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We examine the electromagnetic (EM) and gravitational wave (GW) signatures of extreme mass
ratio inspirals (EMRIs), i. e. stellar-mass compact objects inspiraling into a supermassive black hole,
if embedded in a thin, radiation pressure dominated, accretion disk. Initially, the tidal effect of the
compact object clears a gap at large separations. We demonstrate that the gap refills during the
GW driven late stages of the inspiral, which leads to a sudden EM brightening of the source. We
further examine the following effects of the accretion disk on the GW waveform: angular momentum
exchange with the disk, the increase in either object’s mass due to accretion, and the disk’s self-
gravity. We compute GW waveforms both via an analytical Newtonian approximation and through
a numerical effective-one-body approach. We find that typically disk-induced migration is the
dominant perturbation on the EMRI, followed by the mass increase of the CO and hydrodynamic
drag. Depending on the presence of a gap, the perturbation of the GW phase is between 10 to 103

radians in a year, detectable with the future Laser Interferometer Space Antenna at high significance.
The Fourier transform of the disk-modified GW waveform is sensitive to disk parameters with a
frequency trend different from post-Newtonian vacuum terms. Observations of EMRIs will allow
new sensitive measurements of accretion disk physics.
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I. INTRODUCTION

The full exploitation of gravitational wave (GW) de-
tection will hinge on controlling all systematics associ-
ated with such events. One can classify such systemat-
ics into three major groups: instrumental, theoretical,
and astrophysical. Instrumental systematics are associ-
ated to possible issues related to the detector. For ex-
ample, the future Laser Interferometer Space Antenna
(LISA) [1–4] might suffer from instrumental glitches [5].
Such glitches, and other potential instrumental issues,
might lead to a foreground of noise artifacts that might
have to be either removed, or dealt with via data analysis
techniques.
Theoretical systematics are due to the possible mis-

modeling of waveform templates [6]. The extraction of
GWs from noisy data requires the construction of these
optimized filters, which represent our best guess model
for the GWs (solutions to the Einstein equations) gener-
ated by the system. Since approximation schemes (either
analytical or numerical) are employed to solve these equa-
tions, the templates used for data analysis are not exact
solutions and can introduce errors in parameter estima-
tion.
Astrophysical systematics are modifications in the

waveforms caused by the environment. For example,
when modeling GWs from black hole (BH) or neutron
star (NS) binary coalescences one usually assumes the
binary is isolated from external perturbers and ambient
electromagnetic (EM) or matter fields. However, the un-
resolved GW foreground of Galactic and extragalactic
white dwarfs (WDs) and extreme mass ratio inspirals in-
troduces additional astrophysical noise for LISA sources
(see Ref. [7] and references therein). Further, an addi-
tional nearby supermassive BH (SMBH) in the vicinity
of a merging binary can lead to detectable Doppler-shifts
in the GW signal [8].
Astrophysical systematics are expected to be negli-

gible for the final stages of the inspiral and merger of

two SMBHs, because the SMBH’s inertia greatly ex-
ceeds that of the environment. However, this is not the
case for extreme-mass ratio inspirals (EMRIs), where a
small compact object (CO) spirals into an SMBH [9].
In this case, the GW inspiral timescale and signal am-
plitude are decreased by the mass ratio, making these
systems more sensitive to astrophysical perturbations as
well as theoretical uncertainties. In fact, an enormous
effort is currently underway to compute first and second-
order mass-ratio “self-force” corrections to geodesic mo-
tion (see e.g. [10] for a recent review). These corrections
can introduce modifications of order of the mass ratio to
the binary’s binding energy or the GW flux, which lead
to detectable GW phase corrections of order 1 radian
or larger over a 1 year evolution [11]. EMRIs produce
millions of GW cycles in the LISA frequency band with
signal-to-noise ratios (SNRs) around 20 with a GW phas-
ing accuracy better than 1 radian and mass measurement
accuracy 10−3M⊙ for a typical source at 1Gpc observed
for a year.
In this paper we consider the most important effects

of radiatively-efficient, thin accretion disks on the EMRI
GWs: 1

(i) SMBH mass increase due to accretion;

(ii) CO mass increase due to accretion;

(iii) modification of the gravitational potential due to
the disk’s self-gravity (e. g. changing the angular
velocity of the orbit as a function of radius, and
inducing additional apsidal and nodal precession);

(iv) modification in the energy and angular momen-
tum dissipation rate (e.g. hydrodynamic drag from
winds, torques from spiral arms, and resonant in-
teractions analogous to planetary migrations);

We examine the conditions for the tidal gravity of the CO
to open a gap in radiation pressure supported accretion
disks, and its implications on the EM and GW signal.
We study whether LISA will have sufficient sensitivity to
resolve the presence and structure of an accretion disk.

A. Relevance of Accretion Disks to EMRIs

EMRIs are expected to form in dense galactic nuclei
of stars, WDs, NSs, and BHs in orbit around a central
SMBH. These dense nuclei are sometimes called galactic

cusps (see eg. [9]), because of their kinky density profile
at zero radius. Some of these galactic nuclei are coinci-
dentally active, meaning that gas is currently accreting

1 There are many other accretion disk effects that we neglect
here and that could introduce smaller waveform modifications to
EMRI waveforms, as we discuss in Sec. I B below.
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onto the central SMBH and produces bright EM radia-
tion. Accretion disk effects on EMRIs are most promi-
nent in AGN, where gas is actively feeding the central
SMBH.

Plausible arguments have been put forth both against
and in favor of the common existence of EMRIs in AGN
disks. EMRIs can only be detected at relatively low red-
shift (z . 0.5) [12], but only a small fraction of galaxies
within z < 2 are active and host a massive gaseous disk.
AGN activity may be triggered by the inflow of gas dur-
ing major galaxy mergers [13]. However, the SMBHs in
the centers of merging galaxies form a binary, which may
deplete the central cusp of stars [14], thereby reducing the
probability of EMRI events. On the other hand, AGN
activity may be fueled by the tidal disruption of stars in
dense central cusps, which have large EMRI rates [15].
Stars may be captured or may form in accretion disks
by fragmentation and/or coagulation of density enhance-
ments [16, 17]. The remnants of these stars would be
pushed inwards by the disk and could provide a reservoir
of EMRI events in AGNs.

Astrophysical evidence already exists for tightly bound
BH binaries with accretion disks. OJ287 is believed to be
an SMBH-SMBH binary, with component masses 108M⊙

and 1010M⊙, respectively, orbiting in an inclined accre-
tion disk, with mass 102M⊙ [18]. For this system, opti-
cal flashes are observed very regularly and periodically,
which are interpreted as the smaller object crossing the
accretion disk. For EMRIs with stellar mass COs, similar
EM flares will be much harder to detect.

Estimates on the expected EMRI rates are very uncer-
tain, around few tens to a few hundreds per year [12].
LISA is expected to be sensitive to EMRIs up to red-
shifts close to unity, although most events should be at
redshift much smaller than unity. A few percent among
these might be in AGN environments, where accretion
disk effects might be non-negligible. These sources, if ob-
served, may become the most interesting EMRI sources
for LISA to study astrophysics.

We study whether an EMRI would be capable of regu-
lating the accretion of the SMBH. If the secondary is suf-
ficiently massive, its tidal gravity would expell gas from
the inner regions, greatly decreasing the EM luminosity
of the disk. However, as the inspiral proceeds, and the
relative importance of tidal field changes compared to the
local radiation pressure in the disk, the disk might refill,
reigniting bright AGN activity.

The presence of an accretion disk in EMRIs leads to
different possibilities regarding future GW detections. If
there is a GW imprint, then their detection would inform
us about accretion disk physics. However, this would also
complicate the modeling of such waves, as the rather un-
certain accretion disk physics would play a role, introduc-
ing additional theoretical errors (see above) and possibly
making tests of GR with EMRIs very difficult. If there is
a negligible GW imprint, then vacuum waveforms would
be sufficient to model EMRI waveforms.

In the hypothetical scenario where GWs could inform

us about accretion disk physics, they could provide can-
didates for EM counterpart searches. Indeed, accretion
disks are very sensitive to the accretion rate parameter.
A LISA measurement of the accretion rate would imply
a plausible range of AGN luminosity. Then, by look-
ing at the LISA source location box (approximately 1◦

angular, 10−3 distance measurement accuracy [19]), EM
instruments could look for AGNs with the predicted lu-
minosity and redshift [20]. Since AGNs are relatively
sparsely distributed in the universe relative to the LISA
error volume, a search could cut down the number of
galaxy candidates to just one [21]. Alternatively, the EM
counterpart could be identified if strongly modulated by
the EMRI. If so, this would allow to use EMRI events
as standard sirens: measuring the distance using the EM
redshift and the GW luminosity, which would allow to in-
dependently test cosmological models [22–24]. Peculiar
velocities and weak lensing are expected to be the main
limitation to do cosmology with LISA, implying that a
large number of low redshift sources, such as the EMRIs
considered here, are necessary to significantly tighten co-
incident cosmological constraints [21].

B. Previous Explorations

Accretion disks are fascinating astrophysical objects
that have been studied in depth, although only recently
has there been some effort to discuss their effect on GWs.
To our knowledge, the first study of accretion disk effects
on GWs was by Giampieri [25]. He considered an equal-
mass binary, where each component is gaining mass due
to accretion, in turn leading to a modified radial inspiral
rate. He then argued that a measurement of the so-called
GW braking index, kGW = fGWf̈GW/ḟ

2
GW

, where fGW is
the GW frequency, could lead to information on the rate
of accretion. However, if limited by the Eddington rate2,
the accretion timescale is 108 times larger than the obser-
vation time and the effects on GWs is insignificant (see
Sec. IVA below).
Almost simultaneously with Giampieri,

Chakrabarti [26, 27] and then Giampieri, Gerardi
and Molteni [28] considered an EMRI embedded
in an accretion disk, where the CO accretes in the
Bondi-Hoyle-Lyttleton (BHL) approximation3 [29–33].
Assuming the gas velocity is different from the CO’s
velocity due to pressure gradient effects, they found
that the CO experiences a head-wind (delaying the
coalescence) or a tail-wind (accelerating the coales-
cence), depending on whether the disk is rotating

2 This is roughly defined as the rate at which the gravitational
force equals the radiation pressure force emitted by in-falling
matter in spherical symmetry; see Sec. IVA for further details.

3 This type of accretion assumes the accreting object is completely
embedded in a gaseous medium and accretes isotropically; see
Sec. IVB for further details.
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at sub-Keplerian or super-Keplerian velocities. For
very high accretion rates, the flow is transsonic and
super-Keplerian, and the tailwind could supersede the
angular momentum loss via GW emission, leading to a
stalled orbit or even an out-spiral.
Shortly after, Narayan [34] examined the effect of

radiatively-inefficient accretion flows on EMRIs. In qui-
escent nuclei, the accretion rate is often much lower
than Eddington and the accretion flow is advection-
dominated. Accretion disks of this type are commonly
referred to as “radiatively inefficient,” as the thermal en-
ergy in the gas is advected in, as opposed to radiated
away, as in thin disks. Narayan estimated the impor-
tance of hydrodynamic drag by computing the ratio of
the timescale on which the EMRI loses angular momen-
tum due to hydrodynamic torques and GW emission. For
all reasonable sets of ADAF disk parameters, he found
that the GW phase changed by order 10−2 radians, well
below LISA’s measurement accuracy.
Consequently, Šubr and Karas [35, 36] investigated the

evolution of the eccentricity and inclination of a CO when
crossing a thin radiatively-efficient Shakura-Sunyaev α-
disk4 [37]. Assuming that the disk is not perturbed by
the CO significantly, they found that the orbit circular-
izes and aligns with the plane of the disk in its outskirts.
In a follow-up work [36], they extended their study to
the inner parts of the Shakura-Sunyaev disks, where the
radiation pressure significantly modifies the density pro-
file, and examined hydrodynamic drag during disk cross-
ing, and angular momentum exchange with spiral density
waves analogous to Type I and II planetary migration.
They have provided formulae for the relative timescale of
the effects, and concluded that GW emission drives the
evolution interior to ∼ 100M .
Another important study in this field was pre-

sented by Levin [17]. Motivated by simulations of
Gammie [38], Levin constructed models of thin self-
gravitating, radiatively-efficient disks, including optically
thick (i. e. photons scatter several times before escap-
ing the disk) and thin regimes. Levin re-derived order-
of-magnitude estimates of the non-relativistic hydrody-
namic drag and planetary migration timescales, similar
to that of Karas and Šubr [36], and also included the ef-
fect of azimuthal winds. Based on these estimates, Levin
argued that, although GW emission drives the evolution
inside ∼ 100M , such disk effects may be important for
LISA EMRIs.
More recently, Barausse and Rezzolla [39] examined

the effects of relativistic hydrodynamic drag on EMRIs
embedded in a thick torus. They found that the hydro-
dynamic drag drives the EMRI toward alignment over-
coming the GW radiation reaction, which by itself would
drive the orbital plane toward anti-alignment with the
MBHs spin [40]. However, stationary thick massive tori

4 see Sec III for further details on Shakura-Sunyaev α-disk models.

with constant specific angular momentum are unstable
to global non-axisymmetric modes that grow on a dy-
namical timescale [41–43], making their conclusions on
EMRIs rather uncertain.

The EM emission of accretion disks around subpar-
sec scale BH binaries have been considered by many au-
thors. However, previous explorations focused on compa-
rable mass binaries. In this case, the gravitational effects
would clear a gap around the binary, significantly reduc-
ing accretion. As long as the binary separation is large
enough that the gas can follow the GW inspiral rate of
the binary, tidal stresses would act to increase the EM
luminosity of the disk [44]. Eventually, however, the gas
is left behind at radii exceeding 100M for equal mass sys-
tems, and the gap decouples. Consequently, bright EM
emission would be expected only several years after the
merger, after the gas has had time to diffuse inwards and
accrete onto the remnant SMBH [45]. However, periodic
inflow accross the gap may generate EM variability prior
to merger [46–49] or the secondary can shephard any gas
remaining interior to its orbit into the SMBH after gap
decoupling [50]. The conditions for gap opening has not
been examined in radiation pressure dominated accre-
tion disks, which is most relevant at separations smaller
than ∼ 1000M . We inverstigate whether this can lead to
gap refilling prior to merger, which could have important
consequences for EM signatures of EMRIs.

None of the previous studies examined in detail
whether LISA has the sufficient accuracy to resolve the
imprint of accretion disk effects on EMRI GWs and
whether any of the accretion disk parameters may be
recovered; this is the main topic of this paper and a
companion paper [51] (hereafter Paper I). In Paper I,
we examined the detectability of the angular momentum
exchange of EMRIs with an ambient accretion disk using
a large class of torque models parameterized by two free
parameters. In particular, we pointed out that plane-
tary migration models are examples that generate a very
significant GW phase shift for LISA.

In this paper, we begin by reviewing the astrophysical
models of the most important accretion-disk effects on
EMRIs in active galactic nuclei, many of which were not
included in Paper I. We focus on standard radiatively-
efficient thin disks, where the viscosity is proportional
to the total pressure (Shakura-Sunyaev α-disks [37]) or
proportional to gas pressure only (which we refer to as
β-disks) [52]. These disks constitute the standard model
of luminous active galactic nuclei (AGN) accretion disks
(see [32, 53], and Sec. III below). For both of these
models, we include a more detailed analysis of the ef-
fects considered previously, investigating the detailed cir-
cumstances under which such effects are possible or sup-
pressed, and derive the effect of axisymmetric disk grav-
ity which was not considered before. We provide a de-
tailed study of the consequences on GW data analysis.

The analysis presented here is by no means exhaus-
tive. For simplicity, we restrict attention to EMRIs on
non-inclined, quasi-circular orbits. This restriction does
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not allow us to model binaries in which excentricity is ex-
cited in the presence of an accretion disk [47, 48, 54–56].
Other effects that we do not discuss here include the fol-
lowing: GWs generated by accretion flows through the
excitation of BH quasinormal modes [57–62]; GW en-
ergy flux dissipation by an ambient viscous disk, driving
transverse and longitudinal density waves [63] that could
heat the disk significantly and result in an observable in-
frared flare [64]; EM radiation generated by GWs in a
strongly magnetized plasma, boosting the frequency of
photons [65, 66], driving magnetosonic waves [67], focus-
ing of EM radiation [68], generating photons in a static
magnetic field [69, 70] and photons back-converting to
GWs in a magnetized plasma [71–73]. We also do not
consider the direct scattering of GWs by the gravity of
the gas, nor the GW radiation of spiral arms in the disk.
Clearly, these effects are interesting and should be stud-
ied in more detail, but they go beyond the scope of this
first-study.

C. Executive Summary of Results

We derive the criteria for the tidal effect of the CO
to open a gap in radiation-pressure dominated α and β-
disks. We find that EMRIs can open gaps at large radii
in both α and β-disks. However, depending on the EMRI
masses and accretion disk parameters, the gap typically
closes during the inspiral due to strong radiation pres-
sure gradients. Gap refilling occurs at orbital separations
outside and inside the LISA frequency band at orbital
radii r & 300 and 24M• for α and β-disks, respectively,
for typical EMRI parameters [SMBH and CO masses of
(M•,m⋆) = (105, 10)M⊙]. Complete gap refilling occurs
within 9 months in β-disks for these EMRI masses, well
before the inspiral terminates in coalescence. This im-
plies bright AGN activity coincident with LISA EMRIs
in both cases.
We calculate the perturbations to the GW waveforms

for quasi-circular, non-inclined EMRI orbits, due to the
effects of mass accretion onto the SMBH and the CO, the
hydrodynamic drag caused by an azimuthal and radial
wind, and the axisymmetric and non-axisymmetric grav-
itational effects. Some of these effects lead to a strong
imprint on the GW phase, while others do not.
We find that the gravitational torque from spiral den-

sity waves in the accretion disk (also known as migration

in planetary dynamics) is the most significant perturba-
tion. Migration leads to the strongest GW imprints when
the CO clears a gap, leading to gas accumulation near the
outer edge of the gap, like in a hydroelectric dam. The
CO’s mass accretion also leaves a significant imprint on
the GW signal, if described by spherical BHL accretion
[17]. However, we find that the CO accretion rate is sig-
nificantly reduced by many processes, predominantly by
the amount of available gas supply and radiation pres-
sure. Accounting for these limitations, the GW imprint
due to the CO’s mass accretion is typically well below

that of migration. If tidal torques from the CO open
a gap, the mass accretion onto the CO may be greatly
reduced. All other effects are typically less significant.

We estimate the effect of all of the above mentioned
processes on the GW observable, the waveform ampli-
tude and phase, both with a leading-order, Newtonian
waveform model and with a relativistic, effective-one-
body (EOB) model [11]. Figure 1 summarizes the im-
print of such processes on the Newtonian phase for the
dominant GW mode as a function of the final orbital ra-
dius for a one-year observation. Different curve colors
correspond to the phase difference between vacuum GW
phases and those that include various disk effects, while
solid and dotted lines correspond to α and β-disks respec-
tively. We provide simple asymptotic analytical formulae
describing the phase shift perturbation for arbitrary ac-
cretion disk, EMRI, and observation time parameters in
Eqs. (115–116) and Table II in Sec. VIII. Figure 1 shows
that the GW phase is modified significantly for EMRIs
relevant to LISA (those with masses (M•,m⋆) = (105, 10)
and final orbital radii rf . 50M•) at 1Gpc and for a one-
year observation.

The various curves in Figure 1 exhibit interesting fea-
tures at different radii, which correspond to different as-
trophysical mechanisms that come into play. Most no-
tably, the big decrease for the blue migration curves at
r⋆ . 24M• correspond to a transition from Type-II to
Type-I migration as the gap refills for β-disks. Coinci-
dentally, roughly interior to that radius, BHL accretion
and hydrodynamic drag from azimuthal winds are acti-
vated. The wiggles and the cutoff in the BHL accretion
induced phase shift (black curves) correspond to a vari-
ety of effects. For α-disks (solid black), the gas density
and sound speed determine the BHL accretion rate at
small separations. At larger r⋆ the Bondi radius of ac-
cretion becomes larger than the disk thickness, reducing
the accretion rate. Even further out, differential rotation
of the disk reduces the BHL rate. Next, the decrease
in the average background radial gas velocity causes the
amount of gas supply to become a limitation. Up to this
point, the photon diffusion during BHL accretion is too
slow and is trapped in the flow, leading to very super-
Eddington accretion rates. However, beyond r̄ & 35 this
is no longer true for an α disk, and the flow becomes Ed-
dington limited, greatly reducing BHL accretion effects.

Relativistic waveform models yield similar results to
those presented in Fig. 1. After aligning the wave-
forms in time and phase (equivalent to a maximization
of the SNR over the corresponding extrinsic parameters
in white noise), we find changes in the GW phase after a
typical one-year inspiral of up to O(104) rads when mod-
eling migration in β-disks. Migration effects for α-disks
are much smaller, since such disks are much less dense.
Since we find that typically the gap is expected to close
for EMRIs in the most sensitive LISA frequency band
(r̄ . 25), Type-I migration is the most relevant process.
Supply-limited, BHL accretion and wind effect lead to a
dephasing of O(1) rads. Other effects are less significant:
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FIG. 1. The GW phase shift as a function of final radius in units of M• induced by different accretion disk effects relative to
vacuum waveforms. Solid (dotted) curves correspond to α (β) disks, while different colors encode different disk effects: black
corresponds to Bondi-Hoyle-Lyttleton accretion, green to azimuthal wind and blue to migration. The thin, solid magenta line is
the total accumulated GW phase in vacuum. The thick, solid (dashed) magenta line corresponds to a measure of the accuracy
to which LISA can measure the GW phase for a source at 1 Gpc (10 Mpc).

O(10−3) rads for SMBH mass accretion, and O(10−4)
rads for axisymmetric self-gravity effects.

We then proceed with a more careful data analysis
study on the distinguishability of accretion disk effects by
computing a data analysis measure for two representative
systems at 1Gpc with component masses (10, 105)M⊙

and (10, 106)M⊙, respectively. We calculate the SNR
in the waveform difference between signals accounting
for accretion disk perturbations and those that do not,
marginalizing over an overall time and phase shift. We
find that, for these systems, ρ(δh) > 10 after just 4
months of evolution for β-disk migration, while it takes
one full year of integration to reach the same SNR for
BHL accretion and wind effects. All other accretion disk
effects are less significant.

Finally, we examine possible degeneracies between ac-
cretion disk effects and vacuum EMRI parameters. We
analytically derive the Fourier transform of the wave-
forms in the stationary phase approximation. We find
that the disk-induced perturbation to the frequency-
domain GW phase depends on the GW frequency to
a high negative power relative to the Newtonian term,
multiplied by a function of the initial binary masses,
the α-disk parameter and the SMBH accretion rate ṁ•.
In contrast, the phase of the Fourier transform of vac-
uum waveforms is a positive power of frequency relative
to the Newtonian term, when including post-Newtonian
(PN) corrections. The difference in the frequency scaling
arises because the accretion disk effects grow with orbital
separation (lower frequency), as opposed to PN correc-
tions, which grow with decreasing separation (higher fre-
quency). This suggests that accretion disk effects are
not strongly correlated with general relativistic vacuum
terms in the frequency-domain GW phase. Whether this
statement holds in a realistic data analysis implementa-

tion requires a much more detailed analysis of the likeli-
hood surface that is beyond the scope of this paper.
Our results suggest that if a GW signal is detected from

an EMRI in an accretion disk, matched filtering with ac-
cretion disk templates could allow for the measurement
of certain disk parameters to interesting accuracies. For
example, for Type-I migration in β-disks, our results sug-

gest that LISA could measure the quantity (α12/5ṁ
−11/5
• )

to about 1%. Degeneracies between parameters, how-
ever, will deteriorate the accuracy to which we can mea-
sure such effects roughly down to 10% [74]. Ultimately,
however, a much more detailed Markov-Chain Monte-
Carlo mapping of the likelihood surface is required to
determine the accuracy to which EMRIs could measure
accretion disk effects.
Notice, however, that it is possible that none of these

models is an accurate description of the angular momen-
tum exchange with the accretion disk, leading to greater
theoretical uncertainties in interpreting these measure-
ments. EM observations of the disk luminosity are also
sensitive to ṁ•. Coincident EM and GW observations
might thus help us learn more about accretion disk mod-
els and to set constraints on the α parameter indepen-
dently.

