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Abstract

We examine the effects of cosmic strings on structure formation and on the ionization history

of the universe. While Gaussian perturbations from inflation are known to provide the dominant

contribution to the large scale structure of the universe, density perturbations due to strings are

highly non-Gaussian and can produce nonlinear structures at very early times. This could lead to

early star formation and reionization of the universe. We improve on earlier study of these effects

by accounting for high loop velocities and for the filamentary shape of the resulting halos. With

reasonable assumptions about the astrophysical parameters, the WMAP data impose a bound

Gµ < 10−7 (??) on the energy scale of cosmic strings. We also comment on other possible

observational implications of early structure formation by strings.
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I. INTRODUCTION

Cosmic strings are linear topological defects that could be formed at a phase transition

in the early universe [1]. They are predicted in a wide class of particle physics models. Some

superstring-inspired models suggest that fundamental strings may also have astronomical

dimensions and play the role of cosmic strings [2–4].

Strings can be detected through a variety of observational effects. Oscillating loops of

string emit gravitational waves – both bursts and a stochastic background. They can also

be sources of ultrahigh-energy cosmic rays. Long strings can act as gravitational lenses [5–7]

and can produce characteristic signatures in the CMB: discontinuous temperature jumps [8]

along the strings and a B-mode polarization pattern due to rotational perturbations induced

by strings. Formation and evolution of cosmic strings and their possible observational effects

have been extensively discussed in the literature; for a review see, e.g., [9, 10].

The strength of gravitational interactions of strings is characterized by the dimensionless

number Gµ, where µ is the mass per unit length of string and G is Newton’s constant. Early

work on cosmic strings was largely motivated by the idea that oscillating string loops and

wakes formed by rapidly moving long strings could serve as seeds for structure formation.

This scenario, which required Gµ ∼ 10−6, has been conclusively ruled out by CMB observa-

tions. Present CMB bounds constrain Gµ to be less than about 2× 10−7 [11–13]. A much

stronger bound, Gµ < 4× 10−9, has recently been claimed in [14] based on the millisecond

pulsar observations of the gravitational wave background. (We shall argue in Sec. VI that

this bound could be significantly relaxed, in the light of the latest string simulations.)

The CMB and other data are consistent with a Gaussian spectrum of density perturba-

tions predicted by the theory of inflation; the contribution of strings, if any, can account for

no more than 10% of the spectral power. This does not mean, however, that strings always

played a subdominant role in structure formation. Density perturbations due to strings are

highly non-Gaussian and can produce nonlinear structures at very early times. This could

result in early star formation and reionization of the universe [15–19].

This and other effects of strings depend on the details of string evolution, which until

recently remained rather uncertain. Early string simulations [20, 21] suggested that loops

produced by the string network are very small and short-lived. Hence, it was assumed in

Refs. [15–18] that the main effect on structure formation was due to long string wakes.
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However, more recent, high-resolution simulations have demonstrated that a substantial

fraction of the network energy goes into large loops, having length of about 5% of the

horizon [22–24]. This pattern is established only after a long transient period dominated

by very small loops; apparently it is this period that was observed in previous simulations.

Ref. [19] studied structure formation and reionization in this new string evolution scenario

and found that the resulting bound on Gµ was competitive with the CMB and gravitational

radiation bounds.

In the present paper we shall reexamine early structure formation by cosmic strings and

its effect on the ionization history of the universe. An important fact not taken into account

in Ref. [19] is that string loops are typically produced with high velocities: v ∼ 0.3 for the

largest loops and even higher for smaller ones [24]. Accretion on such rapidly moving loops

is rather different from spherical accretion on a stationary point mass which was assumed

in [19]. We also make use of the latest string simulations which yielded more reliable results

for the size and velocity distributions of cosmic string loops.

The paper is organized as follows. In the next section we review the evolution of cosmic

strings and introduce the relevant loop distributions. In Sec. III we study accretion of matter

onto a moving loop, first treating the loop as a point mass and then accounting for its finite

size (which turns out to be significant). We find that loop seeded halos have the form of

highly elongated filaments which then fragment into smaller “beads”. The resulting halo

spectrum is calculated in Sec. IV. The reionization history and observational constraints on

the string parameter Gµ are discussed in Sec. V. Our results are summarized and discussed

in Sec. VI. In the Appendix we discuss the “rocket effect” – the self-acceleration of string

loops due to asymmetric emission of gravitational waves – and show that it is not significant

for structure formation.

II. COSMIC STRING EVOLUTION

A. Long strings

An evolving network of cosmic strings consists of two components: long strings and sub-

horizon closed loops. The long string component evolves in a scaling regime in which the

typical distance between the strings and all other linear measures of the network remain at
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a constant fraction of the horizon size dh(t). This dynamic is maintained by the production

of loops via reconnection at string intersections, and subsequent evaporation of loops by

gravitational radiation. On super-horizon length scales, long strings have the form of random

walks, while on smaller scales they exhibit a wide spectrum of wiggles and kinks, which

are remnants of the initial wiggliness of the network and of earlier reconnections. These

small-scale features are gradually smoothed out by expansion and by gravitational radiation

back-reaction.

