database of SDSS
for resolved objects with a low redshift/blueshift consistent
with the Local Group. The vast majority of these candidates
were galaxies with bright foreground stars. We found no
candidates that appeared to be a recoiled cluster.

The criteria we used to search for candidate clusters
required the cluster to have a well defined power-law den-
sity profile, as found in our numerical simulations. Because
we did not include compact remnants in our simulations
(which would have the correct density profile but not light
profile) we can not be confident that we properly included
all star clusters in our search. Unfortunately, most research
on stellar remnants around supermassive black holes fo-
cus on mass segregation around relaxed stellar cusps (Fre-
itag, Amaro-Seoane & Kalogera 2006; Hopman & Alexander
2006b; O’Leary, Kocsis & Loeb 2009; Alexander & Hopman
2009; Keshet, Hopman & Alexander 2009). These simula-
tions find that compact remnants play an important role in
the dynamics for radii r . rk. We have not included these
objects because it is difficult to quantify how many com-
pact remnants would be in this region immediately before
the binary merges. Indeed, the segregation of the compact
remnants can only occur after the low-mass stars populate
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Table 2. Candidate recoil clusters based on the selection criteria

described in § 5 and Tab. 1

Object g r rp

SDSS J003550.53-100543.0 19.57 19.10 3.07

SDSS J005248.49+155331.6 19.81 18.99 3.24

SDSS J011023.54-090416.1 19.70 19.31 3.19

SDSS J015724.63-085424.1 18.48 18.19 3.30

SDSS J020705.55+003738.9 19.81 19.29 3.49

SDSS J021500.57+001217.8 20.40 19.77 3.57

SDSS J030347.44-081909.5 20.12 19.01 3.21

SDSS J064325.65+281559.3 20.51 19.80 2.79

SDSS J073940.32+221323.1 18.67 18.39 4.49

SDSS J074214.49+251424.0 20.14 19.35 2.94

SDSS J074827.56+261836.6 19.74 19.04 3.09

SDSS J075550.27+343959.3 20.51 19.89 3.09

SDSS J080005.57+514410.6 20.68 19.57 3.44

SDSS J081020.09+315018.6 20.72 19.93 2.75

SDSS J081546.83+155039.8 20.32 19.88 2.71

SDSS J082724.19+340543.7 19.77 19.23 3.43

SDSS J083158.70+332233.5 19.35 18.88 3.01

SDSS J083701.15+230023.2 20.54 20.20 2.56

SDSS J084034.69+162319.5 20.13 19.62 3.06
SDSS J084246.26+361533.7 19.66 19.09 4.00
SDSS J084505.56+451932.0 20.59 20.11 3.35
SDSS J084647.94+001638.4 21.07 20.44 3.43
SDSS J092335.02+472837.1 19.64 19.01 2.99
SDSS J092607.17+021555.4 20.39 19.60 3.28
SDSS J092757.48+054543.7 20.03 19.22 3.12
SDSS J092921.02+545144.3 19.31 18.97 3.25
SDSS J093815.82+231234.8 20.10 19.19 3.06
SDSS J094801.22+324203.4 19.72 19.13 3.02
SDSS J101754.64+803827.9 20.02 19.14 3.59
SDSS J104012.45+183600.5 19.71 19.17 3.12
SDSS J104012.45+645611.0 20.20 19.45 3.13
SDSS J104700.20+451459.4 19.95 19.24 3.31
SDSS J105840.27-012816.9 20.53 19.71 2.99
SDSS J105846.93+170430.1 19.07 18.37 3.19
SDSS J105907.75-031445.6 19.60 18.67 3.48
SDSS J111223.68+072718.0 19.23 18.70 3.87
SDSS J111327.28+081717.1 18.88 18.55 4.30
SDSS J112142.07+182723.3 19.53 19.12 3.23
SDSS J112711.19+113814.8 20.14 19.24 3.54
SDSS J113013.20+643939.4 18.99 18.72 3.76
SDSS J113137.97+172219.0 19.49 18.66 3.49
SDSS J113308.62+002113.2 20.84 19.71 2.82
SDSS J114546.59+081137.7 19.67 19.08 3.87
SDSS J115108.59+030704.8 19.63 19.33 2.92
SDSS J115253.98+171842.6 20.00 19.27 2.92
SDSS J115526.94+355320.0 19.95 19.55 3.01
SDSS J115543.73+333639.9 18.83 18.39 4.43
SDSS J115957.30+020749.5 19.72 19.14 3.27
SDSS J120446.11+270030.1 19.94 19.42 3.06
SDSS J120533.94+022352.9 20.13 19.28 3.11

this region (Merritt 2009). In future work we hope to include
these compact remnants, and extend our Fokker-Planck code
to include large angle scattering between stars of multiple
masses (O’Leary, Kocsis & Loeb 2009).

An alternative search strategy, which we did not explore
here, is to cross-check less stringent criteria with alternative
databases, such as the ROSAT x-ray survey.