D. Organization and Conventions

This paper is aimed at both the relativity and astro-
physics communities. We present a significant amount
of background material to make the paper self-contained
for both communities. Section II reviews the basics of
EMRIs as relevant to GW physics and a rough mea-
sure of the accuracy to which the waveforms need to be
computed for LISA parameter estimation. Section III
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presents the basics of the thin accretion disk models we
consider in this paper. Section IV studies the effect of
mass increase due to accretion on the GW signal. Sec-
tion V focuses on the effect of hydrodynamic drag on
the GW signal, induced by the gas velocity relative to
the CO (i.e. wind). Section VI discusses the effects of
axisymmetric self-gravity of the disk. Section VII con-
centrates on gravitational angular momentum exchange
with the disk (i.e. migration) and its effects on the GW
signal. Section VIII compares and contrasts the effect
of the different accretion disk effects on the GW phase.
Section IX describes the theoretical framework through
which we compute EOB waveforms in the presence of an
accretion disk. Section X performs a simple data analysis
study to infer the detectability of accretion disk effects.
Section XI concludes and points to future work.
Throughout this paper, we employ the following con-

ventions. We use geometric units, with G = c = 1,
unless otherwise noted. This implies that masses are
in units of length or time, where the mapping is sim-
ply M⊙ = 1.476 km = 4.92 µs. The EMRI is assumed
to be composed of a SMBH with mass M• and a CO
with mass m⋆. The SMBH is assumed to be spinning
with spin angular momentum S• = a•M•, aligned with
the orbital one. We do not model here the spin of the
CO. We measure quantities relative to their typical mag-
nitudes and denote Ab = A/(10bM⊙). For example,
M•5 = M•/(10

5M⊙) and m⋆1 = m⋆/(10M⊙). The ra-
dial orbital separation is always scaled in terms of the
SMBH’s mass, such that r̄ ≡ r/M•. The natural scale
for the start and end of observation in the most sensi-
tive part of the LISA band is 20M• and 10M•, so we use
r̄20 = r/(20M•) and r̄10 accordingly. We use r′ to denote
distance from the CO to a field point.

II. REVIEW OF EMRI GWS

In this section we review some basic facts about EMRI
dynamics, focusing only on leading-order effects. Sec-
tion IX provides a more detailed analysis that includes
higher-order relativistic effects.

A. Basics of EMRI Dynamics

Since the CO orbits very close to the SMBH, direct
GR effects cause the largest perturbations to Newtonian
orbits. In this section we consider eccentric EMRI dy-
namics, although in most of what follows in the rest of
this paper, we restrict attention to quasi-circular EMRIs.
In the absence of spin, the binary’s energy is

E

m⋆
=

1

2
M2

•Ω
2r̄2 − 1

r̄
= − 1

2r̄
, (1)

the Keplerian orbital frequency is

Ω =M−1
• r̄−3/2, (2)

where r̄ ≡ r/M• is the semi-major axis of the orbit in
units ofM•. Apsidal or perihelion precession for an orbit
with eccentricity e is

ΩGR,ap = 3M−1
• (1− e2)−1r̄−5/2, (3)

while Lense-Thirring precession of the node of an inclined
orbit around a spinning SMBH is

ΩLT = 2a•M
−1
• r̄−3. (4)

The CO inspiral produces GWs that remove binding
energy and specific angular momentum from the system
at the rate

ĖGW = −32

5

m2
⋆

M2
•

g1(e)

r̄5
= −6.4× 10−13 m

2
⋆1

M2
•5

g1(e)

r̄510
,(5)

ℓ̇GW = −32

5

m⋆

M•

g2(e)

r̄7/2
= −2× 10−7 m⋆1

M•5

g2(e)

r̄
7/2
10

, (6)

to leading order in m⋆ ≪ M•, where r̄10 = r̄/10 and
where

g1(e) =
1 + 73

24e
2 + 37

96e
4

(1− e2)7/2
, g2(e) =

1 + 7
8e

2

(1− e2)2
. (7)

We have here introduced the notation Ab = A/(10b M⊙)
for any quantity A, such that M•5 = M•/(10

5M⊙) and
m⋆1 = m⋆/(10M⊙).
Such loss of energy and angular momentum induces a

decrease in the semi-major axis and eccentricity at a rate

ṙGW = −64

5

m⋆

M•

g1(e)r̄
−3 = −1.3× 10−6 m⋆1

M•5
g1(e)r̄

−3
10

(8)

|ėGW| = 304

15

m⋆

M2
•

g3(e)r̄
−4 = 2× 10−12M−1

⊙

m⋆1

M2
•5

g3(e)r̄
−4
10

where we have defined

g3(e) =
e(1 + 121

304e
2)

(1− e2)5/2
. (9)

Equivalently, we can parameterize the orbit in terms of
the change in the orbital frequency

Ω̇GW =
96

5

m⋆

M3
•

g1(e)r̄
−11/2 (10)

For quasi-circular orbits, several formula simplify. For
example, one can easily see that ĖGW = ΩL̇GW. Similarly,
the inward inspiral velocity v⋆r is simply given by Eq. (8)
with g1(e) → 1. The orbital evolution of the semi-major
axis, Eq. (8), can be integrated [75, 76] for quasi-circular
orbits,

r̄0 = r̄f

(

1 +
τ

r̄4f

)1/4

, where τ ≡ 256

5

m⋆

M2
•

T . (11)

and where r̄0 and r̄f are the initial and final separations
in units of M• for an observation time T . Let us define
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the critical radius and observation time where r̄f starts
to deviate significantly from r̄0 as

r̄f,crit ≡ τ1/4 = 24m
1/4
⋆1 M

−1/2
•5 T 1/4

yr , (12)

Tcrit ≡
5

256

M2
•

m⋆
r̄4f = 0.031 yr

M2
•5

m⋆1
r̄4f,10 . (13)

The measured GW phase to leading order is twice the
orbital phase for a quasi-circular orbit φGW = 2φorb. The
total accumulated phase for a quasi-circular inspiral is
then

φGW = 2

∫ tf

tf−Tobs

Ω(t)dt = 2

∫ r̄f

r̄0

Ω(r̄)
dr̄
˙̄r

=
1

16

M•

m⋆
r̄
5/2
f





(

1 +
τ

r̄4f

)5/8

− 1



 (14)

where τ is the dimensionless observation time defined in
Eq. (11), and r̄f is the final radius at the end of the ob-
servation. Depending on whether the observation time is
short or long compared to the inspiral timescale τ/r̄4f ≪ 1

or τ/r̄4f ≫ 1, Eq. (14) becomes

φshort
GW

≈ 4× 106 rads
T yr

M•5r̄
3/2
f,10

(

1− 6
m⋆1

M2
•5

T yr

r̄4f,10

)

(15)

φlong
GW

≈ 2× 106 rads
T

5/8
yr

M
1/4
•5 m

3/8
⋆1

(

1− 0.1
M

5/4
•5

m
5/8
⋆1

r̄
5/2
f,10

T
5/8
yr

)

(16)

for short observations or widely separated binaries (T ≪
Tcrit and r̄f ≫ r̄f,crit), and long observations or close-in
orbits (T ≫ Tcrit and r̄f ≪ r̄f,crit), respectively.

5

Equations (15–16) show that initially the GW phase
accumulates quickly as c1T + c2T

2, but then saturates to
a rate c3T

5/8, where ci are time-independent constants.
Setting m⋆ = 10M⊙ and M• = 105M⊙, we find that
φGW ∼ O(106) rads in a one year observation.

B. Measures of LISA Sensitivity to GWs

GW detectors are most sensitive to the phase of GWs.
Since EMRIs can accumulate millions of GW cycles in
the detector’s sensitivity band, they make for excellent
probes of the astrophysical environment.

5 We note that φlong
GW is the standard PN expression for the phase

evolution as a function of time [77], when the phase evolution
culminates in merger. Individual EMRIs, however, may outlive
LISA observations, which is why we choose to use Eq. (14) along
with the asymptotes Eq. (15–16).

1. Simple Mass and Time-Scale Measures

A rough measure of the accuracy to which LISA can
extract parameters can be derived by looking at the mass
measurement accuracy. This quantity is of order [19]

δM•

M•

∼ δm⋆

m⋆
. (10−3 − 10−4)

1

ρ
, (17)

where ρ is the SNR (see below). The SNR can be roughly
as large as a few tens for a 10M⊙ CO spiraling into a
106M⊙ within r̄ . 10M at a distance of 1Gpc. Thus,
the relative mass estimation precision is at best around
10−4 − 10−5. Of course, for less distant sources, the
SNR can be larger, allowing a better determination of
the masses. This mass accuracy, compared to the accre-
tion mass or local disk mass, provides a rough measure of
whether the disk may generate important perturbations
for LISA.
Another rough measure to decide whether certain ef-

fects are important for LISA is the following. If a pertur-
bation has an associated timescale T on which it changes
the inspiral phase by a factor of order unity, then the
magnitude of the phase correction corresponding to this
process is roughly

δφGW ∼ Tobs
T φtot

GW
(18)

where φtot

GW
is the total, accumulated GW phase in the

observation. We assume here that this δφ is not a sim-
ple, constant phase shift, but a modification in the phase
evolution, such that at the end of the observation, the
template dephases from the signal by an amount δφGW.
LISA can see phase differences of order a few radians (see
below). Thus an effect is important if T . 4.4× 105 yrs
for a single year observation, see Eq. (14). In practice,
T ≡ x/ẋ may be used where x(t) represents any of the
following physical quantities: the mass of the SMBH or
CO, the induced angular momentum or energy dissipa-
tion rate relative to the GW-driven dissipation rates, the
inspiral rate relative to the GW inspiral rate, or the fre-
quency shift relative to the Keplerian frequency.

2. Dephasing Measure

A more accurate criterion to decide whether a certain
GW modification is detectable for LISA is the following:

δφGW ≥
{

5/ρ if ρ ≥ 10 ,
0 if ρ ≤ 10 ,

(19)

where ρ2 is the square of the signal-to-noise ratio (SNR),
defined as

ρ2(h) = 4

∫

df

Sn(f)
|h̃|2 . (20)

The quantity h̃ is the Fourier transform of the measured
GW strain amplitude and Sn(f) is the spectral noise den-
sity curve of the detector. Accounting for white-dwarf
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confusion noise and not averaging over sky-angles, the
noise curve is

Sn(f) = min
{

SNSA e4.5T
−1
yr N ′

, SNSA + Sgal
}

+ Sex−gal ,

(21)
where (SNSA, Sgal, Sex−gal, N ′) are functions of fre-
quency, that can be found, for example, in [7]. We
account for sky position and binary orientation aver-
aged response functions and noise curves, by multiplying
Eq. (21) by a prefactor of 20/3.
Eq. (19) is motivated by the following arguments. Any

accretion disk effect is measurable only if the EMRI is
detected in the first place. We have here conservatively
chosen ρ = 10 as the threshold for detection. Once the
EMRI is detected, the accuracy to which a phase differ-
ence can be measured is roughly 10/ρ, where ρ is the
total SNR.
Let us now relate this phase shift measure to the SNR

of the waveform difference between signals that include
and those that neglect disk effects: δh̃ ≡ h̃1− h̃2. If these
waveforms differ only in phase by an amount δφGW, then

δh̃ = h̃1
(

1− eiδφGW
)

. (22)

The SNR of the difference is then

ρ2(δh) = 4

∫

df

Sn(f)
|δh̃|2 ,

= 8

∫

df

Sn(f)
|h̃1|2 [1− cos(δφGW)] ,

∼ 4

∫

df

Sn(f)
|h̃1|2δφ2GW

, (23)

where in the last line we have assumed that δφGW ≪
1 rad. Notice that ρ(δh) is bounded inside ρ(δh) ∈
[0, 2ρ(h1)], where in the maximum we have used the fact
that cos(δφGW) is bounded by −1.
The perturbation of the waveform is significant if

ρ(δh) & 10, which is similar to the accuracy require-
ments constructed in [78–80]. If the instantaneous SNR,

|h̃1|2S−1
n (f) does not vary greatly while the phase dif-

ference accumulates, then ρ(δh) ∼ (δφGW)ρ(h1), which
leads to the simple phase shift criterion, Eq. (19), above.

3. Degeneracies and Template Placement

One can generalize the above measures by allowing for
both amplitude and phase modifications. The SNR of
the waveform difference then becomes

ρ2(δh) ≡ min
λ2

[

4

∫

df

Sn(f)

∣

∣

∣
h̃1(f)− h̃2(f ;λ2)

∣

∣

∣

2
]

, (24)

where h̃1 and h̃2 are the Fourier transforms of two wave-
forms (the “signal” and “template”), normalized such
that ρ(h1) = ρ(h2) = 1. The template may depend on

free parameters ~λ2 that may be different from the true

astrophysical values, where the minimum difference cor-
responds to the best fit. Expanding Eq. (24), we find
ρ2(δh) = 2MM , where MM = 1 − O is the mismatch
and

O(h1, h2) ≡ max
λ2

[

4ℜ
∫

df

Sn(f)
h̃1(f)h̃

∗

2(f ;λ2)

]

. (25)

is the overlap.
For a simple estimate, we minimize ρ2(δh) over certain

non-physical extrinsic parameters only, i.e. an overall
phase and time shifts, as opposed to intrinsic parame-

ters , such as the binary’s masses or spins, or other ex-
trinsic parameters, such as the distance to the source, the
polarization angles or the sky position. When the SNR
of the difference is computed in this way, estimates of
measurability are optimistic as they do not account for
possible degeneracies between all parameters. For exam-

ple, a signal h1(f, ~λ1) with true parameters λ1 may be

mimicked by a waveform model h2(f, ~λ2) with different

intrinsic parameters ~λ2 6= ~λ1, even if the extrinsic param-
eters are the same. In Sec. XC we demonstrate that the
incorrect determination of EMRI parameters in a fidu-
cial model (e.g. with no accretion disk) cannot easily
mimic the waveform of a different model (e.g. including
the effects of an accretion disk), because of the particu-
lar spectral features introduced by accretion disks in the
Fourier transform of the response function.

III. REVIEW OF ACCRETION DISK MODELS

In this section we provide an overview of the accretion
disk models considered. As this paper strives to connect
the accretion disk astrophysics and GW physics commu-
nities, we have chosen to provide a somewhat large quan-
tity of introductory material.

A. Basics of Accretion-Disk Models

Despite a long history of observational, theoretical, and
numerical investigations, accretion disks remain one of
the most exciting unsolved problems of our time. The
complexity is related to the modeling of magnetohy-
drodynamic (MHD) flows, turbulence, radiative trans-
port, and plasma physics. Here we give a brief overview
of the necessary formulae we use to model accretion
disks in this paper. For more details see textbooks by
Shapiro and Teukolsky [32] and Frank et. al. [53].
We restrict our study to geometrically thin, radiatively

efficient, stationary accretion disks, responsible for the
observed bright emission around AGNs. In this case, as
gas orbits around the central object, it radiates thermal
energy away much faster than the timescale on which
the gas particles drift inward, and the disk collapses into
a thin configuration. Radiatively efficient disks are the
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most massive among accretion disks, as the mass accre-
tion rate is largest and the inward drift velocity is small-
est. For lower efficiencies around quiescent SMBHs, ac-
cretion is described by other models, such as advection-
dominaion, which we ignore here.

Radiatively-efficient, stationary accretion disks can be
described by the Shakura-Sunyaev α-disk model [32, 37].
The trφ component of the viscous stress tensor corre-
sponds to an effective viscosity6 tij = ρν∇ivj and it
is responsible for the slow inflow of gas. In the α-disk
model, the viscous stress is assumed to be proportional
to the total pressure ptot in the disk at each radius:
trφ = −(3/2)α ptot. The total pressure includes both
thermal gas pressure and radiation pressure, and the di-
mensionless constant of proportionality α is a free model
parameter. These disks are viscously, thermally, and con-
vectively linearly unstable [81–84].

In the alternative model [52], hereafter denoted β-
disks, viscous stress is proportional to the gas pressure
only, trφ = −(3/2)α pgas, and such models are sta-
ble.7 The nature of viscosity, however, is not sufficiently
well-understood to predict which of these prescriptions is
closer to reality. Recent MHD numerical simulations of
accretion disks indicate that stresses correlate with total
pressure as in the α-disk model [85] and are thermally
stable [86], though they might be viscously unstable [87].
In cases where the diffusion scale is larger than the wave-
length of the magneto-rotational instability, other simu-
lations are consistent with the β-disk model [88, 89]. The
instability in α-disks implies spectral variations which are
not observed in many systems, while the β-disk model
provides a better match to spectral constraints [90]. In
this paper, we remain agnostic about the disk model and
carry out calculations for both of them.

Shakura-Sunyaev α- and β-disks for a BH of fixed M•

mass are described by two free parameters: the accretion
rate Ṁ• and the α parameter in the viscosity prescrip-
tion. AGN observations show that the accretion rate rel-
ative to the Eddington rate8, ṁ• ≡ Ṁ•/Ṁ•Edd, is typ-
ically around 0.1–1 with a statistical increase towards
higher luminosities [91, 92]. Theoretical limits based on
simulations of MHD turbulence around BHs are inconclu-
sive, but are consistent with α in the range 0.001–1 [93].
Its estimated value in protoplanetary accretion disks is
lower, α . 10−3 [94]. Observations of outbursts in bi-
naries with an accreting WD, NS, or stellar BH imply
α = 0.2–0.4 [95, 96]. The value of α in AGN accretion
disks is uncertain, but might be expected to be similar

6 Throughout this section ρ ≡ ρ(r) denotes gas density (i.e. not
the SNR of GWs), ν is the kinematic viscosity coefficient in units
of cm2/s, and v is the gas velocity.

7 Another popular model that is stable assumes trφ =
−(3/2)α

√
pgasptot.

8 We define the Eddington rate Ṁ•Edd more precisely in Eq. (54)
below.

(for a review, see Ref. [96]). In the following, we assume

ṁ•1 ≡ ṁ•

0.1
= 1, ǫ1 ≡ ǫ

0.1
= 1, α1 ≡ α

0.1
= 1 , (26)

but retain ṁ•1 and α1 to be able to describe different
values. Here ǫ is the radiation efficiency (see Eq. (51)
below). 9

The surface density, Σ(r̄), and the scale height of the
disk from the mid-plane, H(r̄), can be calculated as [16],

Σ(r̄) =
24/5σ

1/5
SB

3π3/5f2
Tκ

1/5

(

µ0mp

kBα

)4/5

Ṁ
3/5
• Ω2/5β4(1−b)/5,

(27)

H(r̄) =
fTκṀ•

2πc(1− β)
. (28)

where b = 0 for α-disks and 1 for β-disks, and the ra-
dial dependence is implicit in the orbital velocity Ω =
M−1

• r̄−3/2 and β. Here, β(r̄) ≡ pgas/ptot, where ptot =
pgas + prad, pgas is the thermal gas pressure, prad is the
radiation pressure, and β satisfies

β(1/2)+(1/10)(b−1)

1− β
=

23/5π4/5c

σ
1/10
SB α1/10κ9/10

(

kB
µ0mp

)2/5

× Ṁ
−4/5
• Ω−7/10, (29)

with µ0 = 2/(3XH + 1) = 0.615 the mean molecu-
lar weight, kB the Boltzmann constant, σSB the Stefan-
Boltzmann constant, and fT = 3/4 a constant related
to the assumption of optical depth (see [97]). The quan-
tity κ = µeσT /mp is the electron scattering opacity in
the medium, with µe the number density of electrons
relative to the total density, mp the proton mass, and
σT the Thompson scattering cross-section. In practice
µe = (1 + XH)/2 = 0.875 and κ = 0.348 cm2 g−1 for a
fully ionized gas of hydrogen and helium, where the mass
fraction of hydrogen is XH = 0.75. Equation (29) can be
solved numerically for β(r̄) at each radius and substituted
in Eqs. (27–28) to obtain Σ(r̄) and H(r̄). The kinematic
viscosity coefficient in the disk is

ν = αβbHcs =
Ṁ•

3πΣ
(30)

[98].
Equations (27–29) give a self-consistent nonrelativistic

description of a geometrically thin, radiatively efficient,
stationary accretion disk, provided the following condi-
tions are satisfied: the disk is optically thick to electron
scattering, opacity is dominated by electron scattering,
the disk is hot enough to be fully ionized, the self-gravity

9 Note that in all of our formulas ṁ•1 and ǫ1 always appear in
the combination ṁ•1/ǫ1. To simplify notation we suppress the
ǫ1 scaling.
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of the gas is negligible relative to the gravity of the accret-
ing object, and the modifications near the inner bound-
ary condition are neglected (see below). These conditions
are all satisfied within 6 ≪ r̄ < 103 for M• < 107M⊙,
ṁ > 0.1, α > 0.1 [97]. Equation (29) shows that well
within

r̄rad = 600 ṁ
16/21
•1 α

2/21
1 M

2/21
•5 , (31)

β ≪ 1 holds, so that radiation pressure dominates over
thermal gas pressure. In this case, Eq. (29) can be in-
verted analytically

β(r̄) ≈ 4.3× 10−4α
−1/5
1 ṁ

−8/5
•1 M

−1/5
•5 r̄

21/10
10 for β-disks

(32)
and Eqs. (27–28) simplify to

Σ(r̄) ≈







538.5 g cm−2 α−1
1 ṁ−1

•1 r̄
3/2
10 for α-disks,

1.262× 106 g cm−2 α
−4/5
1 ṁ

3/5
•1 M

1/5
•5 r̄

−3/5
10

for β-disks,

=







5.907× 10−21M⊙
−1 α−1

1 ṁ−1
•1 r̄

3/2
10 for α-disks,

1.384× 10−17M⊙
−1 α

−4/5
1 ṁ

3/5
•1 M

1/5
•5 r̄

−3/5
10

for β-disks,

(33)

H(r̄) ≈ 1.5 ṁ•1 M• = 1.5× 105M⊙ṁ•1M•5 . (34)

The disk scale height is the same for the two models in
the radiation pressure dominated regime, approximately
constant in radius. Note that the thin disk assumption
2H ≪ r breaks down within r̄ . 3ṁ•1. Since radia-
tively efficient thick disks have no widely accepted an-
alytical models to date, we extrapolate Eqs. (27–28) to
this regime, as well.

Equation (33) shows that β-disks are much more mas-
sive within r̄ ≪ 1000. This is to be expected, as the
effective viscosity is much smaller for β-disks relative to
α-disks by a factor of order β. A smaller viscosity im-
plies a smaller radial inflow velocity, which for a fixed
accretion rate corresponds to a larger mass.

The local disk mass near the binary in a logarithmic
radius bin is defined as

md(r̄) = 4πr2Σ

=















7.4× 10−8M⊙ α
−1
1 ṁ−1

•1 M
2
•5r̄

7/2
10

for α-disks,

1.7× 10−4M⊙ α
−4/5
1 ṁ

3/5
•1 M

11/5
•5 r̄

7/5
10

for β-disks .