The total energy density in the long (“infinite”) strings can be expressed as

ρ∞ = µ/(γdh)2 (1)

where µ is the mass per unit length of string (equal to the string tension), the radiation

era horizon distance is dh = 2t, γ is a constant coefficient, and the quantity γdh defines

the average inter-string distance. The idea that the network properties are determined by

the horizon distance alone is known as the scaling hypothesis [1, 25]; for the long string

component it has been confirmed through numerical simulations [20, 21, 26].

The coefficient γ in (1) depends on the reconnection probability prec of intersecting strings.

For ”ordinary” particle physics strings, prec = 1 and simulations give γ ≈ 0.15 in the ra-

diation era. For cosmic superstrings, the reconnection probability is expected to be much

smaller, 0.1 >∼ prec
>∼ 10−3 [27], resulting in a smaller value of γ and a denser string net-

work. Simple arguments suggest that γ ∝ p
1/2
rec [28, 29], but simulations indicate a weaker

dependence [30]. Here we shall focus on ordinary strings with prec = 1.

B. Loop distribution: a simple model

The length distribution of loops produced by the network (the so-called loop production

function) obtained in recent simulations has a double-peak structure, indicating two different

populations of loops. First, there is a scaling loop distribution, with a typical loop length

of about 5% of the horizon and a wide tail extending to smaller scales. And then there is a

non-scaling distribution of very small loops with sizes comparable to the initial scale of the

network at formation. The hight of the non-scaling peak is observed to decrease somewhat

in the course of the simulation, with the extra power contributing to the short-length tail

of the scaling peak. One might expect that the non-scaling peak will eventually disappear
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[22–24], but Ref. [31] argued that it could also survive at late times. In the latter case,

the asymptotic double-peak loop distribution will still scale, but the typical loop size in the

short-length peak will be set by the gravitational radiation damping.

At present one can only guess which of the two options will be supported by future

simulations, but fortunately this is not important for the purposes of the present paper.

The non-scaling loops are highly relativistic, with the dominant part of their energy being

kinetic energy. This energy redshifts with the expansion and has very little effect on the

gravitational clustering. The same applies to loops in the tail of the scaling distribution.

Only loops near the peak of the scaling distribution, which are formed with mildly relativistic

velocities, are relevant for structure formation. Moreover, halos formed by small loops at the

tail of the distribution have small virial velocities. This inhibits cooling and star formation

in such halos.

The string loops of interest to us here will be those which formed during the radiation

era but have not yet decayed at teq. The energy density of loops that were chopped off the

network in one Hubble time is comparable to the energy density of long strings. However,

the loop energy redshifts like matter, while the long string energy redshifts like radiation.

So, if loops are long and live much longer than a Hubble time, they dominate the energy of

the network and play dominant role in structure formation.

Using energy conservation, the power flowing into loops per unit physical volume during

the radiation era must obey

ρ̇→loops =
1− 〈v2

∞〉
t

ρ∞ =
Pµ
d3
h

, (2)

where 〈v2
∞〉 is the mean square velocity of the long strings. Simulations give 〈v2

∞〉 ≈ 0.4 and

P := µ−1d3
hρ̇→loops ≈ 50 in this epoch. Neglecting (for the time being) the center-of-mass

loop velocity, the comoving number density distribution of loops n(t,m) should satisfy

1

a3(t)

d

dt

(∫ ∞
0

n(t,m)mdm

)
= ρ̇→loops. (3)

Since we are only interested in loops near the peak of scaling distribution, it is a reasonable

approximation to assume that all relevant loops are formed having length equal to a fixed

fraction of the horizon size. Hence, we set the loop mass at formation to be

m = αµdh (4)
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with α ≈ 0.05. The distribution of such loops obeys

1

a3(t)

d

dt
[n(t,m)m] = δ(m− 2µαt)

δPµ
8t3

, (5)

and so

n(t,m) =
a3( m

2µα
)

m

δPµ

8
(

m
2µα

)3

2µα
=

√
αµ3/2δP

4
√

2m5/2t
3/2
eq

for m ≤ 2µαt (6)

and n(t,m) = 0 otherwise. Here, δP ≈ 5 reflects the fact that the effective power flowing

into these large loops is about ten percent of the total power P ≈ 50, as suggested by

simulations [24]. We have also used a(t) = (t/teq)
1/2, normalizing to a(teq) = 1.

The apparent divergence of loop mass density mn(t,m)dm at small m is absent if we

include the decay of loops due to gravitational radiation, ṁ ≈ −ΓGµ2, with Γ ≈ 50. This

correction is only significant for very small loops.

C. Incorporating loop speed

We now perform a more precise calculation which includes finite velocity effects, which are

significant. We characterize the number density of loops by their mass m and speed v. All

quantities will be expressed per comoving volume from here onward. The comoving number

density of cosmic string loops with mass between m and m+ dm and with speed between v

and v + dv is given by n(t,m, v)dv dm. The loop production function is g(t,m, v)dt dv dm,

the number of such loops per comoving volume produced by the cosmic string network

between time t and t + dt. The redshifting of loop speeds is given by v̇ ≈ −Hv where

H = ȧ/a = 1/(2t) is the Hubble rate, and we are assuming non-relativistic v, which is

justified for the subset of loops which contribute to star formation.

