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ABSTRACT

We model the latest HST WFPC3/IR observations of & 100 galaxies at redshifts z = 7–8 in terms
of a hierarchical galaxy formation model with starburst activity. Our model provides a distribution
of UV luminosities per dark matter halo of a given mass and a natural explanation for the fraction
of halos hosting galaxies. The observed luminosity function is best fit with a minimum halo mass per

galaxy of 109.4+0.3

−0.9 M⊙, corresponding to a virial temperature of 104.9+0.2

−0.7 K. Extrapolating to faint,
undetected galaxies, the total production rate of ionizing radiation depends critically on this minimum
mass. Future measurements with JWST should determine whether the entire galaxy population can
comfortably account for the UV background required to keep the intergalactic medium ionized.

Subject headings: Some keywords.

1. INTRODUCTION

The pursuit for the first galaxies has recently entered
a new phase as observations at redshifts z & 6 have now
probed the epoch before cosmic reionization was com-
plete enough to fill in the Gunn-Peterson trough. The
WFC3/IR Camera on HST has recently detected a sam-
ple of more than 60 z ∼ 7 and nearly 50 z ∼ 8 Lyman-
break galaxies (LBGs) (Bouwens et al. 2010c) and pro-
vided constraints on the galaxy abundance as early as
z ∼ 10 (Bouwens et al. 2010b). The UV spectral slopes
of these faint sources were found to be very flat, per-
haps indicating dust-free environments (Bouwens et al.
2010a), and their stellar masses have been inferred from
measurements in the rest-frame optical (González et al.
2010; Labbé et al. 2010a,b). These observations inform
theoretical models of galaxy formation and attempt to
probe the amount of radiation available to affect the ion-
ization state of the intergalactic medium (IGM) but are
often limited by survey sensitivity. The traditional in-
terpretation of such data relies on an assumed ratio of
UV luminosity to star formation rate (SFR) that requires
burst ages longer than the exponential burst time-scale
and time-scales longer than 1 Gyr (Madau et al. 1998).
This assumption cannot be satisfied at redshifts z > 6,
where the age of the Universe is shorter than 1 Gyr.

Many theoretical studies based on numerical and semi-
analytic techniques, have shown that the luminosity
function (LF) of high-redshift LBGs can be explained
by the hierarchical formation of dark matter halos whose
associated baryonic gas forms stars in merger-generated
bursts (e.g. Baugh et al. 2005; Finlator et al. 2010; Lacey
et al. 2010; Salvaterra et al. 2010). Analytic work has
tried to fit simpler models to the observed LF to probe
the duty cycle and mass-to-light ratio of observed galax-
ies (Stark et al. 2007; Trenti et al. 2010, e.g) assigning a
single galaxy luminosity for each halo mass, while oth-
ers have considered that the mass of a host halo may
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merely define the probability distribution from which a
galaxy’s luminosity is drawn (e.g. Cooray & Milosavljević
2005a,b; Cooray & Ouchi 2006; Vale & Ostriker 2004,
2006, 2008). Associating the mass of underlying halos
with observed luminosity is crucial for describing the
clustering properties and bias of high-redshift galaxies
as well as the contribution of cosmic variance to fluctua-
tions in the measured abundance from field-to-field (e.g.
Trenti & Stiavelli 2008; Muñoz & Loeb 2008a; Overzier
et al. 2009; Muñoz et al. 2010; Robertson 2010a,b). The
relationship may also provide insights into how much ion-
izing radiation is provided by galaxies too faint to be
detected with current instruments.

The amount of currently undetected UV radiation at
high redshifts is unknown. While the Early Release Sci-
ence observations with WFC3/IR can probe down to
27.5 AB mag (Bouwens et al. 2010c), it is almost cer-
tain that many fainter galaxies remain to be observed
by JWST (e.g. Barkana & Loeb 2000b; Wyithe & Loeb
2006; Salvaterra & Ferrara 2006). Galaxies should exist
in halos down to a mass below which the assembly or re-
tainment of gas is suppressed. While these dwarf galaxies
near the suppression limit may be faint, their abundance
may make them, in aggregate, large contributors to the
total UV background. The exact suppression mass of
galaxy formation is due to an unknown combination of
the heating of the IGM during reionization and thermal
and mechanical feedback by internal mechanisms such as
supernovae (Wyithe & Loeb 2006).