(35)

The gas density in the disk, the mean radial inflow ve-

v
el
o
ci
ty

[c
]

r̄

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

10 100 1000

v⋆φ

cs [ṁ
•1 ]

v
αr [

α
1 ṁ 2

•1
]

vβr
[

α4/5
1 ṁ2/5

•1

]

v
⋆r

δv
wφ [

ṁ 2
•1
]

δvdr

FIG. 2. The velocity scales in the problem as a function
of radius. From top to bottom (with corresponding equa-
tions): Keplerian orbital velocity (2), differential rotation at
the Hill’s radius for β- and α-disks (37), isothermal sound
speed (38), azimuthal wind (79), radial inflow velocity for
α– and β-disks (37), and the GW radiation reaction inspi-
ral velocity (8). The scalings with accretion disk param-
eters (α1, ṁ•1) are as labelled. Fiducial parameters used:
α1 = ṁ•1 = M•5 = m⋆1 = 1.

locity, and the isothermal sound speed are

ρ(r̄) ≡ Σ

2H
(36)

≈















2.0× 10−26M⊙
−2 α−1

1 ṁ−2
•1 M

−1
• r̄

3/2
10

for α-disks

4.6× 10−23M⊙
−2 α

−4/5
1 ṁ

−2/5
•1 M

−4/5
• r̄

−3/5
10

for β-disks

v,gasr (r̄) =
3

2

ν

r
= − Ṁ•

2πrΣ
= −Ṁ•r

md
(37)

≈
{

−3.8× 10−4α1ṁ
2
•1r̄

−5/2
10 for α-disks

−6.9× 10−7α
4/5
1 ṁ

2/5
•1 M

−1/5
•5 r̄

−2/5
10 for β-disks

cs(r̄) ≡
√

ptot

ρ
= HΩ ≈ 0.047 ṁ•1r̄

−3/2
10 . (38)

where Ṁ• is the SMBH accretion rate, defined more pre-
cisely in Sec. IVA.
Figure 2 compares the typical velocity scales in the

problem for quasi-circular EMRIs. Typically, |vr⋆| ≪
|vr,β | ≪ |vr,α| ≪ cs for r̄ & 10. The figure also depicts
other relevant velocity scales which we shall derive in
Secs. IV and V below. Similarly, to get a feel of the
typical disk mass scales, Figure 3 compares the MBH
and EMRI mass, and the local disk masses for α and β-
disks, as well as the CO accretion rate per year derived
in Sec. IVB below. The local β-disk mass and ∆m⋆

are close to the LISA detection uncertainty of the EMRI
mass, δm⋆ [Eq. (17)] suggesting that the disk gravity
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FIG. 3. The mass scales in the problem. Plotted are the
MBH mass, M•, the EMRI mass, m⋆, the local disk mass,
md, the accreted mass at Eddington rate after 1 yr (efficiency
ǫ = 0.1), ∆ME

• ,∆mE
⋆ (Sec. IVA), and the accreted mass at

BHL rate onto the CO for the α and β-disks per year, ∆mB
⋆α,β

(Sec. IVB). A gap opens outside the radius marked by green
dots (Sec. III B).

and accretion may lead to detectable effects for LISA
observations.
Note that the above mentioned simple formulae de-

scribing accretion disks are nonrelativistic and neglect
modifications related to the inner boundary condition of
the accretion disk. If assuming zero torque at the inner
boundary of the disk, r0, this introduces additional fac-
tors of 1− (r0/r)

1/2 for isothermal disks [32], making the
surface density profile no longer a simple power of r. Gen-
eral relativistic corrections introduce additional similar
factors near the innermost stable circular orbit (ISCO),
light-ring, and horizon [99]. Among these, the ISCO ra-
dius is the outermost one, at 1 ≤ r̄⋆ ≤ 9 in the equatorial
plane for spinning BHs. If the shear stress generated by
the CO heats the disk, this may further affect the scale
height and the density profile. Non-axisymmetric inflow
across the CO orbit, and the inward migration of the CO
leads to a more complicated time-dependent density pro-
file [48, 50, 100–103]. We neglect all of these additional
factors for simple order-of-magnitude estimates, and ex-
trapolate the disk down to r̄ = 3 in many of our Fig-
ures (which is close to the ISCO for a spinning BH with
a/M ∼ 0.9).

B. Gap opening

Up to this point, we neglected the effects of the CO.
If the CO is massive enough that its gravitational torque
pushes gas away faster than viscosity can replenish the
region with new gas, then an annular gap opens in the
disk around the CO. The gap width can be obtained from

the balance between these two competing effects and it
is given by10

r̄′∆ =

(

fg
3π

r2⋆Ω

ν
q2
)1/3

r̄⋆ , (39)

where r̄⋆ = r⋆/M• is the dimensionless orbital radius
of the CO, q = m⋆/M• is the mass ratio, and fg is a
geometrical factor for which 3π/fg ≈ 40 − 50 according
to numerical simulations [104–106].

Gap opening requires that the equilibrium width r̄′∆
be larger than (i) the torque cutoff scale around the CO,
and (ii) the scale on which the tidal field of the CO domi-
nates over the SMBH [104, 105, 107, 108]. The CO’s tidal
torque is shifted out of resonance by the midplane radial
pressure gradient and saturates interior to the torque cut-
off scale, r′cutoff . This is roughly equal to the disk scale
height [see Eq. (34)], r′cutoff ∼ H [109]. The tidal field of
the CO dominates inside the Hill radius or Roche lobe,
r′H,

r̄′H = (q/3)1/3r̄⋆ = 0.32m
1/3
⋆1 M

−1/3
•5 r̄⋆10. (40)

Gas entering within r′H gets either accreted by the CO or
it may flow around the CO toward the SMBH.

Thus, gap opening requires11

H . r′∆ and r′H . r′∆ . (41)

Combining Eqs. (39–41), we get that a gap opens if
the mass ratio satisfies

q > max

{√

3π

fg

ν

r2Ω

(

H

r⋆

)3/2

,
3π

fg

ν

r2⋆Ω
2

}

= max

{√

3π

fg
αβb

(

H

r⋆

)5/2

,
3π

fg
αβb

(

H

r⋆

)2
}

, (42)

where in the last line we have utilized Eq. (30) for ν,
and the terms in the brackets correspond respectively to
H ≤ r′∆, and r′H ≤ r′∆. Eq. (44) is general for both
α- and β-disks. For α-disks b = 0, but for β-disks b =
1 and the RHS depends implicitly on q and r through
β. Substituting H from Eq. (34), and β from Eq. (32)
and solving for q gives the mass ratios that lead to gap

10 Here, and throughout the paper, primed distances correspond to
radial distances measured from the CO, i.e. r′ = |r − r⋆|.

11 In the planetary context, the gap opening condition is sometimes
written as H . r′

H
. r′

∆
where H . r′

H
guarantees that pres-

sure effects are less important than the gravity of the CO and
nonlinearities become significant. However, the validity and in-
terpretation of this condition is disputed [110], and we shall not
require it here over the two criteria in Eq. (41).
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opening

qgap,α > max

{

0.018α
1/2
1

ṁ
5/2
•1

r̄
5/2
⋆10

, 0.092α1
ṁ2

•1

r̄2⋆10

}

, (43)

qgap,β > max
{

3.6× 10−4 α
2/5
1 ṁ

17/10
•1 M

−1/10
•5 r̄

−29/20
⋆10 ,

3.9× 10−5 α
4/5
1 ṁ

2/5
•1 M

−1/5
•5 r̄

1/10
⋆10

}

, (44)

for α and β-disks, respectively, and we assumed fg =
0.23.

Equations (43–44) can be used to find the CO orbital
radius r̄⋆ at which a gap opens. For α-disks both terms
decrease quickly with radius, thus the gap may even-
tually close if the CO orbital radius r̄⋆ is sufficiently
small. However, for β-disks, the second term depends
very mildly on radius. Hence, this term for β-disks is
best viewed as a radius independent necessary condition
for the CO mass for gap formation. The CO radius where
a gap opens, satisfies

r̄⋆gap,α ≥ max

{

79α
1/5
1 ṁ•1M

2/5
•5 m

−2/5
⋆1

300α
1/2
1 ṁ•1M

1/2
•5 m

−1/2
⋆1

}

, (45)

r̄⋆gap,β ≥ 24α
8/29
1 ṁ

34/29
•1 M

18/29
•5 m

−20/29
⋆1 and (46)

m⋆gap,β & 3.9M⊙ α
4/5
1 ṁ

2/5
•1 M

4/5
•5 . (47)

Therefore, EMRIs in radiation pressure dominated α-
disks in the LISA frequency band (r̄⋆ . 50) typically do
not open gaps unless α . 10−3. However, a gap typically
opens around the CO in a radiation pressure dominated
β-disk, provided the CO mass exceeds a value given by
Eq. (47) and it is captured by the accretion disk at a large
radius r̄⋆ > 100. As the CO travels inwards, however, it
eventually crosses the radius [given by Eq. (46)] where
the gap starts to refill for β-disks too.
If the CO gets first captured in the accretion disk

around the SMBH at some large radius r̄⋆ ≫ 100, a
gap is expected to be cleared quickly, and the gas in-
terior to the orbit slowly drains down the SMBH on the
viscous timescale. Depending on disk parameters and
less understood non-axisymmetric inflows [100], the in-
ner disk may be completely or partially cleared by the
time the CO reaches the LISA frequency band at sepa-
ration r̄⋆ . 50. If there is still residual gas interior to
r⋆, the EMRI may eventually catch up with the inner
disk, shepharding it into the SMBH and causing an EM
brightening of the AGN [50]. We estimate the radius at
which this first happens in Eq. (48) below. Eventually,
close to the merger, the gap would refill interior to the
radii given by Eqs. (45–46), reigniting the AGN activity.

The fact that in AGN disks, gaps open around EMRIs
for large r⋆ but then eventually close for smaller separa-
tions may seem surprising, because it has the opposite
behaviour in protoplanetary disks. The reason for the
difference is the large radiation pressure in AGN disks,
which makes H to be a constant, so that H/r⋆ decreases

outwards in Eq. (42). In contrast, H/r⋆ is nearly con-
stant, slowly increasing outwards for gas pressure dom-
inated or self-gravitating disks [97, 98]. The other un-
usual feature in Eq. (42) is the βb factor, where we recall
β = pgas/(pgas + prad). This factor approaches 1 and be-
comes unimportant in the gas pressure dominated regime
for β-disks where b = 1, while b = 0 makes it identically
1 for α-disks. However, this factor makes a big difference
in the radiation pressure dominated regime for β-disks,
where β ≪ 1, see Eq. (32).12

We note that the above conditions for gap opening,
based on Eq. (41) are probably necessary but perhaps in-
sufficient in realistic disks. While these conditions have
been well tested for protoplanetary disks using simula-
tions [105, 106], we are not aware of any studies dis-
cussing their applicability in 3D radiation-pressure dom-
inated, turbulent MHD flows for the typical EMRI and
accretion disk parameters in AGNs. MHD simulations
of turbulent protostellar disks show that in some cases
an annular gap may form with an “antigap” interior to
that region where the gas density is increased compared
to the unperturbed case [111].

1. Gap decoupling

As explained above, a gap is expected to form for β-
disks at large separations for a wide range of parameters,
while for α-disks, gap formation requires α . 10−3. The
outer edge of the gap at λr̄ can initially follow the sec-
ondary as long as the GW inspiral rate is smaller than the
viscous gas inflow rate. As the binary separation shrinks,
the GW inspiral velocity eventually overtakes the viscous
inflow rate, v⋆r(r̄⋆) ≥ vgas,r(λr̄⋆) and the gas outside the
gap cannot keep up with the CO: the outer disk decou-
ples [45]. Coincidentally, the CO can catch up with the
disk interior to the gap, if present, causing an EM flare
[50]. The evolution of the gap and binary decouple at
r̄⋆ ≤ r̄d, which using Eqs. (8) and (37), is given by

r̄d =







1.4× 10−5 α−2
1 ṁ−4

•1 M
−2
•5 m

2
⋆1λ

5 for α-disks ,

15 m
5/13
⋆1 α

−4/13
1 ṁ

−2/13
•1 M

−4/13
•5 m

5/13
⋆1 λ2/13

for β-disks ,
(48)

where in the following we adopt λ = 1.7 [108].

The criterion given by Eq. (48) is not satisfied any-
where where a gap has been opened for our nominal set of
parameters in either α or β-disks, see Eqs. (45–46). How-
ever, the gap can decouple in β-disks for m⋆ & 15M⊙ or
α . 0.05.

12 The βb factors were incorrectly missing from the gap opening
criteria in Ref. [97] for β-disks.
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2. Density enhancement outside the gap

As inflowing gas is repelled by the secondary at r⋆,
gas accumulates outside the gap, and the surface den-
sity is modified relative to its original value without the
perturber Σ(r̄) [Eq. (33)] as

Σgap(r̄) = Σ(r̄)×







1 if r̄ > r̄n
[m⋆/md(r⋆]

k if r̄n > r̄ > r̄g
0 if r̄ < r̄g

(49)

where r̄g = λr̄⋆ is the outer boundary of the gap13, and
k = 3/8 for β-disks14 [112], while rn is the radius at
which the density enhancement disappears. In practice
rn is time dependent; it moves outward with velocity of
order |vgas,r| [112]. By the time the CO enters the LISA
band rn ≫ 100.

In Sec. IV through VII we discuss various effects the
disk has on EMRIs, and show that the opening of a gap
has a serious impact. Depending on whether a gap is
opened or not, the CO is subject to Type-II or Type-
I migration, respectively. Moreover, if a gap is opened,
then the mass density near the secondary is significantly
reduced, accretion and hydrodynamic drag effects are
quenched. In that case, only the gravitational effects
play a role (i.e. axisymmetric disk gravity and Type-II
migration).

C. Twists, warps, and disk alignment

In general, MBHs are expected to have a non-negligible
spin and dominate the angular momentum of the EMRI
and the disk within r̄ . 103. In the absence of an ac-
cretion disk, radiation-reaction tends to circularize the
EMRI. Due to GW emission, the orbital angular mo-
mentum evolves slowly toward anti-alignment with the
MBH spin, although the total perturbation of the orbital
inclination is very small [40, 113]. If the CO is on a
misaligned orbit, collisions with the disk will cause it to
align or counteralign with the disk [15, 35, 39]. In the ab-
sence of a CO, if the disk is initially misaligned with the
MBH spin axis, Lense-Thirring precession will cause the
disk to warp and twist, and viscous dissipation and ra-
diative cooling leads to an aligned or anti-aligned config-
uration with the MBHs spin (Bardeen–Petterson effect,
[114–116]). Similarly, a CO can cause warps and twists
in the disk if on an inclined orbit leading to alignment (or

13 We assume that the inflow across the gap interior to the CO is
significantly reduced by the CO. This is a conservative estimate
since, non-axisymmetric inflow is expected to occur across the
inner edge of the annulus at a reduced rate [100].

14 In the radiation-pressure dominated regime, k has not been de-
termined for α-disks. We conservatively adopt k = 0 in this
case.

anti-alignement) of the disk plane with the EMRI [101].
Finally, the accretion disk may be warped by the star
cluster surrounding the MBH in the outskirts of the disk
[117], by an intermediate mass BH [118], or by its own self
gravity [119]. Henceforth, we neglect such complications,
and consider the MBH, EMRI and disk angular momenta
to be aligned or anti-aligned in the relative radial range
of LISA observations for simplicity.

IV. MASS INCREASE VIA GAS ACCRETION

In this section, we concentrate on the mass increase ef-
fect due to accretion. Our goal is to make order of mag-
nitude estimates and compare them to the detectability
measures described in Sec. II B.

A. Primary Mass Increase

The accretion disk feeds matter to the SMBH, but such
process is bounded by the Eddington limit. This limit
corresponds to the balance between radiation pressure
and the gravitational force in spherical symmetry15. The
corresponding luminosity due to accretion is

LEdd =
4πGc

κ
M• , (50)

where M• is the SMBH’s mass, which is here the accret-
ing object, and κ is the opacity (see discussion below
Eq. (29)).
If a fraction ǫ of the rest mass energy is converted into

radiation, then the corresponding accretion rate is

ṀEdd

•

M•

=
LEdd

ǫM•c2
= 2.536× 10−8ǫ−1

1 yr−1, (51)

where ǫ0.1 = ǫ/0.1 is the normalized efficiency. No-
tice that the right-hand side of this equation is mass-
independent. If the SMBH is accreting at a constant

rate ṁ• = Ṁ•/Ṁ
Edd

• , then

M•(t) ≈M•,0 + ṀEdd

• t =M•,0

(

1 +
ṁ•1

ǫ1

LEdd

c2
t

)

,

(52)
where M•,0 is the initial SMBH mass. In the analysis of

Sec. III we dropped most factors of ǫ−1
1 , but as is clear

from here, every factor of ṁ• is accompanied by a factor
of ǫ−1

1 .
Is such a change in the mass observable via EMRI

GWs? Equation (51) tells us that, during a 1 yr obser-
vation, the SMBH’s mass changes by ∆M•/M• = 2.2 ×
10−9ṁ•1/ǫ1, which is clearly below the LISA mass mea-
surement accuracy of Eq. (17). Another way to see this

15 This limit may sometimes be violated as shown in Sec. IVB
below.
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is to compute the phase shift [Eq. (18)] for Eddington-
limited accretion, which yields δφEdd

GW
∼ φtot

GW
Tobs/TEdd ≈

10−3ṁ•1M
−1/4
•5 m

3/8
⋆1 T

13/8
yr , much smaller than the phase

measurement accuracy. We conclude then that the
change in the SMBH’s mass via Eddington-limited accre-
tion has a negligible effect on the GW signal, irrespec-
tive of the type of disk modeled. The accretion has to
be very super-Eddington or the radiation efficiency very
small (ṁ•,1/ǫ1 → 103) for it to have any impact on the
GW signal for typical EMRIs at 1Gpc.

B. Secondary Mass Increase

The CO itself increases in mass too, as it feeds from
the ambient gas in the accretion disk. We consider the
case when the CO orbital inclination is aligned with the
disk. The thickness of the accretion disk [Eq. (34)] is
much larger than the horizon diameter by a factor of
H/m⋆ ∼ 1.5 ṁ•1M•/m⋆ ∼ 104, and thus, it completely
surrounds the CO.
In such circumstances, accretion can be analyzed

within the framework of Bondi and Hoyle [30–32]. The
characteristic radius of accretion can be calculated as the
radius at which the thermal energy of particles is less
than the gravitational potential energy16

r′
B
=

2m⋆

v2rel + c2s
≈ 2m⋆

M•

r3

H2
= 8.9× 103M⊙m⋆1ṁ

−2
•1 r̄

3
10 .

(53)
The second and third equality correspond to corotating
quasi-circular COs, neglecting vrel and using Eqs. (38)
and (34).
Assuming isotropic accretion and an adiabatic equa-

tion of state, the Euler and continuity equations can be
integrated to give

ṁB

⋆

m⋆
= 4πρ

m⋆

(v2rel + c2s )
3/2

(54)

≈















1.5× 10−7 yr−1 α−1
1 ṁ−5

•1 M
−1
•5 m⋆1r̄

6
10

for α-disks, corotating, circular SCO,

3.5× 10−4 yr−1 α
−4/5
1 ṁ

−17/5
•1 M

−4/5
•5 m⋆1r̄

39/10
10

for β-disks, corotating, circular SCO.

where ρ is the ambient density, cs is the sound speed,
and vrel is the relative velocity of the gas with respect
to the medium, Eqs. (8) and (36–38). The numerical
values shown in the second line are only representative,
they assume vrel = |vgas − v⋆| ≪ cs. This is approx-
imately satisfied near the SMBH, but in the numerical
calculations we substitute the estimated value of vrel (see
Eq. (58) below). Figure 3 shows the corresponding mass
accretion rate per year for α- and β-disks, including the
quenching processes discussed next.

16 We use r′ to distinguish orbital distances measured from the CO.
We denote the CO orbital radius by r unless it leads to confusion,
otherwise r⋆. Over-bar denotes units of M•.

C. Quenching of BHL Accretion

Accretion can be “quenched” or reduced by several
different astrophysical processes. In this subsection, we
summarize all such quenching effects that severely mod-
ify the accretion rates quoted in Eq. (54).

1. Quenching by wind and tidal effects

When vrel is not neglected, the estimates of Eq. (54) are
reduced. The relative velocity between the CO and the
gas contains contributions from the relative bulk motion
of the gas, differential rotation of the disk, and turbu-
lence.
The effect of differential rotation can be estimated as

follows. Since the gas velocity is different at the edge of
the accretion range relative to the bulk velocity at r at
orbital radii r ± δr′, then

δvdr =
∣

∣δr′i∇iv
j
gas

∣

∣ ≈
∣

∣

∣
∂rvφ + Γφ

φrvφ

∣

∣

∣
rH =

3

2
r̄′Hr̄

−3/2 ,

(55)
where in the second equality we have set (δr′r , δr′φ) =

(r′H, 0), and in the third used vφ =
√

M•/r and Γφ
φr =

−1/r for the Christophel symbol in flat space. Substi-
tuting in for the Hill radius [Eq. (40)], this becomes

δvdr =
3

2

r′H
H
cs = 0.015

(

m⋆1

M•5

)1/3

r̄
1/2
10 . (56)

We estimate the radial wind using δvr = |vgas,r − v⋆r|,
where vgas,r and v⋆r can be found in Eqs. (8) and (37).
The relative velocity induced by an azimuthal wind δvφ
is

δvφ =
3− γ

2

H

r
cs =

{

0.0053 ṁ2
•1r̄

−5/2
10 for α-disks

0.013 ṁ2
•1r̄

−5/2
10 for β-disks

,

(57)
which we derive in Sec. V below.
With all of this in mind, the relative velocity is then

v2rel = (δvφ + δvdr)
2
+ δv2r . (58)

Figure 2 shows that δvdr dominates the relative gas ve-
locity relative to the bulk azimuthal and radial wind
velocities. Indeed, δvdr > cs when the CO’s mass is
larger than m⋆ & 300M•5ṁ

3
•1r̄

−3
10 or if r̄ > r̄dr ≡

31 ṁ•1M
1/3
•5 m

−1/3
⋆1 . In that case, one might expect large

deviations in Eq. (54). As we show in Sec. IVC3, how-
ever, this type of quenching is superseded by limited gas
supply. Nevertheless, we include vrel in our calculations
below.
The accretion is very anisotropic due to differential

rotation and turbulence in the accretion disk. The accre-
tion rate in such an advection dominated accretion flow
may be significantly less than the BHL rate [120, 121].
We consider our simple estimates to be accurate only to
the order of magnitude.



16

2. Quenching by thin disk geometry

Spherical BHL accretion is valid in the region where
the Bondi radius is less than (i) the scale height of the
disk H [Eq. (34)], and (ii) the Hill’s radius or Roche
lobe where tidal effects from the SMBH are negligible
[Eq. (40)]. These constraints are satisfied interior to

r̄thin = 19 ṁ•1M
1/3
•5 m

−1/3
⋆1 , (59)

r̄tidal = 26 ṁ•1M
1/3
•5 m

−1/3
⋆ . (60)

Thus, the thin disk requirement is always more restrictive
for radiation-pressure dominated disks.
Beyond orbital radius r̄thin [Eq. (59)], the accretion

cross section is reduced from 4πr′2
B

to 4πr′
B
H , because of

cylindrical symmetry. Consequently, the accretion rate
is modified as

ṁ′B

⋆ ≈ min

[

1,
H

r′
B

]

ṁB

⋆ . (61)

3. Quenching by limited gas supply

The BHL accretion rate might also be limited by the
amount of gas supply near the CO. First, note that the
radial inspiral velocity v⋆r is typically much slower than
the radial inflow velocity of the gas vαr and vβr for α- and
β-disks (Fig. 2). This implies that there is a constant gas
flux across the CO orbit from the outer regions. However,
if the Bondi rate in Eq. (54) was greater than the radial
gas flux towardM•, then the accretion onto m⋆ would be
limited by the rate at which gas flows in from the outer
regions. The mass flux across the CO’s orbit is

Ṁflux,⋆ = 2πrΣ|vgas,r − v⋆r| = Ṁ•

∣

∣

∣

∣

1− v⋆r
vgas,r

∣

∣

∣

∣

(62)

where v⋆r and vgas,r are given by Eqs. (8) and (37). Thus,
the accretion rate onto the CO becomes

ṁ′′

⋆ = min
[

Ṁflux,⋆, ṁ
′B

⋆

]

. (63)

At large separations, |v⋆r| ≪ |vgas,r|, the CO accretes in-
flowing gas from the outside and the accretion rate ṁ⋆

becomes independent of radius (as long as a gap is not
opened, see Sec. III B). At very small separations, given
by Eq. (48), |v⋆r| > |vgas,r|, the CO sweeps up the disk
interior to its orbit, and the accretion rate becomes sen-
sitive to the assumptions on the available gas supply in-
terior to the orbit.
Is Eq. (63) an important constraint for EMRI sys-

tems observable by LISA? If the mass ratio is extreme
η . 10−4, then |v⋆r| ≪ |vgas,r| (Fig. 2), so Eq. (63) im-

poses a constraint if and only if ṁB

⋆ ≤ Ṁ• is violated
for the radial separations covered by the CO during the

observation. This is the case outside r̄ ≥ r̄q, where

r̄q =

{

24α
1/6
1 ṁ•1M

1/3
•5 m

−1/3
⋆1 for α-disks ,

5.1α
8/39
1 ṁ

44/39
•1 M

6/13
•5 m

−20/39
⋆1 for β-disks .