We can integrate the production rate to find the number density per comoving volume,

n(t,m, v) =

∫ t

0

dt′g(t′,m′, v′)
∂m′

∂m

∂v′

∂v
. (7)

This states that the number of loops of mass m and speed v at time t is the integral of the

production rate of loops over all prior times t′ ≤ t, where the relevant production is of loops

which will eventually have mass m and speed v. Hence the first step is to write down the
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solution to the flow, namely

m′(t′;m, t) ≈ m+ ΓGµ2(t− t′), (8)

v′(t′; v, t) ≈ v
a(t)

a(t′)
. (9)

These tell us e.g., what speed v′ a loop must have at production time t′ in order for it to

have a speed v at time t. The Jacobian factor ∂v′

∂v
captures the changing size of the volume

element dv. The same applies to m as well. We are neglecting the effects on v of anisotropy

in the loop gravitational radiation, also known as the “rocket effect”, which causes the loops

to accelerate as they evaporate. This will be justified in the Appendix.

The energy of a loop is given by m/
√

1− v2, and so using Eq. (2),

Pµ
d3

h(t)
=

∫ ∞
0

∫ 1

0

m√
1− v2

g(t,m, v)

a3(t)
dv dm. (10)

Since all quantities of interest are linear in g, we can maintain generality while treating g as

a delta-function source, i.e.,

g(t,m, v) =
a3(t)δPµ

√
1− v2

d3
h(t)m

δ (m− αµdh(t)) δ (v − αv) , (11)

where in this form we can imagine taking the values suggested by simulations, namely

α = 0.05, αv = 0.3, δP = 5. (12)

The results using the actual loop production function, including small relativistic loops, can

always be obtained by integrating any expression involving δP with the replacement δP →

xf(x, p)dx dp, where x = α/
√

1− v2, p = v/
√

1− v2, and f(x, p) is the loop-production

function following the definitions in [24]. Because of this substitution possibility, we will refer

to Eq. (11) as the delta-function form of g, and Eq. (12) as the delta-function approximation

for g.

Combining the equations of this section, the comoving loop number density is

n(t,m, v) =

∫ t

0

dt′g(t′,m′, v′)
∂m′

∂m

∂v′

∂v
, (13)

=

∫ t

0

dt′
a3(t′)δPµ
d3

h(t′)m′
δ (m′ − αµdh(t′)) δ (v′ − αv)

a(t)

a(t′)
,

≈

√
αδPµ3/2δ

(
v −

√
m

2αµt
αv

)
4
√

2 (m+ ΓGµ2t)5/2 t
3/2
eq (t)

.
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III. ACCRETION ONTO A COSMIC STRING LOOP

As we explained in Section II.B, the dominant loop energy density will always be from

loops produced in the radiation era. This is because the integrated power flowing into

loops scales like 1/t2, whereas the subsequent dilution only scales like 1/a3. Thus in the

radiation-era (when a ∼ t1/2), loops pile up from early times. This growth is cut off by

loop evaporation to gravitational radiation, which is a slow process for low tension strings.

So structure formation is mainly sensitive to radiation-era loops which have survived to the

time of matter domination.

Of particular interest are halos which become large enough for stars to form [32]. This

requires the baryons to collapse to sufficient density, which can only happen due to dissipa-

tion. When the neutral hydrogen atoms have large enough virial velocity, collisions will have

sufficient center-of-mass energy to excite their electrons and radiate. The energy escaping

with the radiated photons ensures that the hydrogen loses gravitational potential energy.

This cooling moves the hydrogen toward the center of the halo. The critical virial temper-

ature for efficient cooling T∗ can be as low as 200K in the case of molecular hydrogen, but

we will neglect this mechanism since the molecule is too fragile to survive UV light from

the very first stars. Instead, we will consider two possible values, 104K and 103K, below

which star formation does not occur1. Because the virial temperature is proportional to

a positive power of the halo mass, which is proportional to the seed (loop) mass, there is

a minimum loop size which can lead to star formation. We can conclude that early stars

can only come from loops produced late enough to have this size. We will denote the mini-

mum scale factor after which star-forming loops can be produced by a∗i , which we will now

estimate. Throughout, we define the scale factor at matter-radiation equality to be unity,

a(teq) = 1.

1 Because of the relative motion between the baryon and dark matter fluid, smaller halos will not lead to

significant star formation [33, 34].
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A. Spherical accretion

For a spherical halo of mass M formed at redshift z, the virial temperature is given by

[32]

Tvir = 104

(
M

108M�

)2/3(
1 + z

10

)
K, (14)

and so the minimal mass of a halo that has Tvir ≥ 104 K at z is

M∗(z) = 3× 109M�(1 + z)−3/2

(
T∗

104K

)3/2

. (15)

Because the vast majority of loops are moving rather quickly, the more appropriate bound

on production time considers elongated filaments, rather than spherical halos. Elongated

halo filaments have a virial temperature [? ] dependent entirely on their linear mass density

µfil, which we will calculate below. These filaments will later collapse into beads, which

subsequently merge into larger beads, but this process does not significantly affect the virial

temperature.

B. Accretion onto a moving point mass

If we assume the loop is non-relativistic and has velocity veq > 0 in the +y-direction at

teq, its subsequent velocity is given by

v(a) =
veq

a
, (16)

where a = (t/teq)2/3. The trajectory in comoving coordinates is then

y(a) = 3veqteq

(
1− 1√

a

)
. (17)

Using our delta-function loop production function, the loop velocity at equality is

veq ≈ αvai, (18)

where ai < 1 is the scale factor at loop production, relative to aeq = 1.