We propose that the suppression of galaxy formation
below a certain halo mass threshold may already be evi-
dent from the currently observed LFs at z & 6. Because
bright galaxies are formed primarily through mergers
among fainter ones and since the contribution to the pop-
ulation of bright galaxies from lower mass halos shining
at the bright end of their luminosity distributions need
not be negligible, we expect the decrease in the faint end
of the LF due to the suppression of galaxy formation to
be gradual and extend to larger luminosities than pre-
viously anticipated. We couple hierarchical merger trees
to a simple model of star formation to calculate the lu-
minosity distribution function (LDF) for galaxies as a
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function of their host halo mass and the resulting LF.
The suppression mass of galaxy formation applied to the
variety of merger histories provides us with a physically
motivated explanation for the fraction of halos that are
forming stars at the time of observation (i.e. the duty
cycle) as a function of mass. We calculate the amount
of unobserved UV radiation at z = 6, 7, and 8 and test
the applicability of the Madau et al. (1998) relationship
between UV luminosity and SFR. We note that Raičević
et al. (2010) recently considered the effect of photoion-
ization on the LF using the GALFORM model of galaxy
formation (Cole et al. 2000; Baugh et al. 2005), but our
models produce very different results at the faintest lu-
minosities. This is likely because photoionization in the
GALFORM model only affects gas cooling while allowing
already cold gas to form stars even in the smallest halos.

In §2, we describe the merger trees, star formation
model, and suppression prescriptions used to populate
the LDF for each halo mass. We describe the resulting
shape and mass-dependence of the LDF in §3 and dis-
cuss the physical origin of the luminous duty cycle of
halos in §4. In §5, we fit the mean of the LDFs, the re-
sulting star formation efficiency, and the mass at which
star formation is suppressed to match the observed LFs
at z & 6. In §6 we compare the star formation rate to
the prediction from the UV luminosity. We then dis-
cuss the implications for the ionization state of the IGM
of the suppressed star formation in low-mass halos and
the abundance of faint galaxies yet to be observed in §7.
Finally, we summarize our main conclusions in §8.

2. THE MODEL

Our calculation of the LDF has two main compo-
nents: a merger tree builder and a star formation model.
Throughout, we assume a flat, ΛCDM cosmology with
cosmological parameters taken from the WMAP-5 data
release (Komatsu et al. 2009; Dunkley et al. 2009).

2.1. Merger Histories

We generate merger trees based on the extended Press-
Schechter procedure outlined in Somerville & Kolatt
(1999). The method selects, for each descendent, a series
of progenitors from the mass-weighted conditional mass
function truncated at an upper mass limit for each sub-
sequently selected progenitor such that the total mass in
progenitors does not exceed the descendent mass. Once
the difference in mass between the descendent and the
growing list of progenitors falls below Mres, the resolution
limit of the algorithm, the remaining mass is assigned as
diffuse accretion. If a descendent has two or more pro-
genitors, we determine the merger ratio by considering
the two largest progenitors. If the mass ratio between the
two largest progenitors is smaller than 1:3, we denote the
interaction to be a major merger; all other configurations
are minor mergers. We have tested our procedure using a
threshold ratio of 1:7 and found no noticeable difference
in our results. The algorithm is then iterated on each
progenitor until the tree is ended when the masses of all
progenitors have fallen below Mres.

2.2. Starbursts

Each halo in the merger tree is assumed initially to
contain an amount of baryonic gas equal to a fixed frac-

tion (Ωb/Ωm) of its halo mass. This gas is gradually con-
verted into stars through bursts of star formation. There
is a great body of evidence that the starbursts that il-
luminate LBGs are generated in mergers rather than in
a quiescent mode (e.g. Baugh et al. 2005; Lacey et al.
2010). Therefore, we ignore all quiescent star formation
and generate starbursts exclusively during major merg-
ers.

After a minor merger, all starbursts taking place in
associated branches of the tree are allowed to continue
simultaneously with their own reservoirs of gas. If not
fully coalesced at the time of observation, these simulta-
neous bursts may appears as multiple cores in the galaxy
morphology or simply be beyond our current ability to
resolve (Oesch et al. 2010). However, in a major merger,
all of these bursts are shut off and a new one is begun.
The gas remaining from all progenitors is assumed to
be instantaneously funneled to the center where it forms
a new disk. Following Mo et al. (1998) and Barkana
& Loeb (2000a), we assume the disk to have an expo-
nential shape such that the surface density falls off as
Σ = Σ0 e−r/Rd. At high redshift, when the energy den-
sity of the universe is dominated by the contribution from
matter, the corresponding exponential size scale of the
disk is given by
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where we take the specific angular momentum of the disk
to be equal to that of the halo (i.e. jd/md = 1), rvir

is the halo virial radius, vc is the circular velocity of
the halo, H is the Hubble parameter, and λ is the spin
parameter which we draw randomly for each disk from
a log-normal distribution centered at λ̄ = 0.05 with a
standard deviation σλ = 0.5 in log-space. The central
surface density is Σ0 = Mgas/2 π R2

d.
Following Kennicutt (1998), the surface star formation

rate density is given by ΣSFR = ǫ Σgas/tdyn, where ǫ is
the fraction of gas converted to stars in a dynamical
time tdyn. We verified that the disks under considera-
tion are unstable to fragmention (i.e. have a Toomre
Q-parameter smaller than unity). Using surface densi-
ties averaged over the exponential scale radius of the disk
and tdyn = 2 π Rd/vc, ǫ is found empirically to be ∼ 20%.
However, this relation also holds in azimuthally-averaged
rings at radius r with tdyn = 2 π r/vc. Since we are in-
terested in the total star formation rate produced entire
disk from gas added at any radius, we integrate through
the disk using considering separately the contributions
inside and outside the exponential scale radius.
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Substituting for Rd and Σ0, we find