(64)
Figure 2 shows that the accretion rate of the CO sat-
urates at Ṁ• at large r̄. BHL accretion is supply lim-
ited for at least part of the observation for the particular
EMRI systems we consider in Sec. IXA below.

4. Quenching by radiation pressure

Since the BHL accretion rate is typically super-
Eddington for a massm⋆, does radiation pressure quench
such large rates? One has to be careful about this point
since the derivation of the BHL accretion rate restricts to
adiabatic flows, neglecting the effects of radiation pres-
sure, heat transport, and cooling. Super-Eddington mass
accretion onto the CO is possible if the radiation is trans-
ported inward with the inflow faster than how it can dif-
fuse out [122–124]. We compare the diffusion time with
the infall time below.
The infall time of the fluid element from the Bondi

radius to a distance r′ from the CO is approximately

tin ≈ r′
B

1− r̃′
√

v2rel + c2s
, (65)

where r̃′ = r′/r′
B
is the dimensionless radial distance from

the CO, and the denominator is the RMS gas velocity.
The diffusion time from a distance r′ from the CO to

r′
B
is

tdiff(r
′) =

1

2

∫ r′B

r′
κρ⋆(ξ)ξdξ , (66)

where we recall that κ is the gas opacity (see discussion
after Eq. (29)). To avoid confusion, we label the local
gas density in the close vicinity of the compact object as
ρ⋆(r

′), which at the Bondi radius is equal to the mean
disk density near the location of the CO, ρ⋆(r

′
B
) ≡ ρ(r⋆)

in Eq. (36). For BHL accretion, the density increases
toward the CO as ρ⋆(r

′) = ρ⋆(r
′
B
)r̃′−3/2 [30–32]. Thus,

Eq. (66) simplifies to

tdiff = κρ(r⋆)r
′2
B

(

1− r̃′1/2
)

=
κ

π

ṁB

⋆
√

v2rel + c2s

(

1− r̃′1/2
)

, (67)

where in the second line we have used Eq. (54) to relate
tdiff to the BHL accretion rate. Comparing Eqs. (65)
and (67), we find that the diffusion time is larger than
the infall time, precisely if ṁB

⋆ ≥ ṁcrit
⋆ where

ṁcrit
⋆

m⋆
≡ π

κ

r′
B

m⋆

(

1 + r̃′1/2
)

=
2π

κ

1 + r̃′1/2

v2rel + c2s
(68)

≈ 5.6× 10−7 yr−1 ṁ−2
•1 r̄

3
10

(

1 + r̃′1/2
)

.
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The second line corresponds to vrel ≪ cs, but in the
numerical calculations we substitute vrel from Eq. (58).

Interestingly, radiation pressure does not have any im-
pact if the BHL accretion rate exceeds the limit, ṁcrit

⋆ .
For the nominal parameter values for a β-disk, Eqs. (54)
and (68) show that ṁB

⋆ ≥ ṁcrit
⋆ is satisified for all

0 ≤ r̃′ ≤ 1. Therefore, we are reassured that radiation is
trapped and advected inward in this case. However, α-
disks are much less dense, and this condition is violated

interior to 20α
1/3
1 ṁ•1M

1/3
•5 m

−1/3
⋆1 .

More generally, BHL accretion may be quenched by the
various other effects discussed above, modifying r′

B
and

decreasing the gas density, and thereby the diffusion and
infall times. In this case, radiation pressure may further
suppress the accretion rate onto the CO if ṁ⋆ ≤ ṁcrit

⋆ .
This criterion can be fulfilled by both α and β-disks. The
accretion rate then becomes

ṁ′′′

⋆ =

{

ṁ′′
⋆ if ṁ′′

⋆ ≥ ṁcrit
⋆ ,

ṁEdd

⋆ otherwise .
(69)

where ṁ′′
⋆ is given by Eq. (61) and we model the

radiation-pressure quenched accretion as Eddington lim-
ited, replacing M• with m⋆ in Eq. (51). We here choose
r̃′ = 1, as this gives the most conservative (smallest) es-
timate for ṁ′′′

⋆ .

5. Quenching by gap formation

If the tidal torques of the CO are sufficiently strong to
dominate over the viscous inflow, an annular gap forms
around the CO, where the gas density is significantly re-
duced (see Sec. III B). Gap formation requires m⋆ and r⋆
to be sufficiently large, [Eqs. (45–47)]. These conditions
can be satisfied for β disks during the final year of the
inspiral, but not for typical α-disks. If a gap forms, the
accretion onto the CO ceases.

For large CO masses m⋆ & 15M⊙ or α . 0.05, the
inspiral rate becomes faster than the viscous inflow rate
of gas outside the annular gap if rgap < r⋆ < rd (see
Eq. (48)). In this case, the CO may “catch up” with
the gas interior to the orbit [50]. The inner disk may be
filled by non-axisymmetric or three dimensional overflow
[100]. In fact, in turbulent MHD disks, the region interior
to the annular gap may have an overdensity (“antigap”)
relative to the case without an EMRI [111]. In this case,
ṁ⋆ may be restarted interior to rd, and may exceed the
BHL rate of the original unperturbed surface density of
the disk [Eq (54)]. However, it is also possible that the
inner disk drains away before rd is reached, implying no
accretion. We conservatively assume no accretion onto
the CO if a gap is present,

ṁ⋆ =

{

ṁ′′′
⋆ if r ≤ rgap ,

0 otherwise .
(70)
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FIG. 4. Critical CO mass as a function of CO orbital radius
for various mechanisms to quench BHL accretion onto the
CO. The accretion rate is reduced for larger m⋆ or larger
r⋆. Top and bottom panels correspond to M• = 105 and
106M⊙, respectively. Gap-decoupling occurs interior to the
green curves.

6. Summary of quenching processes

The mass increase of the CO is very sensitive to the
complicated details of accretion disk astrophysics. Most
of these processes act to decrease the accretion rate from
ṁB

⋆ . We summarize the EMRI parameters where various
quenching mechanisms are in play in Figure 4. This fig-
ure depicts the minimum CO mass m⋆ and orbital radii
where particular processes become significant to quench
the BHL accretion rate onto the CO for α1 = ṁ•1 = 1
for different M• = 105M⊙ (top panel) and 106M⊙ (bot-
tom panel). For these parameters, accretion is first
completely quenched by gap formation for β-disks, but
gaps do not form for α-disks for EMRIs in the LISA
range. Then the gap refills, and accretion is limited by
the amount of inflowing gas, radiation pressure, differen-
tial rotation, and the thin disk geometry. Closer to the
SMBH, these processes become less and less significant
and the accretion rate increases to the BHL rate ṁB

⋆ .
This decreases inward with the decrease of gas density
and the increase in the sound speed. The corresponding
CO mass increase is shown in Figure 2.

D. Implications of BHL Accretion

Let us now describe the implications of BHL accre-
tion on EMRI formation and the GW phase. The for-
mer is relevant to understand whether EMRIs can remain
extreme-mass ratio systems as they inspiral in the accre-
tion disk toward the LISA band, or if they grow in mass
to form an intermediate mass BH. Then, we estimate the
corresponding perturbation to the GW phase and discuss
its detectability with LISA.
Equations (54), (61), (63), (69), and (70) show that

the CO mass growth rate is sensitive to the location of
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the CO, i.e. ṁ⋆ is not a constant. The mass at radius r̄
can be estimated as

m⋆ = m⋆,0 +

∫ t

t0

ṁ⋆dt = m⋆,0 +

∫ r̄

r̄0

ṁ⋆

˙̄r
dr̄ , (71)

wherem⋆,0 is the initial CO mass, and ṁ⋆ is the accretion
rate and ˙̄r is the inspiral rate (8).

1. EMRI formation scenarios

Does the CO mass grow significantly in the disk prior
to the LISA observation? If the CO migrated through the
disk from very large radii,m⋆ ≫ 10M• could be expected
by the time the CO reaches detectable separations for
LISA observations [16, 17]. At large orbital radii the
accretion rate is supply limited. Assuming that a gap
does not form and the CO consumes the inflowing gas
completely and that |ṙ⋆| ≪ |vgas,r|

∆m⋆ ≤ Ṁ• tmerger ≤ 1.2M⊙

ṁ•1M
3
•5

m⋆1
r̄4200 , (72)

where r̄200 = r̄0/200 and we have substituted the inspi-
ral time to coalescence tmerger given by Eq. (13).17 The
merger time is typically less than the GW driven inspiral
time due to angular momentum exchange with the disk
discussed in Sec. VII [17, 36], so that Eq. (72) is only an
upper limit on ∆m⋆. Note that in this case, the mass
increase is larger than the instantenous amount of disk
mass within a few Hill’s radii [Eq. (40)], called the iso-
lation mass, due to the viscous inflow of gas from the
outer regions across the orbit. This situation is most rel-
evant for α-disks where a gap does not form easily [see
Eq. (45)].
Once the CO mass has grown sufficiently, the tidal

torque of the CO eventually opens a radial gap in the
disk, halting further growth. This leads to a limit called
the starvation mass18 [126], which from Eq. (43–44) is

∆m⋆α ≤ max
{

1800M⊙ α
1/2
1 ṁ

5/2
•1 M•5r̄

−5/2
⋆10 ,

9200M⊙ α1ṁ
2
•1M•5r̄

−2
10

}

, (73)

∆m⋆β ≤ max
{

36M⊙ α
2/5
1 ṁ

17/10
•1 M

9/10
•5 r̄

−29/20
10 ,

3.9M⊙ α
4/5
1 ṁ

2/5
•1 M

4/5
•5 r̄

1/10
⋆10

}

. (74)

17 In the opposite extreme ṙ⋆ ≫ vgas,r , the CO growth is limited
by the interior disk mass, which is typically less than 10M2

•5 M⊙

within r̄ ∼ 103, see Fig. 3.
18 If a gap opens and the CO is transported inward by Type-II

migration together with the flow (see Sec. VII below), then ∆m⋆

is limited by the local disk mass in a few Hill’s radii, i.e. the
isolation mass [125]. However, typical CO masses exceed the
local disk mass within r̄ . 103 (see Fig. 3), and the inward
migration rate is slower than the gas inflow rate. In this case,
gas can build up near the edge of the gap and cause the object
to grow to the starvation mass.

Note that both Eq. (72) and (73) must be satisfied for
α-disks, and Eq. (74) for β-disks. In both cases, the CO
mass remains small m⋆ ≪ 100M⊙ for M• = 105M⊙.
It grows to at most ∼ 76M⊙ until reaching r̄ = 25 for
M• ∼ 106M⊙ in a β-disk, but can grow beyond 100M⊙

for M• & 106M⊙ in an α-disk, if captured in the disk
outside r̄ & 50. If so, an initial EMRI would morph
into an intermediate mass ratio inspiral (IMRI) before
entering the LISA band. Growth beyond a mass given
by Eq. (74) is halted by gap formation [17].
We conclude that EMRIs can remain extreme in mass

ratio on their journey to the LISA band (r̄ . 50) for
a non-negligible set of disk parameters. Conversely, the
mass measurement with LISA could have interesting im-
plications on the structure of the accretion disk. Suppose
LISA measures m⋆ to be large, consistent with either
Eq. (73) or (74). This information alone would suggest
that the CO has grown by accretion in an α or β-disk,
and suggest the possible presence of a disk, even without
a direct GW phase shift measurement. In the opposite
case, if LISA measures m⋆ to be larger than what is ex-
pected from the growth arguments given by Eq. (73–74),
then it could point to the common existence of interme-
diate mass black holes, which is debated at the time of
the writing of this manuscript.

2. GW Observations

BHL accretion changes the GW inspiral rate of
the EMRI due to the increase in the radiating mass
quadrupole. This leads to a GW phase shift relative to
a constant m⋆. Is BHL accretion measurable for EMRIs
with LISA observations?
For a crude first estimate let us consider the corre-

sponding limits on the mass and timescales of Sec. II B 1.
Figure 3 shows the BHL mass accretion rate as a function
of radius (red lines). For these masses (10M⊙, 10

5M⊙),
∆m⋆/m⋆ ∼ 10−5 to 10−4 for α- and β-disks. This is
comparable to the mass measurement precision of LISA
for a source at ∼ 1Gpc, suggesting that the perturba-
tion caused by the CO mass growth may be marginally
significant. The timescale argument with TB ∼ m⋆/ṁ⋆ is
not directly applicable as ṁ⋆ varies significantly during
a one-year LISA measurement.
A more accurate analytical estimate is computed in

Appendix A, where we integrate the total perturbation
to the GW phase assuming that ṁ⋆ = Ar̄B , where A and
B are constants. The phase shift will be presented in
Sec. VIII, Eqs. (115–116) and Table II; it shows that the
phase shift accumulates with time initially as δφ ≈ a1T+
a2T

2, for short observations relative to the inspiral rate,
and eventually asymptotes to a3T

c5, where (a1, a2, a3)
are constant coefficients that depend on the EMRI and
the accretion disk parameters.
We find that the quenching by gas supply has a major

effect on the GW phase shift. Without quenching, the
effect would be of order δφB

GW
∼ 7 and 3000 rads for α
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and β disks respectively, and even larger for larger m⋆,
assuming Tobs = 1yr and M•5 = m⋆1 = ṁ• = 1. How-
ever, at most separations, the BHL rate is significantly
suppressed by gas supply for β disks, but the reduced
dephasing is still about 13 rad in a year, and larger for
larger M•. The phase shift is proportional to the follow-
ing combination of accretion disk parameters: α−1

1 ṁ−5
•1

and α
−4/5
1 ṁ

−17/5
•1 for the unquenched BHL rate for α-

and β-disks, and ṁ•1 for the supply limited rate. These
combinations may be marginally measurable by LISA ob-
servations, given sufficiently strong signals.

V. HYDRODYNAMIC DRAG

In this section, we concentrate on the drag induced by a
difference in the gas and CO’s velocity, sometimes called
wind . This relative velocity is a consequence of a pressure
gradient in the disk and results in a force that pushes the
CO both azimuthally and radially [26, 27]. As in Sec. IV,
the goal is to make order of magnitude estimates on the
corresponding GW phase shift and compare them to the
detectability measures of Sec. II B.

A. Azimuthal wind

If the orbital velocity of the gas is different from the
CO’s orbital velocity, the latter will experience an az-
imuthal headwind or backwind (relative to its unper-
turbed azimuthal motion). To estimate the orbital veloc-
ity of the gas, let us write the radial equation of motion
assuming that M• ≫ m⋆, the orbital velocity is much
larger than the radial velocity, and that the flow is sub-
sonic:

−
v2φ
r
+vr∇rvr = −M•

r2
−∇rΦ⋆−∇rΦdisk−

∇rptot

ρ
, (75)

where vφ and vr are the azimuthal and radial velocities of
the gas, ptot is the total pressure of the gas in a comov-
ing frame, and ρ is the gas density. For standard thin
disks, ptot = ρc2s = ρH2Ω2, where the scale height H
is independent of radius in the radiation-pressure dom-
inated regime [see eg. Eqs. (34) and (38)]. The orbital
average gravitational potential of the CO, Φdisk, acting
on the fluid element at radius r is

Φ⋆ = − 2

π

m⋆

r + r⋆
K

(

2
√
rr⋆

r + r⋆

)

, (76)

where K(k) =
∫ π/2

0
(1 − k2 sin2 θ)−1/2dθ is the complete

elliptic integral of the first kind. The gravitational po-
tential of the disk, Φdisk, will be given in Sec. VI [see
e.g. Eq. (95)].
Let us parameterize the radial density profile via

ρ(r) ∝ rγ , where the exponent γ = 3/2 and γ = −3/5 for
α- and β-disks respectively [Eq. (33)]. Note that vr∇rvr

is negligible in Eq. (75) since vr ≪ cs and vr ∝ 1/(rΣ),
see Eq. (37), and Fig. 2. Equation (75) then becomes

−
v2φ
r

= −M•

r2
−∇rΦ⋆ −∇rΦdisk + (3− γ)

H2Ω2

r
, (77)

which one can solve to obtain

v2φ =
M•

r

[

1 + (γ − 3)
H2

r2
+

r

M•

∇r(Φ⋆ + Φdisk)

]

. (78)

In the following we neglect the effects of the potential
due to the secodary, an approximation valid if the gas
accretes onto the CO from outside the Hill’s sphere, i.e.
the r′

B
< r′H, see Eqs. (53,40), as well as the disk gravity.

We then find that a corotating CO always experiences
an azimuthal headwind with velocity (i.e. orbital velocity
of gas with respect to the CO),

δvφ ≡ Ωvacr − vφ

≈ 3− γ

2

H2

r2

√

M•

r
=

3− γ

2
(1.5ṁ•1)

2r̄−5/2 , (79)

where we have used Eqs. (34) and (78). This equation
agrees with Tanaka et al. [127] or the approximate equa-
tion of Levin [17]. This estimate, however, does not hold
for transsonic flows, as in this case the CO experiences a
backwind, as found by Chakrabarti [27]. Since such flow
requires very high accretion rates where the thin disk
approximation may not hold, we ignore this possibility
here.
An azimuthal headwind leads to additional dissipation

of the CO’s specific angular momentum, ℓ̇wind = rṖ /m⋆,

where Ṗ is the rate of change of the linear momentum,
so that

ℓ̇wind = −r ṁ⋆δvφ
m⋆

= −3− γ

2

ṁ⋆M•

m⋆
(1.5ṁ•1)

2r̄−3/2 ,

(80)
where we have used Eq. (79). Clearly, this is typically
a small perturbation relative even to the loss of angular
momentum through GW emission. For unsaturated BHL
accretion ṁ⋆ = ṁB

⋆ , substituting Eq. (54) yields

ℓ̇Bwind

ℓ̇GW

≈
{

6.1× 10−10α−1
1 ṁ−3

•1 M•5r̄
8
10 for α-disks,

3.4× 10−6α
−4/5
1 ṁ

−7/5
•1 M

6/5
•5 r̄

59/10
10 for β-disks.

(81)

For supply limited BHL accretion ṁ⋆ = Ṁ•, Eq. (62),
yields

ℓ̇sup.Bondi
wind

ℓ̇GW

≈
(

1.0× 10−7

2.5× 10−7

)

× ṁ3
•1

M3
•5

m2
⋆1

r̄210 , (82)

where the top and bottom rows correspond to α- and β-
disks respectively. The change in the angular momentum
dissipation rate leads to a modified inspiral rate that we
discuss in Sec. VD.
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B. Radial wind

In addition to the azimuthal headwind, the CO also
experiences a wind in the radial direction. The corre-
sponding force is

Ṗwind = ṁ⋆ |v⋆r − vgas,r| (83)

≈ Ṁ•m
2
⋆

Hc3sr
= 2.5× 10−22ṁ−3

•1 M
−1
•5 m

2
⋆1r̄

7/2
10 , (84)

where we have assumed |vr⋆| ≪ |vgas,r|, see Fig. 2. The
radial equation of motion is thus

m⋆Ω
2r =

m⋆M•

r2
+ Ṗwind . (85)

The first term on the RHS is the gravitational force,
which satisfies m⋆M•/r

2 = m⋆Ω
2
vacr, by the definition

of Ωvac. Therefore, unlike the azimuthal wind, the ra-
dial wind does not dissipate angular momentum, but it
modifies the orbital velocity Ωvac relative to Keplerian:

Ω2 − Ω2
vac

Ω2
vac

=
Ṗwind

m⋆Ω2
vacr

= 2.5× 10−16m⋆1r̄
11/2
10

ṁ3
•1

. (86)

The impact of this modification on the GW phase will be
discussed in Sec. VD.

C. Dynamical friction

Dynamical friction is generated by the gravitational
interaction of a perturber traveling at some relative ve-
locity in an ambient medium [128]. The gravity of the
perturber deflects the particles of the medium and gen-
erates a density wake trailing the perturber. In turn, the
gravitational pull of the density wake acts like friction,
decreasing the speed of the perturber. This process is
analogous to Landau-damping in plasma physics and is
also important in galactic dynamics for objects moving
through a population of stars [129, 130].
The standard treatment of dynamical friction in a

gaseous medium usually assumes that the medium has
a spatially uniform inital velocity distribution relative
to the perturber. If the perturber moves on a linear
trajectory with a subsonic relative velocity in a gaseous
medium, then the density wake in front and behind the
perturber approximately cancel, leading to a small drag
force [131]. However, dynamical friction is more signifi-
cant for a supersonic perturber. Dynamical friction has
also been investigated for perturbers moving on quasi-
circular orbits in an initially static (i.e. nonrotating)
medium [132]. In this case the density wake has a spiral
structure and the drag force is enhanced. A fully rela-
tivistic treatment was presented in Refs. [39, 133].
Equations (37,38,79) and Figure 2 show that the rel-

ative wind velocity at corotating orbits is typically non-
relativistic and subsonic in standard α and β disks. The

arguments mentioned above then imply that the stan-
dard dynamical friction effect is greatly suppressed.19

The relative gas velocity at different radii outside
r⋆ ± 2

3H , however, is supersonic [see Eq. (55)] and thus,
dynamical friction with respect to the gas in this re-
gion may be significant. In this case, the velocity of
the medium is mostly due to differential rotation of the
accretion disk and not the wind generated by the pres-
sure gradient effects of Sec. (VA). Differential rotation
causes the density waves to wind up and standard dy-
namical friction formulas are not applicable. This regime
has been well studied in planetary dynamics, which leads
to the phenomenon called planetary migration. In this
paper, we explicitly distinguish between such migration,
described separately in Sec. VII below, and standard dy-
namical friction, which as argued above has a negligible
effect on LISA EMRIs.

D. GW Implications

Are such changes in the orbital dynamics measurable
with EMRI GWs? Let us first consider the effect of an
azimuthal wind, for which the inspiral rate is increased
with the timescale Ta.wind ≡ ℓ/ℓ̇wind:

T α
aw ≈ −4.0× 108 yr α1ṁ

3
•1M•5m

−1
⋆1 r̄

4
10 , (87)

for α-disks and

T β
aw ≈ −7.1× 104 yr α

4/5
1 ṁ

7/5
•1 M

4/5
•5 m−1

⋆1 r̄
19/10
10 , (88)

for β-disks. We have here used the fact that the specific
angular momentum is ℓ = r2Ω where Ω is given in Eq. (2).
These timescales can now be used to estimate the GW

dephasing. The effect of the headwind is to change the
orbital angular velocity of the EMRI system, i.e. it in-
duces a δΩwind. This change in frequency can be ap-
proximated as δΩwind ∼ (ℓ̇wind/ℓ)Ωδt, so the phase shift

is proportional to Taw = ℓ̇wind/ℓ. Such a change in or-
bital frequency induces a change in orbital phase, which
we can approximate as δφaw ∼ δΩwindδt ∼ (δt/Taw)φtot

GW
.