Given a point mass in the above trajectory, we can find the cylindrically symmetric turn-

around surface by considering a particle at comoving initial location (x0, y0, 0). (Here we

closely follow the analysis in [35].) Let us label the moment of closest approach of the mass
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by the scale factor a0, i.e., the loop trajectory y(a) obeys y(a0) = y0. Using the impulse

approximation, the velocity kick on the particle due to the passing point mass is

vx ∼
Gm

(a0x0)2
∆t0 ∼

Gm

a0x0v(a0)
, (19)

where

∆t0 ∼
a0x0

v(a0)
. (20)

This particle will then be displaced after one subsequent Hubble time H−1
0 ∼ teqa

3/2
0 by an

amount

a0∆x0 ∼ vxteqa
3/2
0 , (21)

and so the corresponding density perturbation is

δ0 ∼
∆x0

x0

∼ Gmteq

x2
0v(a0)a

1/2
0

, (22)

which grows to be

δ(a) ∼ δ0
a

a0

∼ Gmteqa

x2
0v(a0)a

3/2
0

. (23)

The turnaround surface is given by δ(a) ∼ 1, so the profile of the collapsed region from a

passing point mass with arbitrary velocity v(a0) is

x2
ta(a0, a) ∼ Gmteqa

v(a0)a
3/2
0

, (24)

where the time dependence is in a = (t/teq)2/3, and the y-dependence is in a0(y0) via Eq. (17)

with y(a0) = y0. Notice a ≥ a0, since the turnaround surface extends only behind the loop’s

y-position. The halo mass is then given by the total mass inside the turnaround surface

M(t) = ρa3(t)

∫ y(a(t))

0

πx2
ta(a0(y0), a(t))dy0 = ρa3(t)

∫ t

teq

πx2
ta

dy(a(t0))

dt0
dt0 (25)

= ρa3(t)

∫ t

teq

πx2
tav(a0)

a0

dt0 =
1

6πGt2eq

∫ t

teq

πGmteqa(t)

a
5/2
0

dt0 =
ma(t)

6

∫ t

teq

t
2/3
eq

t
5/3
0

dt0

=
m

4
[a(t)− 1] .

Interestingly, the loop trajectory does not affect the halo mass at this level of approximation.

A more accurate analysis by Bertschinger [35], using the Zel‘dovich approximation, gives

M(t) = 3
5
ma(t). We will simply use

M(t) ∼ ma(t). (26)
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We can solve for the shape and size of the turnaround surface by combining Eqs. (16, 17

& 24). This gives

xta(y, a) = teq

√
2αGµaia

αv

(
1− y

3αvaiteq

)
for 0 ≤ y ≤ 3αvaiteq

(
1− 1√

a

)
. (27)

Notice that these halos are very elongated: the eccentricity after a Hubble time is given

by

y

xta

∣∣∣∣
a∼2

≈ α
3/2
v a

1/2
i√

αGµ
∼ 103. (28)

Here we have assumed ai =
√
ti/teq ∼ 0.1, Gµ ∼ 10−8, and used the delta-function approxi-

mation αv ∼ 0.3 and α ∼ 0.05. We will now refer to these elongated structures as filaments.

Halos will form from linear instabilities of the filaments.

In this discussion we disregarded the so-called rocket effect – the self-acceleration of the

loop due to asymmetric emission of gravitational waves. This has negligible effect on the

loop’s velocity, except toward the end of the loop’s life, when the loop can be accelerated to

a mildly relativistic speed, v <∼ 0.1. The loop trajectory with the rocket effect included is

discussed in the Appendix, where it is shown that the rocket acceleration has little influence

on halo formation.

C. Accretion onto a finitely extended loop

Since the loop has a finite radius R = βm/µ, with β ∼ 0.1, only the matter outside this

distance will feel a momentum kick from the passing loop2. We should then only consider

the portion of the turnaround surface where

xta > R/a0, (29)

or using Eqs. (16 & 24),

αv
ai
a0

<
Gµaa

1/2
0

2β2αa2
i

, (30)

2 The rapidly oscillating string will leave wakes of overdensity behind the fast segments, i.e., even inside the

loop radius R. We neglect this effect, since only a small fraction ∼ 8πGµ/v of the material is affected,

and the wakes are probably too thin to allow star formation.
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where again, a0 should be thought of as a measure of the y-coordinate given by y0 = y(a0)

above. This equation is a restriction on the validity of the turnaround surface Eq. (27); in

places where the turnaround surface is smaller than the loop radius, it does not exist and

so should be thought of as ending rather than closing.

For the faster loops (whose turnaround surfaces have smaller physical radius c.f. Eq. (24)),

the loop radius will entirely cloak the turnaround surface at the onset of matter domination.

Because the turnaround surface radius grows relative to the comoving loop radius, there

will eventually be a time when the surface emerges. The surface will emerge as a hoop

surrounding the loop, which grows into a cylinder. The front of the cylinder will move

forward with the loop, and continue to grow in diameter with expansion. The back of the

cylinder will extend back to the location where the turnaround surface is smaller than the

comoving loop radius. Eventually the back of the cylinder will reach y = 0, i.e., the location

of the loop at the onset of matter domination.