Ṁ⋆ ≈0.66 M⊙ /yr

×
(
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108 h−1 M⊙

)
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0.2

)
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]

(3)

Since Ṁ⋆ = −Ṁgas in a single burst between major merg-
ers, equation 3 represents a differential equation in M⋆

(or Mgas) whose solution is an exponential with a time
scale given by:

τ ≈ 0.27 tage(z)
( ǫ

0.2

)−1
(

λ

0.05

)

, (4)

where tage(z) is the age of the universe at redshift z.
In each time step, we use results from a simple stel-

lar population generated by Starburst99 (Leitherer et al.
1999) to calculate the contribution of each newly added
group of stars to the final luminosity at 1500 Å. We as-
sume a Salpeter initial mass function (IMF) with a slope
of 2.35 between 1 and 100 M⊙ and a metallicity 4% of
solar.

Finally, we include the effect of a suppression in galaxy
formation below halos of a given mass. Some combina-
tion of processes, such as supernovae feedback or pho-
toionization, may push or heat the gas so that it escapes
the gravitational potential well of the halo. Thus, no
starbursts will be generated in halos smaller than Msupp,
and neither can a halo smaller than Msupp be a con-
stituent in a starburst-generating major merger even if
the resulting halo is larger than Msupp. These two condi-
tions (but especially the latter) combine to make inactive
even some halos larger than Msupp (see §4). The simplest
way to incorporate these effects into our model is simply
to set Mres = Msupp in generating the merger trees. This
prescription is not quite realistic, since the feedback pro-
cesses that suppress star formation are undoubtedly time
dependent, especially during reionization. However, for
simplicity, we assume that the contributions to the LF
from minihalos smaller than Msupp before reionization
are minimal by the redshifts considered here.

3. THE LUMINOSITY DISTRIBUTION FUNCTION

Our model results in an approximately log-normal dis-
tribution for the UV galaxy luminosities (1500 Å) pro-
duced by halos of a given mass:

dP

dL
=

1
√

2 π σ2
L

exp

(

− log(L/Lc)

2 σ2
L

)

, (5)

in agreement with previous assumptions (e.g. Cooray &
Milosavljević 2005a,b; Cooray & Ouchi 2006; Vale & Os-
triker 2004, 2006, 2008). As anticipated by the self-
similarity of halo mergers (Fakhouri et al. 2010), we
find that, independent of redshift, Lc is proportional to
halo mass. Bouwens et al. (2008) previously estimated a
power-law slope of 1.24 based on Bouwens et al. (2007)
data at z ∼ 4. We reiterate, that many of the assump-
tions that went into our model, including the lack of a
quiescent component to star formation and dust extinc-
tion, are only valid at redshifts beyond 6. We do not find
a change in the proportionality of luminosity to halo mass
at high masses as considered by Bouwens et al. (2008).
Since the timescale for the coalescence of subhalos after

Fig. 1.— The active fraction, ǫAF, or the fraction of halos that
have had at least one starburst-generating merger in their life-
times as a function of halo mass, Mh, for three different val-
ues of the galaxy formation suppression threshold mass Msupp.
Squares, circles, and triangles show merger-tree simulation results
for log10(Msupp/M⊙) = 8, 9.4, and 10, respectively, while dot-
ted, solid, and long-dashed lines show the results from equation 7
for the same suppression mass values. Enough merger histories we
generated so that each point represents at least 100 active galaxies.

merger is related to the ratio of their masses (Wetzel et al.
2009; Wetzel & White 2010) and we have selected major
merges based on a fixed mass ratio, we do not expect
a fall off in the rate of major mergers in more massive
halos. Finally, we also find σL between 0.2 and 0.3 for
all masses and redshifts considered. Consequently, the
galactic luminosity produced by halos of the same mass
can easily vary by ∼ 1.5 magnitudes or more. For conve-
nience, we will assume a fixed value of σL = 0.25 for all
calculations of the LF throughout the rest of this paper.

4. THE LUMINOUS DUTY CYCLE OF HALOS

We first clarify a slight ambiguity of definition in the
literature. The duty cycle, ǫDC, is defined as the fraction
of a halo’s lifetime over which it is luminous. If halos fluc-
tuate stochastically on and off, then ǫDC also represents
the probability that a halo will be on at the moment of
observation and the fraction of all halos at that time that
are on. Considering halos of a given mass for whom a
single luminosity has been assumed, this concept of the
duty cycle lowers the abundance of halos observed from
that predicted in the halo mass function, i.e.

dnobs(L)

dL
= ǫDC

dn

dMh

dL(Mh)

dMh
. (6)

In various models, ǫDC may be a function of variables
such as mass or redshift or left as a constant parameter.

