
Limits on Dipole Scalar Radiation

1. Binaries

Yakov,

We can use the expression you derived for the dipole luminosity of a binary,
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to find the coalescence time of the binary due to the emission scalar waves. Here I define, Aψ ≡

(l/LP )2(δξ)2 for brevity. Since the binding energy of the binary is,
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The period derivative is then,
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where P ∝ a3/2. The coalescence time due to scalar waves is obtained by integrating the dP/dt

equation down to P → 0, yielding,
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The effect of scalar waves relative to gravitational waves is maximized at the largest possible

separation of binaries where the effect is still noticeable. It is therefore useful to find the largest

semi-major axis amax for which t0 equals the age of the Universe, 13.7Gyr. I get,
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Unfortunately, even at this binary separation, the orbital decay due to gravitational waves dom-

inates over scalar waves for Aψ < 10−3. This implies that in general it would be difficult to find

binaries for which one can get an interesting constraint on l/LP .

2. Free-free Emission of Scalar Waves

The Sun is transparent to scalar waves opaque to photons. It is therefore interesting to check

whether cooling by scalar waves is of any significance for the Sun.
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Scalar waves will be emitted when a free electron collides with a free proton in a plasma. The

process is entirely analogous to the free-free emission of photons in the dipole approximation, albeit

with a smaller coupling. To find the coupling conversion, I compare your expression for Lψ to the

electromagnetic luminosity one would get for a charged particle with the same orbit.

The electromagnetic power emitted by a particle of charge e and mass µ which is bound

gravitationally on a circular orbit to a massive particle of mass M is given by,
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Therefore,
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where me is the electron mass.

We can now find the free-free emissivity in scalar waves by multiplying the standard expression

for photons (1.4 × 10−27n2
eT

1/2 in c.g.s.) by ǫψ. For the Sun this gives a net luminosity,

L⊙,ψ ≈ 1017Aψ erg s−1, (9)

which is negligible compared to the solar luminosity, 4× 1033 ergs s−1, even if we take the electron

mass to be fully electromagnetic. I checked that cooling of white dwarfs and neutron stars by scalar

waves is also unimportant.

3. Scalar Wave Background from Astrophysical Sources

Similarly to gravitational waves, scalar waves were probably produced during inflation. Their

amplitude peaks on horizon scales because they redshift after entering the horizon. These waves

should introduce both temporal and spatial variations of α within the observable Universe. Since

the amplitude of inflationary metric perturbations is ∼ 10−5 on horizon scales and the scalar waves

couple more weakly than gravitational waves, it would be very challenging to detect these scalar

waves.

There is also a scalar wave background from all astrophysical binaries that spans a wide range of

frequencies. In addition, there is a steady flux of scalar waves at high frequencies (∼ 1017 Hz) from

the Sun, as calculated above. The associated fluctuations in α could in principle affect quantum

coherence experiments on Earth, but their amplitude is extremely small.