We can now talk of three distinct phases of loop-seeded filaments in the matter era. The

early type are those which are not accreting, because no part of the turnaround surface has

emerged from behind the loop radius. The late type are filaments whose entire turnaround

surface is larger than the loop radius. Because the point-mass approximation holds in this

case, the total filament mass is given by Eq. (26). We will call these “normal growth” fila-

ments. The intermediate type of filament are those whose turnaround surfaces are growing

both in the positive y-direction with the loop motion, as well as in the negative y-direction

as more and more of the turnaround surface emerges from beneath the loop radius. We will

call these “accelerated growth” filaments, since they are catching up from having zero mass

to eventually have normal mass.

We can find when the turnaround surface first emerges from behind the loop radius R by

setting a0 = a in Eq. (30) to find

a > amin =

(
2β2ααva

3
i

Gµ

)2/5

. (31)

The turnaround surface stops its accelerated growth when Eq.(30) is satisfied all the way

back to y0 = 0, i.e. a0 = 1, and so the normal-growth regime for the filament takes over

after

a > amax =

(
2β2ααva

3
i

Gµ

)
= a

5/2
min. (32)
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The turnaround surfaces for a = 2, 3...40 are shown in Fig. 1.

a = 2

a = 40

0.0000 0.00002 0.00004 0.00006 0.00008 0.0001
x

0.02

0.04

0.06

0.08

0.10

0.12

0.14

y

Turnaround surfaces and loop radius
ai = 0.1

FIG. 1: Time-lapse illustration of comoving turnaround surfaces (blue) for a loop of tension Gµ =

10−8. The comoving loop extension is shown in red. Notice the aspect ratio is reduced by a factor

of 1000:1, and units are teq. We can read off amin ≈ 4, amax ≈ 30 from the figure. We use ai = 0.1

and the delta-function approximation parameters of Eq. (12) to determine the mass and speed of

the loop. We have included the rocket effect for completeness (but see Appendix).

Given these turnaround surfaces, the total filament mass can be shown to be

Mfil(t) = ρeq

∫ y(t)

ymin
0 (t)

x(t)2
tady0 ∼


0 a < amin

m( a
5/3

a
5/3
min

− 1) amin < a < amax

m(a− 1) amax < a

(33)

Note that since a
5/3
min ∝ a2

i ∝ m, the filament mass in the accelerated growth regime is the

same for all loops, independently of their mass m.
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With the loop trajectory from Eq. (17), the physical length of the filament is given by

Lfil ∼


0 a < amin

3αvaiteq( a
4/3

a
5/6
min

−
√
a) amin < a < amax

3αvaiteq(a−
√
a) amax < a

(34)

where amax = a
5/2
min. This results in a linear mass density

µfil ∼
Mfil

Lfil

∼ 2αµai
3αv

. (35)

The corresponding virial temperature is found in [40] to be Tvir ≈ 1
2
mpGµfil, where the

proton mass mp = 1.1× 1013 K. Hence

Tvir ∼
Gmp

√
mαµ

3
√

2αvt
1/2
eq

(36)

∼ 104aiµ−8

( α

0.05

)(0.3

αv

)
K. (37)

Thus star formation occurs only for loops formed after

a∗i ∼
1

µ−8

(
0.05

α

)( αv
0.3

)( T∗
104K

)
. (38)

Thus if T∗ = 104K and the string tension Gµ = 10−8 and below, star formation can only be

attributed to loops in the low-velocity tail of the loop production function, which is highly

suppressed.

If we restrict our attention to the ionization history of the universe, which is sensitive

only to the total fraction of baryons in stars, we can neglect the subsequent dynamics of

the filaments, which will fragment into beads which subsequently merge. This process will

not significantly increase the virial temperature, since the filament is already in (2D) virial

equilibrium, and the collapse into beads preserves the total energy.

D. Longitudinal filament collapse (or lack thereof)

Although we will find a linear instability of filaments toward collapse into bead-like halos,

we can rule out the merging of the entire filament into a single large halo for all but the

slowest loops. Here we consider the longitudinal collapse mode of the entire filament.
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To show such a filament will not collapse, we can disregard the finite size of the loop,

since accounting for the finite size can only further delay collapse. Then within a Hubble

time of teq the filament mass is roughly the mass of the loop,

Mfil ∼ αµti. (39)

The length of the filament at this time is Lfil ∼ veqteq, and it grows with the scale factor as

Lfil ∼ veqteqa, (40)

where the loop velocity at teq is veq ∼ αvai. The average mass per unit length is

µfil ∼
Mfil

Lfil

∼ αµai
αv

. (41)

Let us first disregard the collapse along the filament axis. Then, at t > teq, both the mass

of the filament and its length grow like (t/teq)2/3, so µfil remains constant.

Now let us estimate the time scale of the longitudinal collapse. The characteristic longi-

tudinal velocity that parts of the filament develop in a Hubble time t due to the filament’s

self-gravity is

v ∼ (Gµfil/Lfil)t. (42)

The collapse sets in when this becomes comparable to the Hubble velocity, vH ∼ L/t. This

gives the following estimate for the redshift of the collapse:

(1 + z) ∼ αGµα−3
v (teq/ti)

1/2(1 + zeq). (43)

With α ∼ 0.05, αv ∼ 0.3, Gµ <∼ 10−7 and ti/teq
>∼ 10−4, we get 1 + z < 1, i.e., no collapse.