For α-disks we find δφαaw ≈ 0.03 rads, while for β-disks
we find δφβaw ≈ 33 rads, using a typical set of EMRI and
disk parameters and and initial separation of r̄0 = 20.
A more accurate measure of the GW phase shift can be

obtained by integrating the perturbation to the inspiral
rate due to the hydrodynamic drag. The results of a sim-
ilar calculation was presented in Paper I [51] for a general
model, of which the azimuthal wind is a special case. We
provide the details of the derivation in Appendix B be-
low. The asymptotic analytical solution is presented in
Eqs. (115)-(116), where the coefficient and exponents are
given in Table II. For the default parameters, we get that

19 Regular dynamical friction may be significant for standard α and
β disks for retrograde orbits [56].
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the perturbation to the GW phase is δφαaw ∼ 0.03 rad for
α-disks, δφβaw ∼ 47 rad for β disks, assuming BHL ac-
cretion is not saturated for the final year of inspiral. If
we include the limitation by the gas supply does limit
the process leading to δφαaw ∼ 0.15 rad for α-disks and
δφβaw ∼ 0.35 rads for β-disks. The result of the full cal-
culation including all other saturation effects is shown in
Figures 1 and 5 for different EMRI masses and final in-
spiral radii for a one year observation. We conclude then
that the azimuthal wind will not effect the EMRI signal
very significantly for typical parameters.
Let us now consider the effect of a radial wind on the

GW phase. Since the GW phase is proportional to twice
the orbital phase for quasi-circular orbits, the total GW
phase shift induced by the radial wind is roughly

δφrad. wind
GW

= 2(Ω− Ωvac)Tobs ≈
Ṁ•m⋆

ΩvacHc3sr
2
Tobs (89)

= 5.0× 10−10 radsM−1
•5 m⋆1ṁ

−3
•1 r̄

4
10 . (90)

This radial wind is thus completely negligible for the
LISA measurement unless r̄ & 100020.

VI. AXISYMMETRIC GRAVITATIONAL

EFFECTS

The axisymmetric component of the disk gravity in-
duces several effects in the orbital evolution of an EMRI:
it modifies the angular velocity of the orbit and the in-
spiral rate and induces additional apsidal precession for
eccentric orbits. We examine these effects here in turn,
making order of magnitude estimates of the correspond-
ing GW phase shifts.

A. Accretion Disk Potential

The gravitational potential of a thin disk may be much
stronger than the isotropic component of the enclosed
mass, Mdisk(r̄)/r. This is to be expected since a thin
ring exerts a much stronger force than a spherical shell
of the same mass, which can point both in or out for ex-
terior and interior test particles, respectively. Here we
estimate the Newtonian gravitational potential of a sta-
tionary planar disk.
The total potential of the disk is a superposition of

the contributions of infinitesimal concentric rings of mass
dm = 2πr drΣ. Using dimensionless radius variables,

Φdisk(r̄) = −M•

∫ r̄max

r̄min

Σ(r̄0)
4r̄0
r̄ + r̄0

K

(

2
√
r̄r̄0

r̄ + r̄0

)

dr̄0.

(91)

20 Note that ṁ•1 ≪ 1 is unrealistic for radiatively efficient, thin
disk models, but even so, BHL accretion would be quenched by
the limited gas supply, as explained in Sec. IVC 3.

where the surface density Σ(r̄) is to be substituted from
Eq. (27) or (33). We here used the fact that a circular
ring of mass dm and radius r0 generates a potential at
r as given in Eq. (76). Here r̄min and r̄max are the inner
and outer radii defining the radial extent of the disk, we
assume r̄min ∼ 0 and r̄max ∼ r̄rad in practice.
For inclined orbits, with the CO angular momentum

vector L⋆ at inclination ι relative to the total angular
momentum vector of the CO and the disk, the potential
generated by the disk can be expressed more conveniently
with the Legendre polynomials Pℓ(x)

Φdisk(r̄) = −
∞
∑

ℓ=0

2π[P2ℓ(0)]
2P2ℓ(cos ι)

×M•

∫ r̄max

r̄min

Σ(r̄0)r̄0
r̄2ℓ<
r̄2ℓ+1
>

dr̄0 , (92)

where r̄< = min(r̄, r̄0) and r̄> = max(r̄, r̄0) [134]. The
integrals in Eq. (92) can be simply evaluated analytically
for the particular form of Σ(r̄) given by Eq. (33). In
Appendix C1, we carry out this exercise and demonstrate
that in the limit r̄min ≪ r̄ ≪ r̄max,

Φα-disk(r̄) ≈ −πΣα0

√
r̄max r̄

2 , (93)

Φβ-disk(r̄) ≈ 2πc0Σβ0 r̄
2/5 , (94)

where c0 = 1.38, and Eq. (33) was used to define the
dimensionless density scales Σα0 and Σβ0 as M•Σ(r̄) =

Σα0r̄
3/2 and Σβ0r̄

−3/5, for α and β-disks, respectively.
Substituting r̄max = r̄rad from Eq. (31), we get

Φdisk(r̄)

Φ(r̄)
≈















−1.4× 10−12α
−20/21
1 ṁ

−13/21
•1 M

22/21
•5 r̄310

for α-disks ,

1.2× 10−9α
−4/5
1 ṁ

3/5
•1 M

6/5
•5 r̄

7/5
10

for β-disks ,
(95)

where we have used Φ(r̄) = r̄−1 for the SMBH potential.
Equation (95) shows that the disk potential decreases

outwards and inwards for α and β-disks. Thus interest-
ingly, the disk exerts an outward force on the CO for
α-disks. In Appendix C 1, we demonstrate that this is
due to a strong quadrupolar field generated by the out-
skirts of a radiation-pressure dominated α-disk.

B. Change in the orbital frequency

The orbital angular frequency Ω(r̄) is modified due to
the axisymmetric gravitational field of the disk from its
value without the disk Ωvac given by Eq. (2). Equating
the centripetal acceleration to the gradient of the gravi-
tational potential we find

rΩ2 =
M

r2
+
dΦdisk

dr
= rΩ2

vac +
dΦdisk

dr
. (96)

Therefore the orbital frequency is

Ω ≈ Ωvac

(

1 +
r̄2

2

dΦdisk

dr̄

)

. (97)
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C. Change in the inspiral rate

Here we calculate the modifications to the inspiral rate
due to the disk potential and the corresponding change
in the orbital frequency.
The energy in the Newtonian approximation is

E =
1

2
Ω2r2ηM − ηM2

r
+m⋆Φdisk , (98)

where M is the total mass and η = M•m⋆/M
2 is the

symmetric mass ratio. For EMRIs, ηM ≈ m⋆ and M ≈
M•. Assuming no other source of energy loss, other than
the GW emission, and quasi-circular orbits,

dE

dt
= −32

5
η2M2r4Ω6 . (99)

We can use Eq. (97) to express the radial and time
derivatives of the energy explicitly as a function of radius
alone:

dE

dr̄
=
ηM

2r̄2

(

1 + 3r̄2
dΦdisk

dr̄
+ r̄3

d2Φdisk

dr̄2

)

, (100)

dE

dt
= −32

5
η2r̄−5

(

1 + 3r̄2
dΦdisk

dr̄

)

. (101)

Therefore the radial velocity is modified as

dr̄

dt
=

(

dE

dr̄

)−1
dE

dt
= ˙̄rvac

(

1− r̄3
d2Φdisk

dr̄2

)

, (102)

where ˙̄rvac is the GW inspiral rate neglecting the effects
of the disk [Eq. (8)]. Notice that the first derivative of
the disk potential does not enter the radial velocity.

D. Apsidal precession

While clearly unimportant for quasi-circular EMRIs,
we briefly demonstrate that the axisymmetric disk grav-
ity causes a negligble amount of apsidal precession in the
eccentric case too.
The radial oscillation frequency for a nearly circular

orbit in a perturbed potential is

κ2(r) =
M•

r3
+
d2Φdisk

dr2
+

3

r

dΦdisk

dr
, (103)

(see, e.g. [130]). If κ 6= Ω, the ellipse precesses in its plane
at a rate Ω − κ. The dimensionless apsidal precession
rate relative to the Keplerian frequency from Eqs. (97)
and (103) is thus

Ωap

Ωvac
≡ Ω− κ

Ωvac
= − r̄

3

2

(

d2Φdisk

dr̄2
+

2

r̄

dΦdisk

dr̄

)

. (104)

We relate Ωap/Ωvac to the induced phase shift below.

E. GW Implications

The disk potential changes the GW frequency and the
inspiral rate at fixed orbital radii. The dimensionless
change in the frequency δΩ = (Ω − Ωvac)/Ωvac, inspiral
rate δ ˙̄r = ( ˙̄r − ˙̄rvac)/ ˙̄rvac, and the dimensionless apsidal
precession rate Ωap/Ωvac are all proportional to deriva-
tives of Φdisk(r̄)/Φ(r̄), up to a factor of order unity [see
Eqs. (97,102,104)]. Equation (95) shows that this ra-
tio is typically very small, at the level of Φdisk/Φ ∼
(2 × 10−6, 10−5) for (α, β)–disks with very small α and
large M• and r̄, (α,M•, r̄) ∼ (10−3, 106M⊙, 100), and
even smaller for more typical values. This leads to a small
change in the GW phase of Eq. (14). In Appendix C, we
carry out a detailed calculation that shows that for both
α and β-disks, self-gravity effects induce a dephasing of
approximately 10−4 − 10−7 rads for our nominal set of
parameters in a one year observation, which is clearly
below LISA’s observational threshold.
These estimates are modified if the gravitational

torques from the CO quenches gas inflow onto the SMBH,
and clear a gap (Sec. III B). In this case, the gas density
is greatly reduced interior to the CO, but extra gas ac-
cumulates outside its orbit, changing the potential. In
Appendix C we show that this effect increases the de-
phasing by roughly an order of magnitude for β-disks,
but such an increase is still well below the threshold of
detectability. Axisymmetric gravitational effects may be
more important for eccentric orbits with large semi-major
axis r̄ ∼ 1000.

VII. MIGRATION

In this section, we study non-axisymmetric gravita-
tional effects induced by the disk, which lead to a phe-
nomenon known as “migration” in planetary dynamics.
As before, the goal is to make order of magnitude esti-
mates of the migration effect on the GW phase and com-
pare them with the detectability measures of Sec. II B.

A. General Properties

Consider the non-axisymmetric gravitational effects of
the disk, leading to angular momentum dissipation, anal-
ogous to planetary migration (see [110, 125] for reviews).
The orbiting CO exerts a nonzero average gravitational
torque on the gaseous disk, creating a spiral density
wave. The total angular momentum budget is dissipated
through viscosity and the outward angular momentum
transport of the spiral density wave. The gravitational
torque of the spiral density wave exchanges angular mo-
mentum resonantly with the CO causing it to migrate
[107]. This effect is analogous to dynamical friction (see
Sec. VC), but accounts for the inhomogeneous velocity
field of the gaseous medium.
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In planetary dynamics, this phenomenon in different
regimes is called Type-I, Type-II, and Type-III migra-
tion. The distinction is whether a gap is opened (Type-
II) or not (Type-I) and whether strong corotation torques
related to horseshoe orbits are taken into account (Type-
III). In the following we neglect Type-III migration be-
cause it is most relevant only if the disk mass near coro-
tating orbits is comparable or larger than the secondary
mass. Figure 3 shows that this is not the case for EMRIs
in the LISA frequency band.

In a pioneer paper, Goldreich and Tremaine presented
the first study on Type I migration, using 2 dimensional
(2D) linear perturbation theory [107]. Their results were
later improved by Tanaka et. al. to account for corota-
tion resonances and 3D effects in isothermal disks [127],
which are also consistent with 3D hydrodynamic simu-
lations of laminar disks [135]. Further generalizations
exist for locally adiabatic 2D disks [136]. However, re-
cent MHD shearing box simulations of turbulent proto-
planetary disks with a low mass planet show that the
torques exhibit stochastic fluctuations for Type I migra-
tion, where even the sign of the torque changes rapidly
[137, 138]. Stochastic migration is not expected if the
satellite is more massive relative to the disk. The mi-
gration is also very sensitive to the value of opacity and
radiation processes [139]. Recently, Hirata generalized
the original study of Goldreich and Tremaine for laminar
2D relativistic disks and found the angular momentum
transport to be larger by a factor ∼ 4 close to the cen-
tral BH [140]. Finally, higher order PN corrections may
resonantly excite persistent spiral density waves close to
the SMBH even without an m⋆, which could modify the
torque estimates for EMRIs [141]. To our knowledge,
Type-I migration is unexplored for the expected environ-
ments for LISA EMRI sources: for radiation-pressure-
dominated, optically-thick, geometrically-thin, relativis-
tic, magnetized and turbulent disks, where the mass of
the perturbing body m⋆ exceeds the disk’s mass. For a
simple estimate below, we explore the GW phase shift
in an EMRI system due to Type I migration, using the
isothermal non-relativistic laminar formulas of Tanaka
et. al [127], where we include the effects of radation pres-
sure by using the corresponding expressions for the sound
speed and the scale height..

If the CO is sufficiently massive and/or far out, a cen-
tral region is cleared out and a circular gap develops [see
Sec. III B]. Once a gap opens, the angular momentum ex-
change becomes much more regular than Type-I and it is
determined by the angular momentum transport through
the more distant part of the disk [135, 137, 138]. This
type of angular momentum exchange is referred to as
Type II migration. If the local mass of the disk is greater
than the mass of the perturbing object, then the object
migrates inward on a viscous timescale with the velocity
of the accreting gas. However, for LISA EMRI sources,
the local disk mass is smaller than the CO’s (see Fig. 3).
In this case, the migration slows down, and becomes “sec-
ondary dominated Type-II migration” [125].

Simple steady-state estimates, based on angular
momentum balance, were presented by Syer and
Clarke [112]. These estimates account for the increase
of the gas density relative to an isolated disk through
a constant factor, assuming that the angular momen-
tum exchange is dominated by that near the inner-edge
of the disk, but that the accretion is not significantly
quenched across the gap. Later, Ivanov et al. [101]
relaxed the steady-state assumption and estimated the
quasi-stationary, time-dependent evolution of the disk
and satellite using a zero stress boundary condition at
the location of the binary for which accretion is quenched
across the gap.
Both of these studies focused on thin, one-zone, gas

pressure dominated, Shakura-Sunyaev disks, where the
density is an increasing function of stress. This assump-
tion is satisfied for β-disks but not for radiation-pressure
dominated α-disks. In the later case, we are not aware of
literature that is applicable to Type II migration. Recent
studies have shown that migration with an annular gap
is affected by global edge-modes for massive disks, and
can cause stochastic migration of planets either inward
or outward (similar to the Type I case with MHD) [142],
and the migration rate is also sensitive to vortex forming
instabilities [143]. However, these phenomena have not
yet been explored in AGN accretion disks for EMRIs.
For an order of magnitude analysis of Type II migration,
we use both Syer and Clarke and the asymptotic Ivanov
et. al. equations to estimate the corresponding GW phase
shifts for EMRIs in β-disks. We make a conservative es-
timate for radiation pressure dominated α-disks, based
on angular momentum balance between m⋆ and the lo-
cal disk, neglecting the accumulation of gas outside the
gap.

B. Type-I migration

For an isothermal 3D disk, Type I migration removes
or increases angular momentum at a rate

ℓ̇mig,I = ±c1
m⋆Σr

6Ω4

M2
• c

2
s

= ±c1
m⋆

M•

Σ
r3

H2
, (105)

where c1 = (1.4 − 0.5γ) and γ = 3/2 or −3/5 for α
and β-disks, respectively, and the ± signs highlight the
stochastic nature of migration in a turbulent disk [127].
The magnitude of c1 is different for locally adiabatic 2D
disks by a factor ∼ 2, but the scaling with other param-
eters remains the same [136]. Relative to the GW rate of
angular momentum loss,

ℓ̇mig,I

ℓ̇GW

=







±7.2× 10−11α−1
1 ṁ−3

•1 M•5r̄
8
10 for α-disks ,

±5.1× 10−7α
−4/5
1 ṁ

−7/5
•1 M

6/5
•5 r̄

59/10
10

for β-disks .

(106)

Notice that the Type I migration dominates over even
the GW loss of angular momentum at sufficiently large
radii, beyond r̄ ≈ 150 for α-disks and r̄ ≈ 112 for β-disks.
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C. Type-II migration

If the CO is sufficiently massive and/or far out that a
gap opens (see Sec. III B) the CO is subject to Type II
migration. The angular momentum exchange depends on
the local disk mass near the binary,md given by Eq. (35).
Typically, md < m⋆ (see Fig. 3), and the specific angu-
lar momentum dissipation rate, in the quasi-stationary
approximation of Syer & Clarke [112], is

ℓ̇mig,II,SC =

(

md

m⋆

)k

ℓ̇gas = −
(

md

m⋆

)k
vorbvgas,r

2
, (107)

where ℓ̇gas is the angular momentum loss in the gas due

to viscosity, vgas,r = 2Ṁ•r/md(r) is the radial velocity of
gas given by Eq. (37), vorb is the orbital velocity Eq. (2),
and k = 3/8 for electron-scattering opacity and β-disks.
If neglecting the banking up of gas near the outer edge of
the gap, then angular momentum balance implies k = 1,
which we adopt conservatively for α-disks [see eq. (42)
in Ref. [101]]. We note that this assumption is different
than those used in Refs. [54, 97]. Substituting Eqs. (6),
(35), and (37),

ℓ̇mig,II,SC

ℓ̇GW

=















6.2× 10−6 ṁ•1M
3
•5m

−2
⋆1 r̄

4
10

for α-disks ,

5.8× 10−3 α
1/2
1 ṁ

5/8
•1 M

13/8
•5 m

−11/8
⋆ r̄

25/8
10

for β-disks .
(108)

Notice that for α-disks, this is independent of α; the dis-
sipation of the CO’s angular momentum is proportional
to Ṁ•. For β-disks, Eq. (108) also accounts for the accu-
mulation of mass near the CO, which leads to additional
angular momentum dissipation, sensitive to α.
We also consider the time-dependent solution of Ivanov

et. al. [101] for β-disks that accounts for the accumulation
of gas and a zero stress boundary condition at the edge
of the gap (see also Eq. (24) in Ref. [? ]):

ℓ̇βmig,II,IPP = −c2vorb
Ṁ•

m⋆
(r rdd)

1/2 , (109)

where rdd is the “radius of disk dominance”, which sat-
isfies md(rdd) = m⋆ [see Eq. (35)], c2 ≡ {1 + δ[1 −
(r/rdd)

1/2]}k2 , δ = 6.1, and k2 = 0.26. Note that c2
is only mildly r dependent. For r = rdd, c2 = 1 so
that both estimates [Eqs. (107) and (109)] imply a mi-
gration rate tracking the radial velocity of gas, so that

ℓ̇βmig,II,IPP = ℓ̇βmig,II,SC = ℓ̇gas = −vorbvgas,r/2, while for
r ≪ rdd, c2 ≈ 1.66, asymptotically independent of r.
Similar to Eq. (107), Eq. (109) is valid for electron scat-
tering opacity β-disks, but is not applicable for radiation-
pressure dominated α-disks. Substituting Eq. (35) for
rdd, we find for r ≪ rdd,

ℓ̇βmig,II,IPP

ℓ̇GW

= 5.1× 10−4 α
2/7
1 ṁ

11/14
•1 M

31/14
•5 m

−23/14
⋆1 r̄

7/2
10 .

(110)

D. Quenching of migration

In the following we assume that inside and outside the
minimum gap opening radius rgap [Eq. (45–46)] Type-I
and Type-II migration operate, where we use Eq. (106)
and Eqs. (108,110), respectively. Once the CO has
crossed inside rgap, the gas is no longer expelled effi-
ciently by the tidal field of the CO, and the gas is free to
flow in on the accretion timescale with a radial velocity
vgas,r [Eq. (37)]. If this is faster than the GW inspiral
rate of the CO v⋆r [Eq. (8)], then the gap can refill. In
Sec. III B 1, we have shown that v⋆r < vgas,r is satisfied
if r̄ ≥ r̄d, given by Eq. (48). Thus, if r̄ = r̄gap ≥ r̄d is
met [see Eqs. (45–46)], we assume that the gap refills,
and switch from the disk generated torque from Type-II
to Type-I. Otherwise, if a gap has formed and cannot fol-
low the inspiral rate of the CO, disk torques are expected
to shift out of resonance, and become too distant for ef-
ficient angular momentum exchange. Then the interac-
tion is greatly suppressed, and we assume ℓ̇mig(r̄) = 0
if r̄gap ≤ r̄ ≤ r̄d. Once the gap has formed and de-
coupled, it can no longer refill, so we further assume
ℓ̇mig = 0 if r̄ ≤ r̄gap ≤ r̄d. Finally, if the gap refills
(i.e. r̄gap ≥ r̄d) then Type-I migration can operate effi-
ciently even if the inspiral rate is faster than the viscous
inflow rate (r̄ ≤ r̄d), since the spiral patterns can form
much faster on a dynamical timescale tdyn ∼ Ω−1. The
interaction may be significantly different only much later
when the inspiral time tGW ≡ r/ṙGW becomes faster than
the cooling time of the disk [145], i.e.

tcool ≡
1

αΩ
, (111)

where ṙGW is the GW driven inspiral rate, Ω is the orbital
angular velocity and α is the parameter in the viscosity
precription. From Eqs. (2), (8), and (111) we get tGW <
tcool inside

r̄c ≡ 0.055α
−2/3
1 M

−2/3
•5 m

2/3
⋆1 . (112)

Typically the disk cooling does not impose a limitation
outside the ISCO for EMRIs unless α is very small and
the mass ratio is not extreme.
To summarize we assume,

ℓ̇′mig =

{

ℓ̇mig,I , if r̄ < r̄gap ,

ℓ̇mig,II , if r̄ > r̄gap ,
(113)

and

ℓ̇mig =







0 if r̄ < r̄c or r̄gap < r̄ < r̄d
or r̄ < r̄gap < r̄d ,

ℓ̇′mig otherwise ,
(114)

where for ℓ̇mig,I we use Eq. (106), while for ℓ̇mig,II ei-
ther the Syer-Clarke model Eq. (108) or the Ivanov et al.
model (110). The later is only available for β-disks in
the radiation pressure dominated regime, while the Syer-
Clarke is applicable both for α or β-disks. In summary,
we consider three cases for migration, which utilize the
same Type-I model, but differ in the Type-II regime
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1. (SC-α): α-disks with Syer-Clarke model, Eq. (108);

2. (SC-β): β-disks with Syer-Clarke model, Eq. (108);

3. (IPP-β): β-disks with Ivanov et al. model,
Eq. (109).

E. GW Implications

The change in the angular momentum dissipation rate
modifies the GW driven inspiral rate, which modifies
the GW phase evolution. The corresponding phase shift
δφGW can be calculated in a similar way as for an az-
imuthal wind (see Sec. VD above, and Paper I [51]). The
interested reader can find the details of the derivation in
Appendix B below.
For the default parameters, we find that Type-I mi-

gration produces a typical GW dephasing on the order
of 10−2 and 10 radians during the final year of observa-
tion in α- and β-disks, respectively. The large increase in
dephasing for the β-disk case is due to the much larger
surface density.
Even more interesting is the case where a gap opens;

Type-II migration is clearly the most dominant pertur-
bation among all the ones considered in this paper. How-
ever, as demonstrated in Sec. III B, a gap is expected to
close for most EMRIs in the LISA band. For α-disks,
Type-II migration can generate GW phase shifts of or-
der 10− 100 radians in one year, and up to 103− 104 rad
for β-disks. The modifications to the GW spectrum are
so large that if this effect is in play, that vacuum EMRI
templates might be ineffective to extract LISA GWs. The
blue lines in Figure 1 and 5 show the phase shift due to
migration as a function of final orbital radius including
quenching effects [Eq. (114)] for both Type-II migration
models (Syer & Clarke steady state and the Ivanov et
al. quasistationary models, Eq. (108) and (110), respec-
tively), assuming α1 = ṁ•1 = 1. For other system pa-
rameters and observation times, we provide asymptotic
analytical expressions in Eqs. (115–116) and Table II be-
low.