Table 2. continued.

Object g r rp

SDSS J120648.21+450646.7 21.06 20.08 3.16

SDSS J121700.34+353542.1 20.38 19.74 3.22

SDSS J123544.93+193016.9 20.55 19.87 2.84

SDSS J123614.93+013708.7 20.27 19.81 3.03

SDSS J125011.62-021800.1 21.16 20.51 2.65

SDSS J125734.92+253916.5 20.49 19.92 2.78

SDSS J125915.28+070342.6 20.01 19.52 3.30

SDSS J125958.63-002508.4 19.75 18.71 3.26

SDSS J130109.32+462607.1 21.28 20.15 2.76

SDSS J130153.77+504842.2 20.38 19.64 2.85

SDSS J130154.22-031323.3 19.67 18.97 3.32

SDSS J132249.56+084115.6 19.85 19.22 3.27

SDSS J132610.71+535511.7 20.79 20.26 3.24

SDSS J133057.40+184836.7 20.00 19.28 2.66

SDSS J133212.59+353159.7 19.56 18.94 2.93
SDSS J134127.13+081550.6 21.56 20.52 2.06

SDSS J134459.96+030428.6 19.76 19.55 3.13

SDSS J134737.53+203427.0 20.19 19.78 2.94

SDSS J134852.16+245743.4 19.72 19.16 3.77

SDSS J135040.46+103538.7 20.75 19.95 2.84

SDSS J135241.53+121430.8 20.51 19.66 3.06

SDSS J135544.47-065531.4 20.29 19.54 2.90

SDSS J140113.91+060627.7 20.13 19.71 2.85

SDSS J141327.28+282847.1 19.58 18.79 3.05

SDSS J141418.26+454312.8 18.94 18.57 4.37

SDSS J142920.56+261616.5 20.13 19.39 2.80

SDSS J142935.43+073722.6 19.59 18.87 3.18

SDSS J145030.79+380441.6 19.62 19.06 2.91

SDSS J145145.53+103402.0 19.94 19.32 3.45

SDSS J145150.02+352929.8 20.03 19.53 2.78

SDSS J145345.50+080808.7 20.37 19.58 3.03

SDSS J150113.32+051304.1 19.92 19.37 2.91

SDSS J150459.72+081819.7 20.50 19.89 2.78

SDSS J151934.33+134102.8 20.51 20.12 3.33

SDSS J152006.92+085031.0 20.45 19.68 2.78

SDSS J152249.28+473700.1 20.31 19.82 3.12

SDSS J152646.00+210607.1 21.21 19.97 3.33

SDSS J153145.65+150057.6 20.12 19.54 3.11

SDSS J155333.07+423146.0 20.25 19.53 3.07

SDSS J155442.55+055111.1 19.09 18.60 3.23
SDSS J160630.13+351046.2 19.48 19.06 3.04

SDSS J160702.48+110353.3 20.27 19.78 3.89

SDSS J162536.57+563531.9 20.99 19.96 3.53

SDSS J163339.07+132635.6 20.23 19.56 3.46

SDSS J163659.29+235816.2 20.05 19.01 2.93

SDSS J170525.39+235241.5 19.17 18.37 4.08

SDSS J172243.89+080447.8 20.44 19.97 2.91

SDSS J210803.13-001350.4 20.35 19.52 3.15

SDSS J213035.54-070545.7 20.76 20.05 3.19

SDSS J215424.98+002023.4 20.01 19.14 3.23

SDSS J233106.11+075810.9 20.89 19.99 2.97
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Table 3. Candidate recoil clusters based on an asymptotic cu-

mulative light profile with slope between 0.6 and 0.9.

Object g r rp

SDSS J084822.47+355630.4 18.69 18.21 3.60

SDSS J045505.26+244156.3 21.06 19.43 2.94

SDSS J114607.52+135233.1 20.57 19.81 2.53

SDSS J090546.22+225309.9 20.50 19.77 2.88

SDSS J102509.23+215445.8 20.22 18.86 3.84

SDSS J211006.40+002759.2 19.18 18.60 3.32

SDSS J100310.59+282625.0 18.86 18.05 3.45

SDSS J121414.73+161215.4 19.15 18.22 3.63

SDSS J051413.98+164920.2 18.95 17.89 3.41

SDSS J161526.75+110822.9 21.62 20.84 2.37

SDSS J052222.65-013302.9 20.16 19.17 2.77

SDSS J135018.11+092421.7 18.89 17.90 3.79

SDSS J003209.31+071259.2 18.94 17.80 5.22

SDSS J144115.60+185843.8 20.12 19.26 3.46

SDSS J160236.41+322318.7 19.88 18.75 2.87

SDSS J163339.50+440918.3 20.02 18.98 2.57

SDSS J132908.57+232303.8 19.62 18.46 3.09

SDSS J144856.99+153744.6 20.39 19.54 2.81
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