This means that the filaments from cosmic string loops remain elongated by a large factor.

E. Fragmentation of filaments into beads

As the filaments grow in mass and thickness from radial infall of dark matter (and baryons

after recombination), the longitudinal expansion maintains their linear mass density at a

constant (in time) value µfil(y) = ρeqx
2
ta(y, a)/a. This overdense cylinder will be unstable to

collapse into beads on scales longer than the Jeans length. The fastest growing instability

was found in [36] to have a comoving wavelength λJ ∼ 4πxvir, where the virial radius of
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a cylindrically symmetric self gravitating gas is xvir = xta/
√
e ≈ xta, and so the comoving

length of the typical bead is comparable to the transverse dimension of the cylinder,

∆y ∼ 4xta. (44)

Longer wavelength instabilities represent merging of such beads, and occur on scales up to

an order of magnitude longer. Since we characterize the beads by the size of the longest

unstable mode, the length of the bead after merging is

Lbead ≈ 10a∆y ≈ 20πteq

√
a3aiαGµ

αv
≈ 4× 10−5

√
a3aiµ−8 Mpc. (45)

Because these are linear instabilities of high density regions, they grow quickly [? ]. The

number of beads is then

νbeads =
Lfil

Lbead

. (46)

In accelerated growth filaments, the bead mass is

M =
Mfil

νbeads

≈ 30α7/6β−2/3√aiMeq

(
aGµ

αv

)11/6

, (47)

where Meq = teq/G = 3.6× 1017M� is (roughly) the mass contained in a sphere of a horizon

diameter at teq.

The mass of each halo from normal-growth filaments can likewise be estimated to be

M =
Mfil

νbeads

≈ 36Meq

(
Gµαaia

αv

)3/2

. (48)

By requiring Tvir ≥ T∗, we can set the lower bound on the bead mass at time a(t) to be

M∗ ≈ 50a11/6teq

√
T∗
mp

(
α2Gµ4

α4
vβ

2

)1/3

(49)

for beads in accelerated growth filaments and

M∗ ≈ 200Meqa
3/2

(
T∗
mp

)3/2

(50)

for beads in normal growth filaments.
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IV. HALO SPECTRUM

We are interested in comparing models with cosmic strings of tension Gµ = 10−8µ−8 with

the standard structure formation scenario. The halo spectrum of the standard scenario is

well approximated by the Sheth-Tormen mass function [39]. The ΛCDM cosmology we use

assumes the values of WMAP + BAO +H0 [41] which for our purposes is just zeq = 3232

and teq = 1.73×10−2Mpc. Because we are interested in early star formation, we will assume

the growth function D(z) scales simply as D(z) ∝ (1 + z)−1.

We can calculate the spectrum of halos using the continuity equation. As we only consider

radiation-era loops, there is no source term, since every loop already exists by a = aeq = 1,

and subsequently is associated with one filament, which in turn is associated with some

number νbeads of halos.

The spectrum of halos N(M,a) at any redshift z = zeq+1

a
− 1 is determined entirely from

the spectrum of loops n(a,m, v) at a = aeq via

N(a,M) =

∫
νbeads(a,m, veq)n(aeq,m, veq)

∂m

∂M
dveq, (51)

where

νbeads(a,m, veq) =


0.08v

7/6
eq

(
Meq

m

)5/6 (
Gµ
β

)2/3

a−1/6 amin < a < amax

0.08
(
Meqv3

eq

ma

)1/2

amax < a,

(52)

n(aeq,m, veq) =

δPµ3/2
√
α δ

(
veq − αv

√
m

2αµteq

)
2(2teq)3/2 (m+ ΓGµ2teq)5/2

, (53)

and m(a;M) is given by combining Eqs. (47) or (48) with the substitution

ai =

(
m

2αµteq

)1/2

. (54)

The delta-function enables us to integrate Eq. (51), yielding veq = αv(m/2αµteq)1/2. We

can neglect the correction proportional to Γ, since loops affected are too small to seed halos

with Tvir ≥ T∗.

The Jacobian (∂m/∂M) can be found from the loop mass

m(M) =


3.0× 10−6 M4

M3
eq

Gµ
β

(
βα2

v

α(Gµ)2a2

)11/3

amin < a < amax

1.7× 10−2 α2
vM

αGµa2

(
M
Meq

)1/3

amax < a.

(55)
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Note that although m(M) is continuous at the transition between the accelerated and normal

growth regimes at a = amax, the derivative (∂m/∂M) is not, resulting in a discontinuity in

the halo spectrum (51).