However, if the luminosity of a halo or the frequency
of its being in a luminous state is not constant in time,
the fraction of observable halos for a given halo mass
need not be equal to ǫDC. In our model, there are two



4 Muñoz & Loeb

Fig. 2.— The minimum reduced chi-squared (i.e. chi-squared per
degree-of-freedom) marginalized over L10 as a function of msupp.
Solid, short-dashed, and long-dashed lines show fits to the data
at z = 6, 7, and 8, respectively. The bottom, middle, and top
sets of horizontal lines denote the minimum reduced chi-squared
values required for rejection with 70%, 95%, and 99% confidence,
respectively, for the number of degrees-of-freedom corresponding
to the data at each redshift.

reasons why a halo may not be observable. The first
is that, given the continuous distribution in luminosity
for a given halo mass, some are not bright enough to be
detectable at their distance. However, these halos will
simply appear in another luminosity bin, and we will
proceed by first calculating the full LF and subsequently
applying an observable threshold for a given survey. The
second reason why a halo may not be observable is be-
cause, in the limited history of the universe at the mo-
ment of observation, its merger tree does not contain a
single major merger whose constituents were more mas-
sive than Msupp. Thus, according to our model, it will
not have had even one starburst, and will remain com-
pletely dark. Halos much more massive than Msupp have
had at least one starburst-generating merger, while those
closer in mass to Msupp may not have since many of its
recent progenitors are below Msupp. We define the prob-
ability that a halo of a given mass has had at least one
starburst-generating merger as the “active fraction,” ǫAF.

Using our merger tree code, we find a relation for the
active fraction of halos as a function of mass that is nearly
independent of redshift. Since ǫAF depends only on the
distribution of merger histories, it is also independent
of ǫ and the other details of our star formation model
in §2.2. We show, in Figure 1, ǫAF as a function of
mass calculated from our code for several values of Msupp.
Each point was generated using enough random merger
histories to produce at least 100 active galaxies. A good
fitting formula for ǫAF given by:

log10 ǫAF(Mh, Msupp) = − 1

8 (Mh − Msupp)2.6
. (7)

Fig. 3.— A comparison of our best-fit LFs to the data. The
top, middle, and bottom panels display results for z = 6, 7, and
8, respectively. The points and error-bars mark observations from
Bouwens et al. (2007, 2010c). Dotted, short-dashed, and long-
dashed curves are LFs assuming msupp = 8, 9, and 10, respectively,
with the best-fit value of L10 for each value of msupp. Finally, solid
lines show results with the absolute minimum value of chi-square
at each redshift. The best-fit values of msupp are 9.47, 9.4, and
9.42, for z = 6, 7, and 8, respectively.

Throughout the rest of this paper, we rely on equation (7)
to compute ǫAF for continuous ranges of Mh and Msupp.
Our results show that the abundance of halos hosting
galaxies is suppressed even for halo masses up to an
order-of-magnitude larger than the suppression thresh-
old. As we will see in §5, the large range of suppression
masses combines with the distribution of possible lumi-
nosities for each halo to result in a gentle cut-off at the
faint end of the LF rather than a sudden drop at a criti-
cal luminosity. However, our model naturally reproduces
a high value of ǫAF for the largest halo masses, consis-
tent with the rapid evolution of the halo mass function
at z & 6 (Trenti et al. 2010).

5. FITTING THE LUMINOSITY FUNCTION

We fit our model LF to the latest data available at
z = 6 − 8 from Bouwens et al. (2007) and Bouwens
et al. (2010c) ignoring, for simplicity, any bright-end up-
per limits. We have calculated LFs at single redshifts for
comparison with observations, ignoring for the time be-
ing the mass-dependent distribution of galaxies over the
photometric redshift range of high-redshift surveys and
its effects on the LF (Muñoz & Loeb 2008b). At each
redshift, we allow two fit parameters: L10 = Lc(Mh =
1010 M⊙) and Msupp. L10 is directly related to the star
formation efficiency ǫ in our model for fixed choices of
metallicity and IMF. In Figure 2 we plot the minimum
reduced chi-squared, χ2

red, (i.e. chi-squared per degree of
freedom) values matching the observed LF at z = 6, 7,
and 8 as a function of Msupp. Values of L10 have been
calculated to minimize χ2

red for each value of Msupp. For
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convenience, we define msupp = log10 (Msupp/M⊙).
A minimum in χ2

red appears at msupp ≈ 9.5 at z = 6,
≈ 9.4 at z = 7, and ≈ 9.42 at z = 8. At z = 6, all
combinations of L10 and Msupp are ruled out at the 70%
level. However, values of msupp < 8.55 and > 9.7 are
ruled out at the 95% level, while msupp > 9.8 is ruled out
with 99% confidence. At z = 7 and z = 8, no constraints
are placed on the minimum value of msupp at the 70%
level or stronger. However, msupp > 9.7 (9.7), > 9.8
(9.85), and > 9.9 (9.95) are ruled out with 70%, 95%,
and 99% confidence, respectively, at z = 7 (8).