VIII. COMPARISON OF ACCRETION DISK

EFFECTS

We summarize the GW phase shift generated by the
dominant accretion disk effects in Table I. Different rows
show different accretion disk effects with the parameters
of Eq. (26), while columns show different EMRI systems
with component masses given by all four combinations of
M• = (105, 106)M⊙ and m⋆ = (10, 100)M⊙. The entries
represent the GW phase shift between the standard vac-
uum waveform and those including the effects of the ac-
cretion disk in the Newtonian approximation. The phase
shift is between one-year long GW waveforms with the
same final radius in the most sensitive LISA frequency

(10, 105) (102, 105) (10, 106) (102, 106)
Primary acc. 1.0 (−3) 1.0 (−3) 1.0 (−3) 1.0 (−3)
BH α 1.9 (+0) 4.6 (−3) 5.7 (−3) 2.9 (−3)
BH β 4.6 (+0) 0.0 (+0) 1.8 (+1) 7.0 (+0)
W α 1.5 (−2) 8.0 (−5) 8.0 (−4) 1.1 (−4)
W β 1.4 (−1) 0.0 (+0) 3.2 (−1) 8.3 (−1)
SG α 2.5 (−5) 4.9 (−5) 4.5 (−6) 8.7 (−6)
SG β 6.8 (−4) 5.5 (−4) 1.1 (−3) 8.9 (−4)
MαSC 6.2 (−3) 1.8 (−1) 2.4 (−6) 9.6 (−5)
M βSC 6.9 (+2) 1.8 (+2) 7.3 (−2) 8.8 (−1)
M βIPP 8.2 (+1) 1.4 (+1) 7.3 (−2) 8.8 (−1)

TABLE I. Summary of accretion disk effects on the GW phase
shift induced by different accretion disk effects relative to
vacuum waveforms. Rows correspond to different accretion
disk effects. Columns correspond to different EMRI systems
assuming a 1 year observation. The entries x (y) represent
x× 10y in radians. The phase shift is negative for all effects
except for Φα disk.

band.21 (r̄f , r̄0) ≈ (16, 25) for (M•,m⋆) = (105, 10)M⊙;
(r̄f , r̄0) ≈ (16, 42) for (M•,m⋆) = (105, 102)M⊙;
(r̄f , r̄0) ≈ (3, 7.6) for (M•,m⋆) = (106, 10)M⊙; (r̄f , r̄0) ≈
(3, 13) for (M•,m⋆) = (106, 102)M⊙. The phase shift
estimates are derived in Appendix A, B, and C, using
Eqs. (A10), (B8), and (C5), where the underlying quan-

tities ṁ⋆, ℓ̇ and Φdisk are substituted from Sec. IV–VI,
taking into account all of the quenching mechanisms that
are in play. In particular, for migration we use Type I
and Type II in the appropriate radial ranges without and
with gaps, respectively, where we utilize either the Syer-
Clarke (SC) or the Ivanov et al. (IPP) model for Type II
migration, see Sec. VII D.22

Table I shows that the migration estimate incorporat-
ing the SC model in β-disks is by far dominant, followed
by migration using IPP in β-disks, and BHL accretion.
The effects of the disk’s self-gravity, wind effects, mi-
gration in α-disks and Eddington-limited accretion onto
the SMBH are all completely negligible for LISA EMRIs.
All effects studied lead to a reduction of phase cycles in
a fixed observation time for fixed final radius, except for
the effect of disk gravity in α-disks. Other detectable
EMRIs not shown in this table (different masses and/or
orbital radii) might be more sensitive to disk effects.
Figure 1 and 5 allow to visually compare the GW phase

shift for various disk effects for a one year observation
as a function of final orbital radius. Solid curves corre-
spond to α-disks, and dotted curves to β-disks. Curve
colors parameterize the accretion disk effect considered:
black curves correspond to BHL accretion, green curves

21 Here we don’t marginalize over an arbitrary phase shift between
the two waveform templates for simplicity. These estimates are
in good agreement with the more complicated calculations pre-
sented in Sec. X below.

22 To understand which quenching mechanisms are in effect for the
particular cases, see Figure 4 in Sec. IVC6.
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FIG. 5. The GW phase shift as a function of final radius in units of M• induced by different accretion disk effects relative
to vacuum waveforms. As in Fig. 1, solid curves correspond to α-disks, while dotted ones to β-disks. Different color curves
represent different accretion disk effects (α1 = ṁ•1 = 1): black is for BHL accretion, green is for azimuthal wind and blue is
for migration (dotted and dot-dashed are for β disks using the Syer-Clarke and Ivanov et al. model). The thin, solid magenta
line is the total accumulated GW phase in vacuum, while the thick, solid (dashed) magenta line is a measure of the sensitivity
to which LISA can measure the GW phase for a source at 1 Gpc (10 Mpc).

C1 C2 c1 c2 c3 c4 c5 c6 D1 D2 d3 d4 d5 d6
[δφlong

GW ] [δ2φlong
GW ] [α1] [ṁ•1] [M•5] [m⋆1] [Tyr] [r̄f,10] [δφshort

GW ] [δ2φshort
GW ] [M•5] [m⋆1] [Tyr] [r̄f,10]

BHα 6.9 (+0) 3.2 (−1) −1 −5 −17/4 17/8 25/8 5/2 2.5 (+0) −2.6 (+0) −4 2 3 1/2
BH β 3.2 (+3) 3.2 (−1) −4/5 −17/5 −3 8/5 13/5 5/2 5.7 (+3) 8.2 (+0) −19/5 2 3 −8/5
SB 1.3 (+1) 3.7 (−1) 0 1 3/4 −11/8 13/8 5/2 4.2 (+2) 2.8 (+1) −2 0 3 −11/2
Wα 3.4 (−2) 8.4 (−4) −1 −3 −13/4 13/8 21/8 21/2 1.5 (−2) 8.2 (+0) −2 1 2 5/2
W β 4.7 (+1) 4.3 (−3) −4/5 −7/5 −2 11/10 21/10 42/5 8.6 (+1) 1.4 (+1) −9/5 1 2 2/5
SWα 1.5 (−1) 7.9 (−2) 0 3 7/4 −15/8 9/8 9/2 2.6 (+0) 2.5 (+1) 0 −1 2 −7/2
SW β 3.5 (−1) 7.9 (−2) 0 3 7/4 −15/8 9/8 9/2 6.2 (+0) 2.5 (+1) 0 −1 2 −7/2
M1α 4.0 (−3) 8.4 (−4) −1 −3 −13/4 13/8 21/8 21/2 1.8 (−3) 8.2 (+0) −2 1 2 5/2
M1β 7.0 (+0) 4.3 (−3) −4/5 −7/5 −2 11/10 21/10 42/5 1.3 (+1) 1.4 (+1) −9/5 1 2 2/5

M2αSC 2.5 (+1) 1.8 (−2) 0 1 3/4 −11/8 13/8 13/2 1.5 (+2) 1.9 (+1) 0 −1 2 −3/2
M2βSC 1.5 (+4) 3.5 (−2) 1/2 5/8 −3/16 −31/32 45/32 45/8 1.5 (+5) 2.2 (+1) −11/8 −3/8 2 −19/8
M2βIPP 1.6 (+3) 2.7 (−2) 2/7 11/4 3/14 −8/7 3/2 6 1.3 (+4) 2.0 (+1) −11/14 −9/14 2 −2
SGα 2.2 (−5) 1.7 (−2) −20/21 −13/21 −59/84 3/8 11/8 11/2 5.8 (−6) −1.8 (+1) 1/21 0 1 3/2
SGβ −6.1 (−4) −1.0 (−2) −4/5 3/5 1/4 −1/40 39/40 39/10 −9.7 (−4) 7.8 (+0) 1/5 0 1 −1/10

TABLE II. Constant coefficients and exponents in Eqs. (115–116) for long and short observations (columns), for different effects
(rows). Results shown as x (y) represent x× 10y in radians.

to azimuthal wind effects, and blue curves to migration
(dotted for SC-β, dot-dashed for IPP-β). Left and right
panels correspond to different mass ratios and SMBH
masses. Additionally, Figs. 1 and 5 include three disk-
independent reference curves. The thin, solid magenta
line is the total accumulated GW phase without disk ef-
fects. The thick magenta curves represent the approxi-
mate accuracy to which LISA can measure the GW phase
as a function of radius, using the simple estimates given
by Eq. (19) for a typical source located at 1 Gpc (solid)
and 10 Mpc (dashed). We present more detailed esti-
mates of measurement accuracy in Sec. X below. Typi-
cally migration in β-disks generates the dominant phase
shift for all final radii. The large drop in the right panel
occurs because the gap closes around r̄ ∼ 20.4 for β-disks,

changing Type-II into Type-I migration.23 BHL accre-
tion follows migration in importance, and in certain cases
(as in the right panel of the figure), the former can be the
most important effect, as migration can be suppressed
due to gap refilling. The sudden quenching features in the
BHL accretion curves are due to EM radiation pressure,
where photon diffusion becomes sufficiently short for EM
radiation to escape the flow. Observe that LISA is sensi-
tive to EMRIs that are close to the SMBH (e.g. r̄ . 50);
the sharp rise of the LISA accuracy estimate is because
EMRIs at larger radii are not detected with SNR of 10 or

23 Gap decoupling does not occur since r̄d ∼ 19.2.
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bigger. All disk effects above the thick magenta line are
significant and possibly measurable, while wind effects
and self-gravity effects (not shown in the figure) always
lead to dephasings of order 1 radian or much less.
To describe the phase shift for different observation

times or accretion disk parameters than those shown in
Figures 1 and 5, we provide analytical expressions for the
asymptotic phase shift for various processes in two cases,

δφlong
GW

= −C1α
c1
1 ṁ

c2
•1M

c3
•5m

c4
⋆nT

c5
yr

(

1− C2
M

c6/2
•5

m
c6/4
⋆1

r̄c6f,10

T
c6/4
yr

)

(115)

δφshort
GW

= −D1α
d1

1 ṁ
d2

•1M
d3

•5m
d4

⋆1T
d5
yr r̄

d6

f,10

×
(

1−D2
m⋆1

M2
•5

T yr

r̄4f,10

)

, (116)

where the (C, c,D, d) parameters are given by the rows
of Table II. Here d1 ≡ c1 and d2 ≡ c2. The first and
second formula is applicable if the observation time is
much shorter or longer than the inspiral time, respec-
tively, see Eq. (13). The particular processes are repre-
sented by rows in order: the full BHL rate (i. e. assuming
no quenching throughout the observation), the supply
limited BHL rate (SB, using Eq. (62) throughout the ob-
servation), the corresponding hydrodynamic drag from
the azimuthal wind for the full BHL accretion and SB
(Wind and SW, respectively), Type-I migration (i. e. as-
suming a gap is not present throughout the observation),
steady-state Type-II migration, quasistationary Type-II
migration (i. e. assuming a gap is open throughout the
observation), and disk self gravity (SG). Note that LISA
observations are sensitive to the combinations αc1

1 ṁ
c2
•1,

see corresponding columns.
We note that for the masses in the left panel r̄⋆ = 43

and r̄⋆ = 51 at one and two years prior to merger. A
gap is open beyond r̄⋆ > r̄gap = 96 and 5 for α and β-
disks. The EMRI evolution becomes much faster than
the viscous inflow and the gap decouples at a radius is
r̄d = 39 for a β-disk
Most accretion disk effects are several orders of mag-

nitude larger for β-disks relative to α-disks. This is be-
cause β-disks can be much more massive in the regime
of interest for EMRIs. In particular, this suggests the
GW phase shift may be used to test the predictions of
different accretion disk models.

IX. RELATIVISTIC WAVEFORMS AND

DETECTION

In this section, we consider accretion disk effects in
more realistic waveform models. EMRI GWs are highly
relativistic, with velocities close to the speed of light and
sometimes skimming the SMBH horizon. As such, New-
tonian waveform estimates for GW data analysis are inac-
curate. Here we investigate the relativistic correction to

the EMRI dynamics using the extended one body frame-
work, and make simple estimates on the imprint of ac-
cretion disk effects on the GW waveform. This analysis,
however, continues to neglect relativistic corrections to
accretion disk effects.

A. Systems Investigated

In the rest of this paper, we restrict our investigations
to the following two representative EMRI systems:

• System I: Masses M• = 105M⊙, m⋆ = 10M⊙,
spin parameter a•/M• = 0.9, observation time T =
1yr, range of orbital radius r̄ ∈ (16, 25), orbital
velocity v/c ∈ (0.2, 0.25), GW frequency fGW ∈
(0.005, 0.01) Hz, GW phase φGW ∼ 1.3× 106 rad.

• System II: Masses M• = 106M⊙, m⋆ = 10M⊙,
spin parameter a•/M• = 0.9, observation time
T = 1yr, range of orbital radius r̄ ∈ (3, 7), or-
bital velocity v/c ∈ (0.37, 0.54), GW frequency
fGW ∈ (0.003, 0.01) Hz, GW phase φGW ∼ 9× 105

rad. The ISCO is located at r̄ISCO ≈ 2.32.

Figures 1 and 5 shows that accretion disk effects are ex-
pected to be significant for these systems.

We make the following simplifying assumptions. First,
we consider only quasi-circular EMRIs on the equatorial
plane, such that the orbital angular momentum is per-
pendicular to the SMBH’s spin angular momentum. We
have also investigated Systems with spin anti-aligned or
zero and found similar results. The accretion disk is also
assumed to be on the equatorial plane, such that the
EMRI is completely embedded in the disk. We ignore
the CO’s spin angular momentum, as well as sub-leading
mass-ratio terms in the radiation-reaction fluxes and in
the Hamiltonian.

Such simplifying assumptions make the problem ana-
lytically tractable within the EOB framework, employed
here for waveform modeling. As of the writing of this
paper, the EOB framework for EMRIs has not been
sufficiently developed for non-equatorial orbits; it has,
however, been satisfactorily tested for equatorial orbits
with extreme or comparable mass ratios, q . 10−4 and
q & 10−2.

We expect that many accretion disk effects (migra-
tion, BHL, and wind effects) will be maximal for the
equatorial EMRIs studied here. Other effects, however,
are substantially different for EMRIs inclined with re-
spect to the accretion disk. Similarly, disk effects may
excite eccentricity, which may dramatically increase the
impact of accretion disk effects on the GW observables
[47, 48, 54, 55]. A study of non-equatorial or eccentric
EMRIs with an accretion disk is beyond the scope of this
paper.
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B. Basics of the EOB Framework

We employ the adiabatic EOB framework of [11] to
model EMRI waveforms. The EOB scheme was first
proposed in [146, 147] to model the coalescence of
comparable-mass BH binaries. Since then, this scheme
has been greatly enhanced and extended to other type of
systems [148]. Waveforms constructed in this way have
been successfully compared to a set of numerical relativ-
ity results [149] and to self-force calculations [150]. Re-
cently, [11] proposed the combination of EOB and BH
perturbation theory techniques to model EMRI wave-
forms for LISA data-analysis purposes. This is the
scheme we adopt in this paper.
In the adiabatic, EOB framework for quasi-circular

EMRIs, the GW phase can be obtained by solving the
adiabatic equation

Ω̇ = −
(

dE

dΩ

)−1

FGW(Ω) , (117)

where Ω ≡ φ̇ is the orbital angular frequency (Eq. (2)
but with relativistic corrections), overhead dots stand for
time derivatives, E is the binary system’s total binding
energy and FGW ≡ dEGW/dt is the GW energy flux. We
have here implicitly assumed a balance law: all loss of
gravitational binding energy is removed only by GW ra-
diation, dE/dt = −dEGW/dt.
The binary’s binding energy in a Kerr background for

a quasi-circular orbit is simply given by [151]

E = µ
1− 2r̄−1 + χ• r̄

−3/2

√

1− 3r̄−1 + 2χ• r̄−3/2
. (118)

where µ ≡ M•m⋆/M is the reduced mass, with M ≡
M• +m⋆ the total mass, r̄ ≡ r/M , and χ• ≡ a•/M• is
the reduced Kerr spin parameter. Notice that it is the
binding energy that drives the orbital evolution, and not
the total energy of the system, which would also account
for the rest-mass energy.
We employ here the factorized form of the GW flux,

considered in [148], with the assumption of adiabaticity:

FGW(Ω) =
1

8π

8
∑

ℓ=2

ℓ
∑

m=0

(mΩ)2 |R hℓm|2 , (119)

where R is the distance to the observer, m is the az-
imuthal quantum number of the multipolar-decomposed
waveform, and

hℓm = h
Newt,ǫp
ℓm S

ǫp
ℓm Tℓm eiδℓm (ρℓm)ℓ , (120)

and where ǫp is the multipolar waveform parity (i.e., ǫp =
0 if ℓ+m is even, ǫp = 1 if ℓ+m is odd). All the terms
in Eq. (120) (S

ǫp
ℓm, Tℓm, δℓm and ρℓm) are functions of

(r, φ,Ω) that can be found in [148]. The Newtonian part
of the waveform is given by

h
Newt,ǫp
ℓm ≡ M•

R
n
(ǫp)
ℓm cℓ+ǫp v

ℓ+ǫp Yℓ−ǫp,−m(π/2, φ). (121)

where Yℓ,m(θ, φ) are the standard spherical harmonics,

n
(ǫp)
ℓm and cℓ+ǫp are numerical coefficients that depend on

the mass ratio [148]. The orbital velocity v is related
to the orbital frequency via v = (MΩ)1/3, which then
implies the binary orbital separation is

r̄ =

[

1− χ•Ω̄)
]2/3

Ω̄2/3
, (122)

where recall that the overhead bar stands for normaliza-
tion with respect to total mass: Ω̄ =MΩ ≈M•Ω.
At this stage one might be slightly confused, as the

right-hand side of the evolution equation one wishes to
solve [Eq. (117)] depends on a variety of quantities, in-
cluding the orbital separation and the orbital phase. The
assumption of adiabatic quasi-circularity allows us to re-
place the orbital separation in terms of the orbital fre-
quency via Eq. (122). By definition, the orbital phase
is related to its frequency via the differential equation
φ̇ = Ω. This equation, together with Eq. (117) forms a
closed system of coupled, first-order partial differential
equations that can be consistently solved.
The flux in Eq. (119), however, is not sufficiently ac-

curate to model EMRIs. First, it neglects the loss of
energy due to the absorption of GWs by the MBH. Sec-
ond, it is built from a PN expansion, which is in principle
valid only for slowly-moving sources, which EMRIs are
not. This flux can be improved by linearly adding BH
absorption terms and by adding calibration coefficients
to Eq. (119) that are fitted to a more accurate, numeri-
cal flux. This is the procedure proposed in [11], which we
follow here. We include up to 8 calibration coefficients,
obtained by fitting to a more accurate Teukolsky evolu-
tion in the point-particle limit, as given in Eqs. (26)-(29)
of [11], as well as BH absorption terms as given in Ap-
pendix B of [11].
Initial data for the evolution of the system of differ-

ential equations is obtained through a mock evolution,
started at r = 100M• and ended at fGW = 0.01 Hz (see
eg. [11]). The mock evolution is initialized with the post-
circular data of [147]. Once the evolution terminates, one
can read initial data one-year prior to that point directly
from the numerical evolution of the mock simulation. We
obtain initial data of such form separately both in the
case of vacuum EMRIs and for EMRIs in an accretion
disk, as the evolutions are generically different. Once the
orbital phase is obtained by solving Eq. (117) with this
initial data, the waveforms are readily obtained through
Eq. (120).
Before proceeding, let us comment on the differential

system one must solve numerically. As already men-
tioned, since the source of Eq. (117) depends both on
orbital phase and frequency, there are truly two coupled,
first-order differential equations that must be solved. But
the source term of this equation is incredibly more com-
plicated than implied here. Even though Sℓm, Tℓm, δℓm
and ρℓm are known analytically as functions of φ and
Ω, each term contains very long and complicated series
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expansions with fractional exponents that include spe-
cial functions, such as the polygamma function. For this
reason, the EOB evolution is not a simple integration,
as it naively appears to be in this section. Instead, the
coupled set of first order equations must be solved simul-
taneously via numerical methods, where here we employ
a partially optimized, Mathematica routine.

C. Disk Modifications to EOB GWs

GW modeling in the adiabatic EOB framework de-
pends sensitively on the energy E and the flux FGW.
Modifications to the MBH or the CO mass naturally
change all mass scales that depend on the total mass M ,
such as the symmetric mass ratio η. Radiation pressure
and migration modifies the rate of change of the angu-
lar momentum and thus the flux. In what follows, we
explain how we modify the EOB scheme to account for
such disk effects.

1. Effective Hamiltonian

The effective Hamiltonian controls the conservative
evolution of the EOB model. We have considered several
accretion disk effects that directly modify the Hamilto-
nian, such as the self-gravity of the disk and the increase
in mass of the SMBH and the CO. Of these effects, the
latter has been found to be the largest. We concentrate
on this effect here.
The increase in the CO’s mass can be modeled by solv-

ing for the time evolution of m⋆. The differential equa-
tion that controls this evolution is Eq. (63), where Ṁflux

•

is given in Eq. (62), while ṁ′B
⋆ is given by Eq. (61). No-

tice that ṁ⋆ depends on radius, or on orbital frequency
by Eq. (122), which itself is a function of time. Since the
accretion rate is not constant, one must solve the sys-
tem of differential equations on Ω and m⋆ consistently,
which we do numerically and perturbatively as follows.
First, we solve the frequency evolution equation, setting
m⋆ to a constant and neglecting accretion. Second, we
use Eq. (122) to rewrite Eq. (63) in terms of orbital fre-
quency. Third, we replace this orbital frequency by the
time-evolution obtained in vacuum. Fourth, we numer-
ically solve the evolution equation for ṁ⋆, as its source
now depends only on time. In step two, we are implic-
itly discarding non-linear terms that scale as (ṁ⋆Tobs)

2,
i.e. the square of the accretion rate times the obser-
vation time. This quantity is approximately 10−8 or
much smaller (clearly much smaller than unity) for typi-
cal LISA observation times.
Once the time evolution for the CO’s mass has been

obtained, one must then make sure that all quantities
that depend on it are properly promoted to time func-
tions. For example, all quantities that depend on the
total mass, such as the symmetric mass ratio η or the re-
duced mass µ are modified. In particular, the numerical

code used to solve the differential equation [Eq. (117)] is
naturally written in dimensions of the total mass of the
system, which now becomes a time-function. A simple
trick to deal with this is to rescale all mass-quantities by
the factor M(t)/M(0), which is equal to unity initially,
but deviates from unity with time. In particular, this im-
plies that Ω̄ → [M(t)/M(0)]Ω̄ and r̄ → [M(t)/M(0)]−1r̄.

Once these substitutions have been made, one can
solve for the frequency and phase evolutions, with m⋆(t)
a function of time, by providing appropriate initial data.
When considering BHL accretion, we choose the same
initial data as in the vacuum case (as explained in the
end of Sec. IXB) one year prior to reaching a GW fre-
quency of 10−2 Hz. The frequency and phase evolution
can be compared when m⋆ is a constant and when it is
not, which provides a measure of the effect of BHL ac-
cretion on GWs.

2. Radiation-Reaction Force

The radiation-reaction force controls the rate at which
orbits inspiral. This force can be expressed in terms
of the rate of change of orbital elements, such as bind-
ing energy, angular momentum and the Carter constant.
Since we restrict attention to an equatorial, quasi-circular
EMRI geometry, we need to consider only the energy flux.