We can write amin and amax from Eq. (32) without reference to ai by using Eq. (54),

amax =
β2αv√

2α(Gµ)5/2

(
m

Meq

)3/2

, (56)

amin = a2/5
max. (57)

We can also express amax in terms of the halo mass M by substituting the lower expression

in (55) with a = amax into (56) and then solving for amax. This gives

amax =
0.2αv
Gµ

(
βM

αMeq

)1/2

=
0.014

µ−8

(
M

M�

)1/2

. (58)

The halo spectrum is then given by

N(a,M) =


Nacc(a,M) a < amax

Nnorm(a,M) a > amax,

(59)

where

Nacc(a,M) = 1.7× 108αvβδP
G3M4

(
Meq

M

)4 [
α

α2
vβ

(Gµa)2

]19/3

, (60)

Nnorm(a,M) =
1.8αδP
αvG3M4

(
M

Meq

)4/3

(Gµa)2. (61)

Numerically, we find

MNacc(a,M)Mpc3
0 = 3.5× 1024αvβδP

(
αµ2
−8a

2

βα2
v

)19/3(
M

M�

)−7

, (62)

MNnorm(a,M)Mpc3
0 = 2× 108δP α

αv
a2µ2

−8

(
M

M�

)−5/3

, (63)

where the unit Mpc0 = Mpc/(1 + zeq) is the comoving length which is a megaparsec today.

We plot these distributions in Figs. 2 and 3 for two different values of Gµ.

In the delta-function approximation for g, the largest contribution to the number density

of halos is from the smallest loops (since their number density is larger). This is cut off when

the resulting halos are too small to form stars. As we consider larger halos, we consider larger

loops still in the normal growth regime. This is cut off when the loops are moving too fast
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FIG. 2: Number and mass densities of halos per logarithmic mass bin. Solid lines indicate halos

with Tvir > 104K, and dotted lines extend this to 103K. The Sheth-Tormen mass function is used

for comparison (thin lines). The delta-function approximation for g is used with α = 0.05, αv = 0.3,

and δP = 5.

to be in the normal growth regime. Even larger loops are responsible for accelerated growth

halos. The discontinuity in the graphs at the transition to this regime is caused by the

discontinuity in the Jacobian factor (∂m/∂M). The sharp decline of the halo distribution

in the accelerated growth regime reflects the steep M−7 dependence in Eq. (62).

From the figures, there is a clear enhancement of early star formation provided Gµ >∼ 10−7

if T∗ = 104 K, and even for Gµ >∼ 10−7.5 if T∗ = 103 K. This enhancement occurs for redshifts

z >∼ 20. Using our delta-function approximation for g, there is no early star formation for

Gµ ≤ 10−8
(

T∗
104K

)
, although more precisely, the low momentum tail of g will produce some

early stars.

V. BARYON COLLAPSE FRACTION

The fraction of baryons which collapse into stars is roughly equal to the fraction of matter

in star-forming halos, i.e., those of sufficient virial temperature for efficient atomic hydrogen

cooling. Because the process of filament collapse does not significantly affect the virial
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FIG. 3: Number density (left) and mass density (right) in halos with Tvir > 104K (solid) and

Tvir > 103K (dotted) for higher tension strings.

temperature of the gas, we can neglect this process and simply count the fraction of matter

in filaments of sufficient mass to form stars, i.e., those of mass Mfil ≥ M∗
fil. The collapse

fraction is

Fcol =
1

ρm

∫ ∞
M∗fil

dMfilMfilNfil(Mfil), (64)

=
1

ρm

∫ ∞
m∗

Mfil(m)n(aeq,m, veq)dmdveq, (65)

≈ 6πGt2eq

∫ ∞
m∗

Mfil(m)
δPµ3/2α1/2

2(2teq)3/2m5/2
dm, (66)

≈
3πaGδP

√
teqαµ3

2
√

2

[∫ macc

min{m∗,macc}

dm

m3/2
+ macc

∫ ∞
max{m∗,macc}

dm

m5/2

]
, (67)

where m∗, the smallest loop mass responsible for star forming filaments, is determined from

Tvir ≥ T∗ and Eq. (36) to be

m∗ =
18MeqT

2
∗α

2
v

Gµαm2
p

. (68)

The smallest loop mass undergoing accelerated growth is given by

macc =

(
2αa2G5µ5

β4α2
v

)1/3

Meq. (69)
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The filament mass Mfil(m) from Eq. (33) then takes the form

Mfil(m) =

 am m ≤ macc

amacc m ≥ macc.
(70)

It will be convenient to define the time after which no star-forming filaments are in the

normal-growth regime by m∗ = macc, yielding

a∗ =
54T 3

∗α
4
vβ

2

G4µ4m3
pα

2
. (71)

Then we can write

Fcol =


3πGaδP

√
teqαµ3

√
2

macc

3m
3/2
∗

a < a∗

3πGaδP
√
teqαµ3

√
2

(
1
√
m∗
− 2

3
√
macc

)
a ≥ a∗.

(72)

It is here where we could examine the consequences of using the delta-function approxima-

tion for the loop production function g. Notice that the low velocity tail of the distribution

will rapidly diminish the value of a∗ ∝ α4
v. This means the second (a > a∗) part of Eq. (72)

is relevant, and we see that the loop velocity dependence is Fcol ∝ 1/αv, which is not steep

enough to warrant concern that the delta-function approximation for g is bad.