These results clearly indicate that, while the masses of
halos hosting observed LBGs are typically thought to be
> 1010 M⊙, lower luminosity galaxies must exist in halos
smaller than 1010 M⊙, corresponding to a virial temper-
ature of about 2× 105 K, and very likely in ones at least
as small as 5 × 109 M⊙ (105 K). They also tentatively
suggest that the minimum mass halo capable of hosting
galaxies may be around 2.5 × 109 M⊙ (7 × 104 K) with
halos less massive than about 3.5× 108 M⊙ (1.7× 104 K)
unable to host galaxies with some confidence given the
data at z = 6.

Chi-squared is minimized when L10 ≈ 27.1, 27.4, and
27.6 at z = 6, 7, and 8, respectively. For our choices of
metallicity and IMF, these values correspond to star for-
mation efficiencies of approximately 0.24%, 0.38%, and
0.53%.

Our best-fit LFs, along with ones assuming msupp = 8,
9, and 10, are shown for each redshift in Figure 3. The
data from Bouwens et al. (2007, 2010c) are plotted for
comparison. The best-fit model deviates qualitatively
from a Schechter function fit outside the observed mag-
nitude range. At the bright end, for magnitudes < −21,
our predicted LF remains much flatter than a Schechter
fit, which is already beginning to drop exponentially. The
shallower slope is due to two effects: first, the exponential
tail of the halo mass function falls off more slowly with
increasing mass than a Schechter function with luminos-
ity proportional to mass, and second, the large spread
in the luminosity permitted for each halo mass allows
abundant, smaller halos emitting at higher than average
luminosity to bolster the population of bright galaxies.

On the other hand, the suppression of star formation
drastically reduces the abundance of galaxies at mag-
nitudes fainter than currently observable compared with
expectations from a simple extrapolation of the Schechter
function. Figure 3 clearly illustrates the disparate pre-
dictions for the abundance of faint galaxies between dif-
ferent fiducial values of Msupp. Additional data at only
about a magnitude fainter than the current observational
threshold will greatly improve our ability to constrain
the minimum halo mass capable of forming galaxies. For
reference, observations down to a magnitude of -16.8 at
z = 7 will require a sensitivity of about 1.5 nJy, close
to what is expected with JWST. However, while the 1σ
errors in the current data were calculated based on the
shot noise and cosmic variance from an amalgam of ob-
servations from several different fields, we conservatively
estimate the 1σ error on the abundance at this magni-
tude in a single 2′ × 2′ pointing of NIRCam on JWST to
be about 50% (Muñoz et al. 2010).

6. STAR FORMATION RATE

Fig. 4.— The UV luminosity and SFR evolution of exponen-
tial bursts with (τ/Gyr, Ṁ⋆(t = 0) M⊙

−1 yr) = (10, 1), (0.1,3),
and (0.01,10) denoted by solid, long-dashed, and short-dashed
curves, respectively. The top panel tracks the bursts in SFR-
L1500 space. Here, the upper and lower dotted lines show a pro-
portional relationship between SFR and L1500 with constants of
8 × 1027 erg/s/Hz/(M⊙/yr) and 2 × 1028 erg/s/Hz/(M⊙/yr), re-
spectively. The middle panel shows the burst lightcurves with right
and left vertical lines denoting the τ = 10Gyr and the age of the
universe at z = 7, respectively. The lightcurve for an instantaneous
burst producing 106 M⊙ worth of stars is given by the dotted curve.
The horizontal line marks the observable threshold at a magnitude
of -18. The bottom panel plots the evolution of the SFR with time,
while the dotted curve here shows the SFR expected from by the
relationship between SFR and L1500 given the burst luminosity as
a function of time.

The SFR of high-redshift galaxies is important for un-
derstanding the star formation history of the Universe
(Madau et al. 1998) and the ionization state of the IGM
(Madau et al. 1999). Its estimation relies on a propor-
tionality between UV luminosity and SFR based on two
assumptions: an exponential burst of star formation has
a timescale, τ , that is longer than 1 Gyr, and the stellar
population is observed after one exponential time scale
has past (Madau et al. 1998). However, if the age of
the universe is shorter than 1 Gyr, at least one of these
assumptions must be violated.