Modifying the EOB model to account for a different
radiation-reaction force amounts to the rule

FGW → FGW

(

1 +
δℓ̇

ℓ̇GW

)

(123)

in Eq. (117). When modeling an azimuthal wind, δℓ̇ =

ℓ̇wind via Eq. (80), while when modeling migration, then

δℓ̇ is given by Eqs. (114); all throughout ℓ̇GW is given by

Eq. (6) with e = 0. When substituting in for δℓ̇ one must
be careful to use the properly quenched ṁ⋆ (Eq. (70)),
if the accretion disk effect depends on the rate of BHL
accretion. All other aspects of the framework can be left
unchanged, as Eq. (123) automatically induces deviations
from the Kepler relation.

The system of EOB differential equations can now be
solved using appropriate initial data. Initial conditions
for the vacuum and accretion-disk case are prescribed via
mock evolutions as explained in detail in Sec. IXB, with
δℓ̇ = 0 and δℓ̇ 6= 0 respectively. As explained above,
this guarantees that both simulations will terminate at
the same orbital separation. Due to different radiation-
reaction force laws, however, the starting radii or fre-
quencies are different in each case for a fixed observation
time. To account for this, we will later maximize com-
parison measures over a time and phase shift between
vacuum and accretion disk waveforms, as we explain in
Sec. XA.
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X. DATA ANALYSIS CONSIDERATIONS

In this section we perform a more detailed data analy-
sis study of the accretion disk effects on waveforms. We
begin by investigating the dephasing of the EOB wave-
forms constructed in the previous section. We then con-
tinue with an overlap study and end with a discussion
of degeneracies between accretion disk parameters and
EMRI system parameters.

A. Dephasing Analysis

As explained in Sec. II B 2, a dephasing study is use-
ful to roughly determine whether two waveforms can
be distinguished from each other given a GW detec-
tion; if the phase difference or dephasing between wave-
forms is large enough, then they are distinguishable (see
Eq. (19)). Here, we compare the dephasing of the dom-
inant, (ℓ,m) = (2, 2) vacuum and non-vacuum GW
modes, initialized with the data of Sec. IXB.
If we take one waveform to be “the signal” and the

other to be “the template,” then the dephasing depends
on two extrinsic parameters contained in the template:
an overall phase δφ and time shift δt. We here study the
dephasing after minimizing it with respect to these ex-
trinsic parameters. The template also depends on other
parameters, such as the masses and spins, but we here
set these to be equal to the signal’s parameters, i.e. we
do not minimize the dephasing over such parameters. In
a realistic data analysis implementation, one would max-
imize the SNR (or minimize the dephasing) over all pa-
rameters, at the cost of introducing error into parameter
estimation due to the use of incorrect templates.
Before minimizing the dephasing over a time and a

phase shift, it is worth pointing out that its magnitude
(computed with relativistic EOB waveforms) roughly
agrees with the Newtonian results presented in Table I.
For example, the final dephasing after 12 months of evo-
lution (initializing the simulations with the same final fre-
quency and the same initial phase) between vacuum and
β-disk migration is ∼ 217 rads with the EOB model and
∼ 670 rads with the Newtonian estimates for System I. In
this case, the relativistic model leads to a larger dephas-
ing than the Newtonian estimates because, in the latter,
Sys. I evolves more rapidly due to relativistic corrections
and the CO spends less time in the Type-II dominated
region. We have verified that for weakly-relativistic EM-
RIs, where only Type-I or Type-II migration is in play,
Newtonian and EOB dephasings agree.
A more appropriate measure of distinguishability, how-

ever, requires that one minimizes the dephasing with
respect to δt and δφ. Following the prescription of
Eq. (23) in [149], we search for a δt and δφ such that
||f1(t+δt)−f2(t)|| ≤ δf and ||φ1(t+δt)−φ2(t)−δφ|| ≤ δt,
where φ1,2 and f1,2 are the dominant GW phase and fre-
quencies for waveforms h1,2(t). The ||A|| notation stands
for the integral of A over a time window of length 64λGW,

where λGW is the GW wavelength (see eg. [11] for details).
The signal h1(t) is assumed to be a vacuum template,
while h2 is a non-vacuum template for a specific accre-
tion disk effect. We choose the tolerances δf = 10−11

and δt = 10−6; decreasing these magnitudes does not
visibly change the dephasing results shown below. The
value of δt and δφ are unique for a specific set of h1,2,
i.e. for a given accretion disk effect. This alignment pro-
cedure has been shown to be equivalent to maximizing
the fitting factor over time and phase of coalescence in a
matched filtering calculation with white noise [149].
Figure 6 shows the dominant dephasing (left-panel)

and fractional amplitude difference (right-panel) after
such alignment. As before, we plot these quantities for
the dominant GW mode as a function of time in units
of months, using different color curves for different ac-
cretion disk effects and different curve styles for different
types of disks. Observe that after alignment, the dephas-
ing increases much less rapidly than in the previous case.
This implies that the loss of overlap will also grow much
more slowly. Dephasings after alignment thus correspond
to the least difference between vacuum and non-vacuum
waveform phases, without maximizing over intrinsic EOB
parameters (such as the SMBH’s and CO’s mass).24

Figure 6 confirms that certain accretion disk effects
become significant very early during a LISA observation.
As discussed in Sec. II B, a rough measure of whether
the dephasing is “distinguishable” for an event with SNR
∼ 10 is whether δφGW & 1 rad (see Sec. XB for a more
accurate measure). The imprint of migration becomes al-
most immediately distinguishable for Sys. I and β-disks,
while it takes at least one full year of observation before
one can observe the same type of migration for Sys. II
or BHL accretion for Sys. I. Wind effects also become
important within one year of observation but for β-disks
only.
Whether an effect is distinguishable is naturally sensi-

tive to the EMRI parameters and orbital radii. Indeed,
the bottom panel of Figure 6, corresponding to System-
II, shows that in this case most effects are much smaller.
This is mainly due to the assumption that System II’s
orbit is much closer to the SMBH where disk effects are
less relevant. The bottom panel further suggests that
BHL and azimuthal wind effects might be barely distin-
guishable after 1 year for β-disks only.
The right panel of Figure 6 shows the fractional ampli-

tude difference between the dominant mode of vacuum
and non-vacuum waveforms after the alignment proce-
dure described above. The amplitude difference follows
closely the trend of the dephasing: Type-II migration is
clearly visible in amplitude changes, while other effects
are greatly suppressed. The amplitude difference plays
an important role in the calculation of the overlap and
the SNR of the difference that we show below.

24 However note that extrinsic parameters related to the observa-
tion angle, detector motion, etc. are all neglected here.
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FIG. 6. Aligned dephasing (left) and aligned fractional amplitude difference (right) as a function of time in units of months
for the dominant GW mode. Line style and color follow the same notation as in Fig. 5. The thick solid lines signal a 1 radian
dephasing. The top and bottom panels correspond to System I and II respectively. Wiggles in the amplitude curves are noise
in the numerical solutions, which is below the LISA accuracy so we have not resolved it here.

B. Overlap Analysis

Dephasing studies are convenient as rough measure of
distinguishability for a fixed SNR. However, the SNR
changes during the GW observation, as signal accumu-
lates and its frequency enters the detector’s more sen-
sitive domain. A more accurate measure of the detec-
tion significance of the particular disk effect in the data
stream is the SNR of the waveform difference between
the data streams with and without the effect, and the
so called overlap/mismatch. In Sec. II B, we defined all
these quantities in terms of cross-correlation integrals
weighted by the spectral noise of the LISA detector. Note
that these quantities account for the difference in both
the phase and amplitude evolution of the GW signal.
When calculating these quantities, we have first normal-
ized the waveforms, such that ρ(h1) = 1 = ρ(h2), as
explained in Appendix B of [148].

Figure 7 shows the SNR of the difference ρ(δh) in the
(ℓ,m) = (2, 2) GW harmonic after minimization over
time and phase shift in units of months. As before, dif-
ferent curve styles and colors correspond to different ac-
cretion disk models and effects, as defined in Fig. 1. The
thick horizontal line corresponds to an SNR of 10, just
about the threshold for detection. This figure confirms
that β-disk migration is the dominant perturbation to
the measured GW signal and suggests that it is distin-
guishable within 2 weeks of observation. Migration is
followed in significance by BHL accretion (for either α or
β disks) and β-disk azimuthal winds. These effects be-
come distinguishable only after a full year of observation.
All other accretion disk effects are insignificant within a
1 year evolution for System I. For System II, only β-disk
BHL accretion and azimuthal disks are significant and
only after 1 year of observation. Other effects may be-

come significant for binaries that are closer to Earth than
1Gpc, or if the observation is longer, or if the binary ori-
entation relative to the detector is better than average.

This figure is a more realistic estimate of distinguisha-
bility than the dephasing study presented in the previous
section. The increase in realism comes at the cost of a
small drop in distinguishability; eg. although Fig. 7 sug-
gests that BHL accretion might be measurable after a
1 year observation, this is only marginal in the figures
above. Such a drop is mostly due to the inclusion of
detector noise in this subsection. Measurability of accre-
tion disk effect would of course improve if the source is
closer to Earth, such that the SNR of the signal is larger.
Irrespective of this, all calculations suggest that Type II
migration is such a strong effect that it would definitely
be measurable with LISA.

C. Degeneracies

Up until now, we had neglected possible degeneracies
between EMRI system parameters, such as the SMBH
and CO’s mass, and accretion disk parameters. If one
were to maximize the overlap function over all parame-
ters (instead of just a time and phase offset, as done in
the previous section), one might find mismatches much
closer to zero, at the cost of biasing parameter extrac-
tion. In this subsection, we investigate this issue and the
spectral signature left by disk-induced effects.
The effect of possible degeneracies can be assessed by

investigating the Fourier transform of the GW response
function, as this is the main ingredient in matched fil-
tering. We restrict our study of degeneracies to a simple
analytical estimate of the Fourier transform using the
Newtonian stationary phase approximation (SPA) (see
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eg. [152, 153]). First,let us review this approximation in
vacuum GR, and then consider the modifications intro-
duced by leading-order disk effects.
The Fourier transform of the response function h(t) =

A(t)eiφGW(t) as

h̃(f) ≡
∫ ∞

−∞

h(t)e2πiftdt . (124)

This generalized Fourier integral can be solved via the
method of steepest descent, assuming the amplitude
changes slowly relative to the phase and noting that the
complex phase ψ = 2πft−φGW has a stationary point at
dψ(f, t0)/dt = 2πf − dφGW(t0)/dt = 0. In this approxi-
mation, the Fourier transform becomes (see eg. Eq. (4.5)
in [153])

h̃(f) =
8

5

A(f)

2

√

1

2Ḟ
ei(2πft0−φ0) , (125)

where the factor of 8/5 accounts for sky-averaging
over beam pattern functions. The quantities
[t0, ψ(f, t0), ψ̈(f, t0)] for a fixed f can be found by
assuming that the phase and time of merger are fixed
(tc, φc):

t0 − tc =

∫ Ω0

0

dE

dΩ′

(

dE

dt

)−1

dΩ′ =

∫ r̄0

0

dr̄
˙̄r
, (126)

φ0 − φc =

∫ Ω0

0

dE

dΩ′

(

dE

dt

)−1

Ω′dΩ′ = 2

∫ r̄0

0

Ω
dr̄
˙̄r
,

(127)

where Ω0 ≡ f/2 is the stationary point and r̄0 ≡ r̄(f/2).

The quantity ˙̄r can be constructed from (dE/dr̄)−1Ė

and Ė = FGW(r̄,Ω) is the GW energy loss rate,
given in Eqs. (1,5) in the Newtonian approximation or
Eqs. (118,119) in the EOB approximation, if we neglect
accretion disk effects.

Neglecting disk effects, we can readily evaluate each
of these terms to leading (Newtonian) order. Using that
the orbital frequency is given by Eq. (2) and the rate of
change of the orbital separation by Eq. (8), Eq. (126)
becomes t0 = tc − (5/256)Mu−8/3, while Eq. (127) be-
comes φ(t0) = φc − (1/16)u−5/3, where we have defined
the reduced frequency u ≡ πMf , with the chirp mass
M = q3/5M•and q ≡ m⋆/M• the mass ratio. Using the
Newtonian expressions for A(t) = M/DL(MΩ)2/3 (see
eg. Eq.(3.5) in [153]), the sky-averaged Fourier amplitude
becomes

|h̃|vac =
M5/6

π2/3
√
30 DL

f−7/6 . (128)

where DL is the luminosity distance of the source and f
is the observed GW frequency, while the Fourier phase is

ψvac(t0, f) = 2πft0 − φ(f) =
3

128
u−5/3 + const , (129)

Let us now repeat this calculation with accretion disk
modifications. We modify the above algorithm by re-
placing Ė = Ėvac(1 + δℓ̇/ℓ̇GW), where δℓ̇ is given by
Eqs. (106), (108) or (110) for Type I, II-SC and II-IPP
migration respectively, or Eq. (80) for azimuthal winds.
We replaced m⋆ by Eq. (71) when modeling unquenched,
BHL accretion. The resulting frequency-domain phase
and amplitude can be parameterized as

ψ/ψvac = 1− Ã1α
c1
1 ṁ

c2
•1M

ã3

•5 q
ã4

0 uã5

0 , (130)

and

|h̃|/|h̃|vac = 1− B̃1α
c1
1 ṁ

c2
•1M

ã3

•5 q
ã4

0 uã5

0 , (131)

where q0 ≡ q/10−4 is the normalized mass ratio q =
M•/m⋆ and u0 ≡ (πMf)/(6.15 × 10−5) is a normalized
reduced frequency and a GW frequency of 10−2 Hz. The
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parameters (Ã1, B̃1, ãi) are given in Table III, while no-
tice that (c1, c2) are the same as those in Table II. Note
that the expressions in Eqs. (130) and (131) are valid
only in the regime of frequency space where the accre-
tion disk effects are small perturbations away from the
vacuum evolution (ie. at sufficiently small separations).

Ã1 B̃1 ã3 ã4 ã5

BHα 3 (−8) 2 (−7) 1 4 −20/3
BHβ 1 (−5) 1 (−4) 6/5 79/25 −79/15
Wα 6 (−17) 1 (−16) 1 16/5 −16/3
Wβ 6 (−12) 4 (−11) 6/5 59/25 −59/15
M1 α 3 (−10) 4 (−9) 1 16/5 −16/3
M1 β 1 (−6) 3 (−6) 6/5 59/25 −59/15

M2 αSC 8 (−6) 2 (−5) 1 −2/5 −8/3
M2 βSC 6 (−3) 2 (−2) 1/4 −1/8 −25/12
M2 βIPP 6 (−4) 2 (−3) 4/7 −17/70 −7/3

TABLE III. Columns are parameters in Eq. (130) and rows
are migration effects. As in Table I, the notation x (y) stands

for x× 10y in radians for Ã1 and dimensionless for B̃1.

Let us discuss these results further. First, notice that
corrections to ψ(t0, f) due to Type II migration are or-
ders of magnitude larger than all other effects, as shown
by the magnitude of Ã1. Second, notice that all disk-
induced corrections depend on negative powers of fre-
quency (or reduced frequency u in this case). This is be-
cause such accretion disk corrections are largest for large
radii, equivalent to weak-field GR effects. In fact, they
are dominant over the leading-order vacuum term (the
factor of u−5/3) at low frequency. This then directly im-
plies that migration effects are weakly correlated to GR
vacuum terms in the PN approximation, as these depend
on positive powers of u relative to u−5/3.
One might wonder how the accretion disk effects mod-

ify the Fourier phase and amplitude when they are
not necessary a small perturbation away from the vac-
uum evolution. In general, the accretion disk correction
changes the functional form of the phase or amplitude as
follows:

yvac →
yvac

1 + ∆ αā1

1 ṁ
ã2

•1M
ã3

•5 q
ã4

0 uã5

0

(132)

where yvac = (ψ, |h̃|) when ∆ = (Ã1, B̃1). This means
that, unlike what Eqs. (130) and (131) suggest, the ac-
cretion disk effects always suppress the vacuum evolution
as ∆ > 0. Figure 8 shows the absolute value squared of
the Fourier amplitudes as a function of frequency for an
EMRI with M• = 105M⊙ and m⋆ = 10M⊙ and dif-
ferent accretion disk effects (neglecting all quenching).
For comparison, we also plot the vacuum amplitude and
the spectral noise density curve. Observe that below
f . 10−3 Hz, the accretion disk induced migration be-
comes dominant over the GW emission, and the Fourier
amplitude is significantly different. This effect was also
demonstrated to decrease the GW background for pul-
sar timing arrays [? ]. A gap is expected to be opened
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with different accretion disk effects (see label) as a function
of frequency in units of Hertz. We also plot this amplitude in
vacuum and LISA’s spectral noise density. Vertical lines from
right to left correspond to the ISCO frequency, the frequency
at which a gap forms for β disks and for α disks.

at small frequencies, but close at the radii indicated with
vertical lines (see Sec. III B). At these frequencies Type-II
migration transitions to Type-I. Coincidentally, hydrody-
namic drag due to an azimuthal wind and BHL accretion
cease at smaller frequencies.

D. Simple Parameter Estimation

Let us very roughly approximate the accuracy to which
accretion disk parameters could be extracted via matched
filtering with accretion disk EOB templates, given a GW
detection. We will make several approximations here,
as we are only interested in a rough order of magni-
tude. First, we approximate the Fourier transform of
accretion-disk waveforms via h̃ = |h̃| exp(iψvac + iδψ),

where the amplitude |h̃| is given in Eq. (125) and the
vacuum Fourier phase is given before Table III. We pa-
rameterize the accretion disk phase correction δψ as in
Eq. (130), except that we define the composite parameter
b ≡ αc1

1 ṁ
c2
•1, as this is the quantity that can be measured

(with different c1,2 exponents for different accretion disk
effects, as given in Table II).

Next, we will assume that there are no correlations
between parameters, such that the inverse of the so-called
Fisher matrix can be approximated as the reciprocal of
the diagonal components. This matrix is defined as

Γµν ≡ 4ℜ
∫

df

Sn(f)

∂h̃∗

∂λµ
∂h̃

∂λν
, (133)

where λµ is a list of all the parameters h̃ depends on. The
accuracy to which the λµ̂ parameter can be measured
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cannot exceed

(∆λµ̂) ≤
√
Σµ̂µ̂ ≈ 1

√

Γµ̂µ̂

, (134)

where summation is here not implied.
With this approximations at hand, we can parameter-

ize the accuracy to which parameter b can be measured
via

(∆b) .
δ

ρ10

mb1
⋆1M

b2
•5

√

J0(b3)
, (135)

where ρ10 ≡ ρ/10 is the normalized SNR and we have
defined the mass-normalized moments of the distribution

J(p) ≡
∫

M•

Sn(y/M•)
y−pdy

∫

M•

Sn(y/M•)
y−7/3dy

, (136)

where y ≡ M•f and J0(p) = J(p)/J̄(p), with J̄(p) is
the value of the pth moment evaluated for System I. The
parameters (δ, bi) are given by Table IV As expected, Ta-

δ b1 b2 b3
BH α 6 (−2) 1 −2 19
BH β 5 (−4) 1 −11/5 81/5
W α 7 (7) 1 −2 49/3
W β 2 (3) 1 −11/5 203/15
M1α 1.4 (1) 4 −2 −49/3
M1 β 1 (−2) 12/5 −11/5 203/15

M2 αSC 3 (−3) 3 −4 11
M2 βSC 5 (−6) 19/8 21/8 59/6
M2 βIPP 5 (−5) 37/14 45/14 31/3

TABLE IV. Columns are parameters in Eq. (135) and rows
are migration effects. As before, x (y) represents x × 10y in
dimensionless units.

ble IV shows that Wind effects and Type-I migration for
α-disks cannot be measured with LISA EMRIs and the
fiducial choice of parameters in a one year observation.
On the other hand, BHL accretion and, in particular,
Type-II migration could lead to interesting constraints
on α1 and ṁ•1 much better than 10%.
The accuracies quoted in Table IV (especially those

that indicate precision below 1%) should not be taken
too seriously as degeneracies with other parameters will
deteriorate these bounds. For example, if the full Fisher
matrix were inverted, allowing for off-diagonal compo-
nents, then a factor of the determinant of this matrix
would dilute the accuracy to which parameters can be
measured. A proper assessment of such degeneracies re-
quires a more detailed study of the likelihood surface,
which is beyond the scope of this paper. We expect,
however, that such degeneracies will deteriorate our abil-
ity to measure accretion disk effects to roughly one order
of magnitude, thus allowing us to exact disk parameters
to better than 10% [74].

In addition to neglecting degeneracies, we have here
made other approximations that force us to consider Ta-
ble IV as simple order of magnitude estimates. In partic-
ular, the use of Newtonian, frequency domain, station-
ary phase waveforms introduces a theoretical systematic
error, as EMRIs cannot be modeled with such approx-
imations. A much more detailed Markov-Chain Monte-
Carlo study with appropriate, relativistic EOB templates
is necessary to determine a more precise estimate of the
accuracy to which disk parameters can be extracted; we
postpone such study to future work.

XI. DISCUSSION

We have studied the effect of accretion disks on the
GWs emitted during the inspiral of a small BH into a
much more massive one. We have found that disk migra-
tion is the most important effect to consider. If EMRIs
are detected with LISA, our study suggests that migra-
tion could be measurable within 4 months of observation
for a β. Depending on the particular EMRI considered, a
gap could open in the accretion disk, leaving an imprint
in the GW observable. We have studied possible degen-
eracies between accretion disk and EMRI parameters and
found that they are weakly correlated. This is because
disk effect are dominant at large separations, thus in-
troducing “negative” PN terms in the frequency-domain
waveform phase. The LISA detection of a GW from an
EMRI embedded in an accretion disk could therefore al-
low us to measure a combination of the α and ṁ disk
parameters.
The prospect of understanding accretion disks with

GWs can be improved in the presence of an EM counter-
part. If the luminosity of the SMBH’s accretion disk is
observed, one might be able to separately measure both
α and ṁ by combining information from the GW de-
tection. If the GW detection does not show evidence of
accretion disk effects, but an EM signal is present, then
one could distinguish between α and β-disks.
Several caveats should now be discussed about ele-

ments of the analysis that could be improved on in the
future. We have here considered a very specific type of
EMRI, consisting of quasi-circular orbits on the equato-
rial plane. In principle, the CO could be in an inclined
and eccentric orbit. If so, certain accretion disk effects
that are here negligible could become much more impor-
tant, such as the self-gravity of the disk. Such effects
would induce additional apsidal and nodal precession,
which could leave a detectable signature on the GW spec-
trum.
Another important issue is that of the accuracy of

the EMRI model used. Although recently an EOB-
inspired EMRI waveform model was developed [11], no
such model has been thoroughly tested or even developed
for generic EMRIs. Even in the case of quasi-circular in-
spirals on the equatorial plane, the EOB model is still
only accurate up to dephasings of order 10 radians. This
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implies that accretion disk effects that leave dephasing
signatures of this order might be difficult to identify, such
as the effect of BHL accretion. Even then, however, ac-
cretion disk effects are important also at large separa-
tions, while mismodeling error is an issue only close to
the ISCO. Thus, the detection of EMRIs at moderate sep-
aration might allow us to extract even such small accre-
tion disk effects. Moreover, even if this weren’t the case,
the effects of migration are much larger than any pos-
sible waveform mismodeling, and thus, there should be
no problem identifying them. Ultimately, a much more
detailed, Markov-Chain Monte-Carlo study is required
to determine the accuracy to which such identification is
possible.
A final caveat to keep in mind is that of the enor-

mous uncertainty in accretion disk modeling. Even when
considering Newtonian disks, there exists several mod-
els, here parametrized in terms of α and β-disks, that
can have drastically different effects on EMRI inspirals.
What is worse, these Newtonian models are expected to
be highly inaccurate precisely in the regime where EMRIs
are most easily seen, i.e. in the relativistic regime close
to the SMBH. A natural extension of this work would
be to consider EMRIs in the context of relativistic ac-
cretion disks [99], for example through the inclusion of
relativistic BHL accretion [39] and migration [140].
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Appendix A: Phase Correction due to CO Accretion

Let us compute here the GW phase evolution when
the CO’s mass is varying due to BHL accretion. The
GW phase is given by the first line of Eq. (14).