VI. IONIZATION HISTORY

The fraction of volume which has been re-ionized is given by the baryon collapse fraction

Fcol as

QHII(a) =

∫ a

0

Nion

0.76

dFcol

da′
eF (a′,a)da′, (73)

where the number of ionizing photons per baryon is Nion = 4000f?fesc ≈ 40 , where f? ≈ 1/10

is the efficiency and fesc ≈ 1/10 is the fraction which escape the halo. Here

F (a′, a) = −0.26
C

10

[(
1 + zeq

a′

)3/2

−
(

1 + zeq

a

)3/2
]
, (74)

with clumpiness C ∼ 1. We can evaluate QHII(z) in closed form using the incomplete Gamma

function, although the result is rather long, so we will not present it explicitly here. We plot
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FIG. 4: Fraction of matter in star-forming halos (left) and fraction of volume which has been re-

ionized (right) as a function of redshift. Dotted lines assume stars form in halos with Tvir > 103K.

We include a residual floor of 10−4 in QHII.

Fcol(z) and QHII(z) below using Nion = 40. [Avi, you suggested this value before, but

it seems to be ruled out by the graph in Fig.6. So, what value should we use?]

We can find the optical depth by integrating the reionization fraction out to redshift z

via

τ(z) =

∫ z

0

nH(z′)QHII(z
′)σT

dz′

(1 + z′)H(z′)
, (75)

where nH(z) is the physical number density of hydrogen, equal to 2.7× 10−7cm−3 today,

and σT = 6.652 × 10−25cm2 is the Thomson cross-section. The Hubble rate obeys H(z) =

H0

√
ΩΛ + Ωm(1 + z)3, with ΩΛ = 0.728 and Ωm = 1 − ΩΛ. The visibility function V (z) is

defined through the optical depth τ via,

V (z) = e−τ(z)H(z)
∂τ

∂z
. (76)

Using the WMAP measured value of the reionization optical depth τ = 0.087±0.014, we

can find the excluded region of Nion-Gµ parameter space, shown in Fig. 6 below.

VII. DISCUSSION

Loops of cosmic string can seed relatively massive halos at very early times. These halos

can become sites of early star formation and can influence the ionization history of the
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FIG. 5: Optical depth (left) and visibility function (right) for Sheth-Tormen plus cosmic strings.

Dotted lines assume star formation from halos with Tvir > 103K.
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reionization optical depth. The pure Sheth-Tormen scenario is equivalent to Gµ = 0. Dotted lines

assume star formation from halos with Tvir > 103K. Solid lines assume star formation from halos

with Tvir > 104K.
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universe. With reasonable assumptions about the physics of reionization, the existence of

strings is in conflict with the WMAP data, unless the string energy scale obeys the bound

[The following text needs to be updated; it refers to our earlier calculations.]

Gµ <∼ 3× 10−8. (77)

This bound is an order of magnitude stronger than the current bounds based on the

observation of CMB anisotropies [11–13]. As we mentioned in the Introduction, a stronger

bound, Gµ <∼ 4×10−9, was obtained from millisecond pulsar measurements in Ref. [14]. This

bound, however, does not account for the fact that a significant fraction of the string network

energy goes into the kinetic energy of loops, which is then redshifted. It also assumes that

nearly all loops develop cusps, while examination of loops produced in the recent simulations

suggests that cusps are rather rare [? ]. Accounting for these effects is likely to relax the

pulsar bound by an order of magnitude or so.

Acknowledgments

VIII. APPENDIX

A. The rocket effect

The gravitational radiation from a cosmic string loop is anisotropic in general. This

affects the momentum of the loop. Let the radiation be beamed in the minus y-direction.

The physical y-momentum p = mv/
√

1− v2 of the loop then obeys

dp

dt
= −Hp+ ΓPGµ

2, (78)

where3 ΓP ∼ 10.

If we assume the non-relativistic loop has velocity veq > 0 in the +y-direction at teq, its

subsequent velocity is given by

v(a) =
veq

a
+

3ΓPGµ
2teq(a3/2 − a−1)

5m
, (79)

3 This value was estimated for simple Kibble-Turok [42] loop solutions involving a few lowest harmonics.

Recent simulations have shown that loops chopped off the network tend to be rectangular [43], which can

suppress ΓP.
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where a = (t/teq)2/3. The trajectory in comoving coordinates is then

y(a) =
9ΓPGµ

2t2eq

20m

(
4√
a

+ a2 − 5

)
+ 3veqteq

(
1− 1√

a

)
, (80)

and so the matter-era velocity of the loop formed at ai in the radiation era is

v(a, ai) = αv
ai
a

+
(1 + 9a5/2 − 10a3

i )ΓPGµ

30aa2
iα

≈ αv
ai
a

+
3a3/2ΓPGµ

10a2
iα

. (81)

From this, we can calculate the turnaround surfaces, and find the average filament thick-

ness by

〈x2
ta〉 =

∫
x4

ta(y)dy∫
x2

ta(y)dy
, (82)

which determines the average bead mass found in Sec. III E. For filaments from loops

produced after ai ∼ 0.02µ−8, this leads to a correction factor of order 0.8 to the average

filament radius. The only loops whose filaments receive significant corrections from the

rocket effect are those whose number-densities are highly suppressed due to loop evaporation.

Loop evaporation becomes significant only for loops of mass below

mΓ = ΓGµ2teq. (83)

Since no star formation results from loops of mass less than m∗ given by Eq.(68), we can

neglect loop evaporation for

9T 2
∗α

2
v

25G3µ3αm2
p

≤ 1, (84)

i.e.,

µ−8
<∼ 80

(
T∗

104K

)2/3

>∼ 20. (85)

For this reason, we can neglect loop evaporation and the rocket effect entirely.
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