For the best-fit star formation efficiencies we found
from the data at z = 6, 7, and 8, the typical exponen-
tial starburst timescale given by equation 4 is of order
τ ∼ 10 Gyr, an order-of-magnitude or more longer than
the age of the universe. Equation 3 gives the typical SFR
to be of order 1 M⊙/yr in a burst with 1010 M⊙ worth
of gas remaining; if the amount of initial gas in a halo
as a fraction of the total halo mass is Ωb/Ωm ≈ 0.16,
this corresponds to the initial SFR in a halo of about
6.25 × 1010 M⊙.

Figure 4 shows the evolution of the luminosity at 1500
Å, L1500, and SFR, Ṁ⋆, with time and their relation-
ship calculated for exponential bursts using a simple stel-
lar population from Starburst99 (Leitherer et al. 1999).
Solid lines represent typical bursts in high-redshift galax-
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Fig. 5.— The SFR vs. magnitude of simulated halos. Magenta,
blue, green, and red points denote halos of mass 1010, 1010.5, 1011,
and 1011.5 M⊙, respectively. The solid, black line marks L1500 =

2 × 1028 (Ṁ⋆/M⊙ yr) erg/s/Hz.

ies with the initial SFR set at 1 M⊙/yr and the exponen-

tial time scale τ = 10 Gyr. For t > τ , both Ṁ⋆ and L1500

decrease exponentially over time with timescale τ so that
L1500 is proportional to Ṁ⋆. This is because the exponen-
tial timescale is much longer than the lifetime of the stars
that dominate the UV luminosity. The amplitude of the
relation is set by the IMF and metallicity of the stellar
population; for the choices described in §2.2, we find ap-
proximately L1500 = 2× 1028 (Ṁ⋆/M⊙ yr) erg/s/Hz with
a proportionality constant a factor of 2.5 different than
the 8 × 1027 erg/s/Hz/(M⊙/yr). However, before t = τ ,
the luminosity is still rising with increasing time, while
the SFR remains essentially unchanged. Since the age of
the universe is much less than τ , all bursts are observed
in this phase before the L1500 − Ṁ⋆ proportionality has
stabilized.

Thus, the SFR will typically be somewhat higher than
that inferred from the L1500 − Ṁ⋆ proportionality. The
ratio between the true and expected SFRs will depend
on how close the burst is to its maximum luminosity, the
point where the expected SFR is approximately equal
to its initial value. The burst lightcurve is relatively
flat near its maximum value over the time approximately
107 − 109 yrs after it begins. If the burst is more than
107 yrs old at the time of observation, the difference be-
tween the true and expected SFRs will not be very sig-
nificant. A burst observed at z = 7 is 107 yrs old if it
started at z ≈ 7.07.

For completion, we also show in Figure 4 the evolu-
tion of L1500 and Ṁ⋆ for bursts with τ = 0.1 and 0.01
Gyr, less than the 1 Gyr minimum considered by Madau
et al. (1998). These timescales are achieved at z = 7
if for combinations of the star formation efficiency and
the disk spin parameter such than ǫ−1 λ = 0.17 and

0.017, respectively. The luminosity in each case begins
to decline before reaching the maximum it would have
achieved had τ been longer. The fall-off in luminosity is
only slightly slower than exponential for τ = 0.1 Gyr so
that the SFR and UV luminosity reach a nearly propor-
tional relationship after t = τ , albeit with a coefficient
slightly higher than that seen for higher τ . However, the
decline in luminosity is more power-law than exponential
for τ = 0.01 Gyr leading to a very non-linear relationship
between SFR and luminosity after t = τ . In both cases,
the SFR is much less than expected for a given lumi-
nosity. This is because the timescale τ is not so much
longer than the lifetimes of the stars that dominate the
UV luminosity. Luminosity from stars produced at t = τ ,
for example, contribute significantly to the luminosity at
0.1 τ , whereas the contribution would be completely neg-
ligible for much larger τ . Consequently, the luminosity
for a given instantaneous SFR can be much higher than
expected.

Using our merger tree and star formation code, we
calculate the instantaneous Ṁ⋆ at the time of observa-
tion for each of our modeled galaxies and test the ac-
curacy of the Madau et al. (1998) proportionality at
z = 7 over a wide range of halo masses and for a
full distribution of spin parameters and merger histo-
ries. Figure 5 shows the relationship between instanta-
neous SFR, Ṁ⋆, and UV luminosity, L1500, for galax-
ies in halos at z = 7 with masses of 1010, 1010.5, 1011,
and 1011.5 M⊙. We have set msupp = 9.4. Each point
represents a single halo, and where more than one on-
going starbursts are present, we have simply added the
contributing SFRs. The majority of points do show a
rough proportionality between L1500 and Ṁ⋆. However,
the proportionality constant is slightly higher than the
2 × 1028 erg/s/Hz/(M⊙/yr) value for bursts with ages
longer than their exponential time scale with the differ-
ence depending on halo mass. Lower mass halos tend
to be populated by younger bursts that are further from
reaching their maximum luminosity than higher mass ha-
los. If we constrain L1500 ∝ Ṁ⋆, we find a proportional-
ity constant of 1.7×1028 erg/s/Hz/(M⊙/yr) for 1010 M⊙

halos which estimates SFRs to be about 15% higher than
the constant for older bursts. Given the typical uncer-
tainties in measuring the total star formation rate at high
redshift – sample completeness, cosmic variance, uncer-
tain IMF and metallicity, etc. – an additional ∼ 20%
error will not significantly affect current estimates.