φGW = 2

∫ r̄f

r̄0′

Ω(r̄)
dr̄
˙̄r
= − 5

32
M•

∫ r̄f

r̄0′

r̄3/2

m⋆(r̄)
dr̄ .(A1)

Two important corrections are induced by the CO’s vari-
able mass: a change in the limits of integration r̄0 → r̄0′
and a change in the denominator of the integrand in the
phase evolution, m⋆ → m⋆(t). We expand both in a
Taylor series around r̄0 and the initial CO mass m⋆,0 at

r̄ = r̄0′ . We evaluate the change in the total GW phase
induced by accretion while keeping r̄f , the observation
time T = tf − t0, and m⋆,0 fixed.
The limits of integration can be computed by integrat-

ing the radial inspiral evolution equation (8) with the
time dependent m⋆(t),

r̄4f − r̄40′ = −256

5

1

M2
•

∫ tf

t0′

m⋆(t)dt . (A2)

where

m⋆(t) = m⋆,0 +

∫ t

t0′

ṁ⋆(t
′)dt′ . (A3)

Note that ṁ⋆ ≡ ṁ⋆(r̄) given by Eqs. (54,70). Changing
integration variable from t to r̄ using dt = dr̄/ ˙̄r using
Eq. (8) for ˙̄r(r̄), we get

∫ tf

t′0

m⋆(t)dt = m⋆,0

(

T +
25

4096

M4
•

m2
⋆,0

〈δm⋆〉3,3

)

, (A4)

where25

〈δm⋆〉A,B ≡
∫ r̄0

r̄f

dr̄ r̄A
∫ r̄0

r̄

dr̄′ r̄′B
ṁ⋆(r̄

′)

m⋆,0
. (A5)

Substituting in Eq. (A2), the initial separation becomes

r̄ṁ0′ = r̄f

[

1 +
τSPA

r̄4f

(

1 +
25

4096

M4
•

m2
⋆,0T

〈δm⋆〉3,3

)]1/4

.

(A6)
where τSPA is the dimensionless observation time given by
Eq. (11), the ṁ index was introduced to distinguish from
other modifications below, c.f. Eq. (11) for r̄0. Thus, the
change in the lower integration bound in Eq. (A1) is

δr̄ṁ⋆

0′ = r̄ṁ0′ − r̄0 ≈ 5

64

M2
•

m⋆,0r̄30
〈δm⋆〉3,3 . (A7)

Since the total relative change in m⋆ is very small
during the observation, we may approximate 1/m⋆(t) in
Eq. (A1) as

1

m⋆(t)
=

1

m⋆,0 +
∫ t

t0
ṁ⋆(t′)dt′

≈ 1

m⋆,0
− 1

m2
⋆,0

∫ t

t0

ṁ⋆(t
′)dt′

(A8)
so that Eq. (A1) becomes

φṁ⋆
GW

≈ − 5

32
M•

∫ r̄f

r̄0′

dr̄
r̄3/2

m⋆,0

[

1−
∫ t(r̄)

t(r̄0′)

dt′
ṁ⋆(t

′)

m⋆,0

]

=
1

16

M•

m⋆,0

(

r̄
5/2
0′ − r̄

5/2
f

)

− 25

2048

M3
•

m2
⋆,0

〈δm⋆〉3/2,3 ,

(A9)

25 Since 〈δm⋆〉A,B ≪ m⋆,0T , we approximate the lower integration

bounds in Eq. (A5) with r̄0.
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where the ṁ⋆ label denotes that the CO is accreting,
in the second line we have changed integration variables
using dt′ = dr̄′/ ˙̄r′ and used Eq. (A5).

Relative to the GW phase without accretion,

δφṁ⋆
GW

=
5

32

M•

m⋆,0
r̄
3/2
0 δr̄ṁ⋆

0′ − 25

2048

M3
•

m2
⋆,0

〈δm⋆〉3/2,3

≈ 25

2048

M3
•

m2
⋆,0

(

〈δm⋆〉3,3
r̄
3/2
0

− 〈δm⋆〉3/2,3

)

. (A10)

Equation (A10) and (A5) can be used the calculate the
GW phase shift for arbitrary ṁ⋆. In the next two sub-
sections we consider BHL accretion ṁB

⋆ and gas supply

limited BHL accretion ṁ⋆ = Ṁ•.

1. Unsaturated BHL accretion

First consider the case where BHL accretion is not lim-
ited by the amount of local gas supply, ṁB

⋆(r) ≤ Ṁ•.
BHL accretion is not quenched by local gas supply if the
observation is limited to orbital radii r̄ ≤ r̄q, or equiva-
lently, if the dimensionless accretion rate onto the SMBH
ṁ• ≥ ṁ•,q. In practice, this is the case during a year of
observation approaching ISCO, if the SMBH accretion
rate is moderate to high ṁ• & 0.3 or if the mass ratio is
very small m⋆/M• . 10−6 [see Eq. (64)].

Substituting the BHL accretion rate, Eqs. (54,A5) for
α and β-disks into Eq. (A10) yields

δφα,B
GW

= −0.733α−1
1

M2
•5

ṁ5
•1m⋆1

r̄
25/2
0,20

(

1− 280

99
x5/2

+
175

99
x4 +

56

99
x25/2 − 50

99
x14
)

, (A11)

δφβ,B
GW

= −495α
−4/5
1

M
11/5
•5

ṁ
17/5
•1 m⋆1

r̄
52/5
0,20

(

1− 6188

2133
x5/2

+
7735

4266
x4 +

2975

4266
x52/5 − 1300

2133
x119/10

)

,

(A12)

where m⋆1 refers to the initial CO mass at r̄0, x = r̄f/r̄0,
r̄0 ≡ r̄0(r̄f , T ) is given by Eq. (11), and r̄0,20 = r̄0/20.
The phase evolution given by Eq. (A11–A12) depends on
only two sets of parameters: the time-independent coeffi-
cient preceding the parentheses, and the time dependent
quantity τ/r̄4f . The later also appears in the standard

inspiral phase expression, Eq. (14), which we used to dis-
tinguish two cases: when the observation time is long or
short relative to the inspiral timescale at the given radius
[see Eqs. (15–16)].

We can similarly distinguish here between two asymp-
totic cases. For long observations (T ≫ Tcrit) or small
separations (r̄f ≪ r̄f,crit), r̄0 ≈ τ1/4, x ≈ r̄f/τ

1/4 ≪ 1,
we can approximate the dephasing with the general for-

mula

δφGW,long = −C1α
−c1
1 ṁ−c2

•1

mc3
⋆n

M c4
•5

T c5
yr

(

1− C2
M2c6

•5

mc6
⋆1

r̄4c6f,10

T c6
yr

)

(A13)
where the coefficients (Ci, cj) are given by the first two
rows of Table II and n = 2 for Type II migration, while
n = 1 for all other migration disk effects. For short ob-
servations (T ≪ Tcrit) or small separations (r̄f ≫ r̄f,crit),
τ/r̄4f ≪ 1, r̄0 ≈ r̄f + τ/(4r̄3f ), x ≈ 1 − τ/(4r̄4f ), and we
can approximate the dephasing with the general formula

δφGW,short = − D1

αc1
1 ṁ

c2
•1

md1
⋆n

Md2

•5

T d3
yr r̄

d4

f10

(

1−D2
m⋆1

M2
•5

T yr

r̄4f,10

)

(A14)
where the coefficients (Di, dj) are given by the first two
rows of Table II and n = 2 for Type II migration, while
n = 1 for all other migration disk effects.

2. Gas supply limited BHL accretion

If ṁB

⋆(r̄) ≥ Ṁ•, the accretion onto the CO is limited by
the amount of local gas supply. This is the case outside
r̄ ≥ r̄q, or if the SMBH accretion rate satisfies ṁ• ≥ ṁ•,q,
see Eq. (64) for (r̄q, ṁ•,q). In practice, this is the case
for ṁ• . 0.1 for beta disks if the final orbital radius
is not very close to the ISCO (e.g. r̄f & 10). For larger
ṁ• accretion rates approaching the ISCO or intermediate
mass ratio inspirals, BHL accretion starts supply limited
and becomes unsaturated near the ISCO.
Assuming ṁ⋆ = Ṁ• in Eqs. (A5,A10), we get

δφsup. BHL
GW

≈ −4.2
ṁ•1M

4
•5

m3
⋆1

r̄
13/2
0,20

(

1− 208

63
x5/2

+
130

63
x4 +

80

63
x13/2 − 65

63
x8
)

(A15)

for both α and β-disks, where again r̄0 ≡ r̄0(r̄f , T ) given
by Eq. (11) and x = r̄f/r̄0. Relative to the BHL accre-
tion case with unlimited gas supply Eq. (A11–A12), the
phase is a less steep function of radius. The evolution is
again determined by two combination of parameters, the
constant coefficient (which is now different) and the time
dependent quantity τ/r̄4f .
In the two limiting cases, where the observation is long

or short relative to the inspiral timescale, we again can
parameterize the dephasing as in Eq. (A13) and (A14)
respectively, where the coefficients (Ci, cj) and (Di, dj)
are given by the third row of Table II.

Appendix B: Phase Correction due to Wind and

Migration

In this appendix we derive the correction to the GW
phase due to a modification in angular momentum dissi-
pation. The result of a similar, but more general, angular
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momentum dissipation rate δℓ/ℓGW = ArB is presented
in Paper I [51]. We focus on quasi-circular orbits only.
From Eq. (14),

φGW = 2

∫ r̄f

r̄0′

Ω(r̄)
dr̄
˙̄r
= 2

∫ r̄f

r̄0′

Ω(r̄)

(

dℓ

dt

)−1(
dℓ

dr̄

)

dr̄

=

∫ r̄f

r̄0′

r̄−2 dr̄

ℓ̇(r̄)
, (B1)

where we have expressed the GW phase as a function
of radial and temporal derivatives of the specific angular
momentum of the CO. Similar to Appendix A, we calcu-
late the total total change in the GW phase relative to
the unperturbed GW inspiral phase, by keeping the final
separation r̄f and the observation time T fixed. Relative
to the vacuum inspiral Eq. (14), a modified angular mo-
mentum dissipation causes a phase shift by changing the
lower integration bound and ℓ̇ in Eq. (B1). Since the ad-

ditional specific angular momentum loss δℓ̇ is small rela-
tive to ℓ̇GW, we may approximate the result by expanding
in a series in the small quantity δℓ̇/ℓ̇GW.
First to estimate r̄0′ , note that the accelerated dissipa-

tion of angular momentum causes an accelerated inspiral
rate. For circular orbits, ℓ = M•r̄

1/2, E = M⋆/(2r̄), so
that

˙̄r =
2r̄1/2

M•

ℓ̇ = −64

5

m⋆

M2
•

r̄−3

(

1 +
δℓ̇

ℓ̇GW

)

. (B2)

This equation can be integrated to give

r̄ℓ̇0′ = r̄f

[

1 +
τ

r̄4f

(

1 +
4

τ
〈δℓ〉3

)

]1/4

. (B3)

where we have introduce the index ℓ̇ to distinguish from
other effects, and we define26

〈δℓ〉A ≡
∫ r̄0

r̄f

dr̄ r̄A

(

δℓ̇

ℓ̇GW

)

dr̄′ . (B4)

Comparing to Eq. (11), the change in the lower integra-
tion bound

δr̄ℓ̇0′ = r̄ℓ̇0′ − r̄0 ≈ 〈δℓ〉3
r̄30

(B5)

Now using

1

ℓ̇
=

1

ℓ̇GW + δℓ̇
≈ 1

ℓ̇GW

(

1− δℓ̇

ℓ̇GW

)

(B6)

26 Since ℓ̇wind/ℓ̇GW ≪ 1, we approximate the lower integration
bound with r̄0 in Eq. (B4).

for the integrand in Eq. (B1), the GW phase is

φℓ̇
GW

≈ 5

32

M•

m⋆

∫ r̄0′

r̄f

dr̄ r̄3/2

(

1− δℓ̇

ℓ̇GW

)

=
5

32

M•

m⋆

[

2

5

(

r̄
5/2
0′ − r̄

5/2
f

)

− 〈δℓ〉3/2
]

(B7)

so that relative to the vacuum inspiral phase

δφℓ̇
GW

≈ 5

32

M•

m⋆

(

r̄
3/2
0 δr̄ℓ̇0′ − 〈δℓ〉3/2

)

=
5

32

M•

m⋆

(

〈δℓ〉3
r̄
3/2
0

− 〈δℓ〉3/2

)

. (B8)

Equations (B8) and (B4) are the analogues of Eqs (A10)
and (A5) for the GW phase shift caused by an addi-

tional source of angular momentum dissipation δℓ̇. In the
next three subsections we consider the azimuthal wind,
Type-I migration, and Type-II migration. In these cases
δℓ̇/ℓ̇GW = ArB where A and B are constants, so the
integral in Eq. (B4) can be evaluated analytically.

1. Azi. Wind – unsaturated BHL accretion

If the additional angular momentum dissipation is
caused by an azimuthal wind where the accretion onto
the CO is the unsaturated BHL rate, δℓ̇(r̄) = ℓ̇Bwind(r̄)
given by Eq. (81). Substituting in Eqs. (B8) and (B4)
we get

δφα,Bw
GW

≈ −5.2× 10−3 α−1
1

M2
•5

ṁ3
•1m⋆1

r̄
21/2
0,20

×
(

1− 8x21/2 + 7x12
)

, (B9)

δφβ,Bw
GW

≈ −10 α
−4/5
1

M
11/5
•5

ṁ
7/5
•1 m⋆1

r̄
42/5
0,20

×
(

1− 33

5
x42/5 +

28

5
x99/10

)

, (B10)

where x = r̄f/r̄0 and r̄0 ≡ r̄0(r̄f , T ), see discussion fol-
lowing Eqs. (A12,A15). Following the derivation pre-
sented in Appendix A1, we can expand in long and short
observation times relative to the inspiral timescale to re-
cover a dephasing as in Eq. (A13) and (A14) with the
coefficients (Ci, cj) and (Di, dj) given by the fourth and
fifth rows of Table II.

2. Azi. Wind – quenched BHL accretion

If the additional angular momentum dissipation is
caused by an azimuthal wind where the accretion onto
the CO is limited by the amount of gas supply then we
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substitute δℓ̇(r̄) = ℓ̇sup. BHL
wind (r̄) Eq. (82) into Eq. (B8) to

obtain the corresponding total GW phase shift

δφsBw
GW

=

(

−0.065
−0.16

)

ṁ3
•1M

4
•5

m3
⋆1

r̄
9/2
0,20

(

1 + 3x6 − 4x9/2
)

,

(B11)
where throughout this section the top and bottom rows
correspond to α- and β-disks, respectively, and the pa-
rameters x ≡ x(r̄f , T ) and r̄0 ≡ r̄0(r̄f , T ), see discussion
following Eqs. (A12,A15). Notice that although we are

here setting ṁ⋆ = Ṁ•, there is still a dependance on the
type of accretion disk, due to the factor of γ in Eq. (80).

Again, as in Appendix A1, we expand in long and short
observation times to obtain the dephasing of Eqs. (A13)
and (A14) with the coefficients (Ci, cj) and (Di, dj) given
by the sixth and seventh rows of Table II.

3. Type-I migration

Let us now compute the dephasing introduced by the
angular momentum dissipation due to Type-I migration.
Substituting Eqs. (106) into Eqs. (B8) and (B4) we get

δφα,TI
GW

= −6.1× 10−4 α−1
1

ṁ−3
•1 M

2
•5

m⋆1
r̄
21/2
0,20

×
(

1− 8x21/2 + 7x12
)

, (B12)

δφβ,TI
GW

= −1.5 α
−4/5
1

ṁ
−7/5
•1 M

11/5
•5

m⋆1
r̄
42/5
0,20

×
(

1− 33

5
x42/5 +

28

5
x99/10

)

. (B13)

where again x ≡ x(r̄f , T ) and r̄0 ≡ r̄0(r̄f , T )

We now take the two limiting cases of long and short
observations. For long and short observations, we find
dephasings as in Eq. (A13) and (A14) with coefficients
(Ci, cj) and (Di, dj) given by the eighth and ninth rows
of Table II.

4. Type-II migration

Consider now the dephasing corresponding to the an-
gular momentum dissipation due to Type-II migration.
Substituting Eqs. (108) and (110) into Eqs. (B8) and

(B4) we get

δφα,TII,SC
GW

= −8× 10−3 ṁ•1M
4
•5

m3
⋆2

r̄
13/2
0,20

×
(

1− 16

3
x13/2 +

13

3
x8
)

, (B14)

δφβ,TII,SC
GW

= −22 α
1/2
1

ṁ
5/8
•1 M

21/8
•5

m
19/8
⋆2

r̄
45/8
0,20

×
(

1− 19

4
x45/8 +

15

4
x57/8

)

, (B15)

δφβ,TII,IPP
GW

= −1.2 α
2/7
1

ṁ
11/14
•1 M

45/14
•5

m
37/14
⋆2

r̄60,20

×
(

1− 5x6 + 4x15/2
)

. (B16)

where again x ≡ x(r̄f , T ) and r̄0 ≡ r̄0(r̄f , T ). No-
tice that we have normalized the CO’s mass to m⋆2 =
m⋆/(100M•), where a gap opens and Type-II migration
occurs.
Let us now take the two limiting cases of long and

short observations. For long and short observations, we
find a dephasing as in Eq. (A13) and (A14) respectively,
with (Ci, cj) and (Di, dj) given by the tenth, eleventh
and twelfth rows of Table II.

Appendix C: Phase Correction due to the Disk

Gravity

Let us study how the gravitational potential generated
by the disk, Φdisk, affects the GW phase. The latter is
given by

φGW = 2

∫ tf

t′0

Ωdt = 2

∫ r̄f

r̄′0

Ω(r̄)
dr̄
˙̄r
, (C1)

where now both the angular velocity Ω(r̄) and the inspiral
rate ˙̄r are modified by the disk potential, see Eq. (97) and
(102). The later also implies a change in the integration
bound for a fixed r̄f and observation time.
We can integrate Eq. (102) perturbatively to obtain

r̄0′ = r̄f

[

1 +
τ

r̄4f

(

1 +
4

τ
〈Φdisk〉6,2

)

]1/4

. (C2)

where we have defined

〈δΦ〉m,n ≡
∫ r̄0

r̄f

r̄m
dnΦdisk

dr̄n
dr̄ . (C3)

Substituting Eqs. (97) and (102) in Eq. (C1) gives

φGW =
5

32 η

∫ r̄′0

r̄f

r̄3/2
(

1 +
r̄2

2

dΦdisk

dr̄
+ r̄3

d2Φdisk

dr̄2

)

dr̄

=
5

32 η

[

2

5

(

r̄
5/2
0′ − r̄

5/2
f

)

+
1

2
〈δΦ〉7/2,1 + 〈δΦ〉9/2,2

]

.

(C4)
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Subtracting from this expression the vacuum expression
for the GW phase, we find

δφdisk
GW

= − 5

32

M

m⋆

(

〈δΦ〉6,2
r̄
3/2
0

− 1

2
〈δΦ〉7/2,1 − 〈δΦ〉9/2,2

)

.

(C5)
The result is algebraically similar to the phase shift due
to a modified angular momentum loss rate Eq. (B8) or
a modified CO mass Eq. (A10). Note that the overall
minus sign is compensated for by the sign of the potential
Φdisk < 0.

1. Disk Potential

Let us compute a more convenient form of the disk
potential Φdisk. Assuming that Σ(r) = Σ0r

γ , the accre-
tion disk parameters (α, ṁ•,M•), carried by Σ0, can be
taken out of the integrals in Eqs. (91,92). The integral
only depends on (γ, r̄, r̄min, r̄max). We may evaluate the
integrals in the Legendre expansion (92).

Φdisk = 2πΣ0

∞
∑

ℓ=0,2

[Pℓ(0)]
2

{

r̄1+γ

ℓ+ 2 + γ

[

1−
( r̄min

r̄

)ℓ+2+γ
]

+
r̄1+γ

ℓ− 1− γ

[

1−
(

r̄

r̄max

)ℓ−1−γ
]}

(C6)

Next we exercise the gauge freedom to set

Φnew
disk(r̄) ≡ Φdisk(r̄) +

2πrmaxΣ(rmax)

1 + γ
(C7)

and in the following drop the “new” specifier. Note that
for both disk models γ > −1; it is 3/2 and −3/5 for α-
and β-disks. The disk potential in Eq. (C6) is expressed
as a sum of two terms in the curly brackets, which cor-
respond to the potential of the disk interior and exterior
to the orbit, respectively.

Let us discuss the contribution of various multipolar

harmonics, ℓ.

Φℓ=0
disk =

2πΣ0 r̄
γ+1

(1 + γ)(2 + γ)

[

1 + (1 + γ)
( r̄min

r̄

)2+γ
]

Φℓ=2
disk = −π

2

Σ0 r̄
2

(γ − 1)

(

r̄γ−1
max − 5

4 + γ
r̄γ−1 − γ − 1

4 + γ

r̄4+γ
min

r̄5

)

Φℓ=4
disk = −81π

32

Σ0 r
γ+1

(3 − γ)(6 + γ)

[

1− 6 + γ

9

(

r̄

r̄max

)3−γ

−3− γ

9

( r̄min

r̄

)6+γ
]

. (C8)

In each case we have arranged the terms in increasing or-
der for γ = 3/2. Equation (C8) shows that for γ > 1 and
r̄ ≪ r̄max the potential is dominated by the quadrupolar
harmonic ℓ = 2,

Φγ>1(r̄) ≈ Φℓ=2(r̄) ≈ −π
2

Σ0 r̄
γ−1
max

(γ − 1)
r̄2. (C9)

When −1 < γ < 1, the disk potential is asymptotically
independent of the inner and outer boundaries for r̄min ≪
r̄ ≪ r̄max. We can then analytically evaluate the infinite
sum, and get

Φγ<1(r̄) ≈ 2πc0Σ0 r̄
γ+1 (C10)

where

c0 =
1

γ + 1

Γ
(

1 + γ
2

)

Γ
(

1−γ
2

)

Γ
(

3+γ
2

)

Γ
(

−γ
2

) . (C11)

so that c0 = 1.38 for β–disks where γ = −3/5. Equa-
tions (C9) and (C10) represent the asymptotic solutions
for α and β-disks, respectively. Substituting the particu-
lar surface density profiles for the two disk models leads
to the potential given by Eq. (95).

2. Axisymmetric disk gravity without a gap

We can now evaluate the GW phase shift, Eq. (C5), for
the potential generated by α- and β-disks without a gap.
We restrict to r̄min ≪ r̄ ≪ r̄max and substitute Eq. (95)

δφadg,α
GW

= −8.3× 10−5 α
−20/21
1

M
43/21
•5

ṁ
13/21
•1 m⋆1

r̄
11/2
0,20

×
(

1− 21

10
x11/2 +

11

10
x7
)

, (C12)

δφadg,β
GW

= 3.0× 10−4 α
−4/5
1

ṁ
3/5
•1 M

11/5
•5

m⋆1
r̄
39/10
0,20

×
(

1 +
3

10
x39/10 − 13

10
x27/5

)

, (C13)

where again x = r̄f/r̄0. The sign difference is due to the
fact that the disk exerts an outward pull for α- and an
inward push for β-disks. In the long and short observa-
tion limits, we find dephasing as in Eq. (A13) and (A14)
with (Ci, cj) and (Di, dj) given by the thirteenth and
fourteenth rows of Table II.
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[35] L. Šubr and V. Karas, A&A 352, 452 (1999),
arXiv:astro-ph/9910401.
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