7. IONIZATION STATE OF THE IGM

After cosmic reionization, the ionization state of the
IGM depends on the balance between the recombination
rate and the production rate of ionizing photons. On its
own, the formation of stars in galaxies can maintain the
ionization of the IGM through its production of ioniz-
ing photons if the star formation rate density (SFRD) is
higher than a critical value given by Madau et al. (1999):

ρ̇⋆ ≈ 2 × 10−3 f−1
esc C

(

1 + z

10

)3

M⊙/yr/Mpc3, (8)

where fesc is the fraction of ionizing photons produced
in galaxies that escape into the IGM, and C is the IGM
clumping factor.
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Fig. 6.— The top panel shows the SFRD produced by the to-
tal galaxy population at z = 6, 7, and 8. Circles denote re-
sults using best-fit values of Msupp and L10 at each redshift,
while triangles assume Msupp = 108 M⊙ and the corresponding

best-fit values of L10. Filled (empty) points use L1500/Ṁ⋆ =
2 × 1028 (8 × 1027) erg/s/Hz/(M⊙/yr). Square points with er-
ror bars denote observed values from Bouwens et al. (2007) and
Bouwens et al. (2010c). The minimum SFRD required to keep

the IGM ionized as given by equation 8 for f−1
esc C = 15 and 1 are

shown by the upper and lower solid lines, respectively. The bottom
panel shows the ratio of the total UV luminosity or SFRD to the
Bouwens et al. (2007) and Bouwens et al. (2010c) observations as a
function of Msupp. The solid, short-dashed, and long-dashed lines
denote z = 6, 7, and 8, respectively.

Using the standard L1500 to Ṁ⋆ conversion, recent ob-
servational studies have estimated the currently observ-
able SFRD to be just enough to keep the universe ionized
if f−1

esc C = 1. However, much of the star formation below
the observable threshold is not included. In Figure 6, we
compare our calculations for the total SFRD at z = 6,
7, and 8 assuming the best-fit values of L10 and Msupp

at each redshift to the observed estimates and to equa-
tion 8. We show results for L1500 to Ṁ⋆ ratios of both
8×1027 erg/s/Hz/(M⊙/yr) (the typically used value) and
2 × 1028 erg/s/Hz/(M⊙/yr) (consistent with our choices
of IMF and metallicity). We also show the factor by
which the total values of the SFRD and UV luminos-
ity exceed those observed by Bouwens et al. (2007) and
Bouwens et al. (2010c). Factors less than unity indicate
that the observed points are higher than average in the
universe at that redshift due to Poisson fluctuations or
cosmic variance so that observed SFRD is higher than
the average from the total population.

Our results show that the ability of the total galaxy
population to account for the UV background required
to keep the IGM ionized depends critically on the value
of msupp. For msupp = 8, the total SFRD or UV lumi-
nosity is about 3–7 times the observed values with more
star formation and luminosity missing at higher redshift.
However, at the best-fit values of msupp = 9.5 at z = 6

and 9.4 at z = 7 and 8, the galaxy population produces
no more SFRD than observed (and somewhat less for
z = 6). Assuming f−1

esc C = 1, the total SFRD for all pa-
rameters and redshifts considered meet the requirement
for maintaining the ionization of the IGM. However, if
f−1
esc C = 15 (e.g. fesc = 0.2 and C = 3), the galaxy popu-

lation can keep the IGM at z = 8 ionized only for a choice
of IMF and metallicity that gives the Madau et al. (1998)

ratio of L1500 to Ṁ⋆ ratio of 3× 1027 erg/s/Hz/(M⊙/yr)
and if msupp ∼ 8, lower than our best-fit value. Finally,
since the amount of star formation below the observable
limit increases with redshift, we find that the evolution
of the total SFRD with redshift is much flatter than that
observed.

8. CONCLUSIONS

In this paper, we combine a standard merger tree algo-
rithm with a simple star formation prescription designed
to encapsulate the main physical processes relevant at
z & 6. Our model both accounts for a range of possi-
ble galaxy luminosities for each halo mass and includes a
sharp galaxy formation cut-off in halo mass below Msupp.

• We confirm that the luminosity distribution for ha-
los of a given mass is a roughly log-normal distri-
bution with a variance of ∼ 1.5 magnitudes and a
proportional relationship between the mean lumi-
nosity and halo mass (see §3).

At a fixed halo mass of 1010 M⊙, the mean luminosi-
ties are log10(L10 erg−1 s Hz) = 27.1, 27.4, and 27.6 at
z = 6, 7, and 8, respectively, suggesting that for a fixed
halo mass, galaxies at brighter on average at higher red-
shift, consistent with results from Schechter fits. How-
ever, while the exponential tail of the high-redshift halo
mass function is less sharp than that of a Schechter func-
tion, the range of possible luminosities for a fixed halo
mass further slows the fall-off of the predicted galaxy
LF at the bright end. While still being consistent with
the data, our shallower LF anticipates the discovery of a
larger population of very bright galaxies at z = 7 and 8
as survey fields increase in size.

• We also show that an active fraction of halos that
approaches unity with increasing halo mass can be
naturally explained by a suppression halo mass for
galaxy formation combined with the variety of pos-
sible merger histories (see §4).

This active fraction is well-approximated by the for-
mula given in Eq. 7. One can easily use this expression,
along with our log-normal distributions of UV luminos-
ity for each halo mass to calculate the galaxy LF from
the halo mass function. The resulting LF does not have
a sharp cutoff at the faint end but rather turns over gen-
tly. Thus, we predict that as long as future observations
show a LF that increase with ever decreasing luminosity,
the surveyed region will never be volume-complete.

• The current data suggests that the minimum mass
halo capable of hosting galaxies may be around
2.5 × 109 M⊙, corresponding to a virial tempera-
ture of 7 × 104 K (see §5).
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We find a strong upper limit of Msupp < 6 × 109 M⊙

(105 K) with at least 95% confidence. However, lower
limits from the current data are quite weak with halos
less massive than about 3.5×108 M⊙ (1.7×104 K) unable
to host galaxies with some confidence given the data at
z = 6.

• We find a best-fit star formation efficiency of ap-
proximately 0.2-0.6% at high redshift implying a
starburst exponential time scale much longer than
the age of the universe.

The long burst time scale does not create lightbulb-
like galaxies, however, that once switched on are always
on at the same luminosity. Instead continued merger
activity disrupts old bursts and replaces them with new
ones based on the particular history of the host halo.

• We show that the proportionality of L1500 to Ṁ⋆ is
usually an adequate approximation (see §6).

While the Madau et al. (1998) proportionality relies
on long-lived bursts in the tail of their exponentially de-
creasing rate of star formation, most bursts at z = 7 are
emitting near their maximum luminosity where the track
of SFR vs. UV luminosity begins to join the proportional
relationship. Despite their young ages compared to their
exponential time scale, this is because the bursts are typ-
ically older than 107 yrs at the time of observation, old
enough that the massive stars providing the bulk of the
UV luminosity are beginning to die out as fast as new
ones are added. Although the lowest mass halos may
host very young bursts that have somewhat higher SFRs
than expected for their luminosities, using a standard
proportionality of L1500 to Ṁ⋆ adds additional errors of
only tens of percent. However, some care must be taken
to deliberately select a constant of proportionality con-
sistent with specific choices of metallicity and IMF rather
than continue to use the Madau et al. (1998) value indis-
criminately.

• When extrapolated down to faint luminosities be-
low the current observable threshold, the total

SFRD of the galaxy population will only at most 3–
7 times higher than what has already been observed
even if the minimum halo mass forming galaxies is
as low as 108 M⊙ (see §7).

The gentle turnover at the faint end of the LF, even
given a sharp cutoff in the halo mass capable of producing
galaxies, results in less star formation below the observ-
able limit than if the LF dropped sharply at the mean
luminosity corresponding to the same halo mass. While
the total galaxy population with msupp = 8 may be able
to keep the IGM ionized given f−1

esc C ∼ 15, for our best-
fit value of msupp ≈ 9.4, no significant star formation lies
below a magnitude of -18. In such a case, galaxies may
only be responsible for maintaining the ionization state
of the IGM if f−1

esc C ∼ 1. Interestingly, we also find that,
since the amount of missing star formation increases with
redshift, the evolution of the total star formation history
of the universe with is flatter than observed.

Although the current data from LBG drop-outs does
not place a strong lower-limit on the minimum halo mass
required to host galaxies at redshifts & 6, we have shown
that JWST and other future deep surveys will provide
much tighter constraints. These results will not only
shed light on the contribution of galaxies to the UV back-
ground that keeps the IGM ionized but also hint at the
feedback physics that limits galaxy formation. Addition-
ally our models can be expanded to include predictions
for Lyman-α emitters (LAEs) at high redshift. While the
fraction of halos observed as LAEs is not well-determined
due to uncertainties in the transparency of the IGM, in-
corporating this important source of data may provide
fuller insight into the feedback affecting faint galaxies
and their affect on the IGM.
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