Astronomy 202b: Cosmology (Tue./Thu., 9:30-11:00AM, Spring 2010)

Syllabus

Course Instructors

Prof. Avi Loeb

Office: P-237, Center for Astrophysics, 60 Garden St.

Phone: 617-496-6808 (office); E-mail: aloeb@cfa.harvard.edu

Teaching Fellow

Mr. Joey Muńoz

Office: P-203, Center for Astrophysics, 60 Garden St.

Phone: 617-495-9501 (office); E-mail: jamunoz@cfa.harvard.edu

Course Requirements

Problem sets (due every second week): 30% of grade

1 presentation (last two weeks of the Spring semester): 20%

Final Exam: 50%

Course Texts

Required:

- ★ Loeb, A. 2010, When Did the First Stars and Galaxies form? (Princeton: Princeton U Press); http://www.cfa.harvard.edu/~loeb/loeb.pdf
- \star Padmanabhan, T. 1993, Structure Formation in the Universe (Cambridge: Cambridge Univ. Press)

Recommended:

- * Schneider, P. 2006, Extragalactic Astronomy and Cosmology (Berlin: Springer)
- \star Mukhanov, V. 2005, Physical Foundations of Cosmology (Cambridge: Cambridge Univ. Press)

Course Outline

I. Introduction
The big picture
Composition of the current universe
Scales in Astrophysics
Standard observables
II. The Big Bang: Birth of our Universe
The cosmological principle: isotropy and homogeneity
The Hubble expansion: the redshift-distance relation
Relics from the Big-Bang: the microwave background, synthesis of light elements
Geometry of the Universe: the expansion factor, lookback time
Cosmological parameters: the Hubble constant, the mean mass density
III. Thermal History of the Universe
Early times: Planck era, inflation, Baryogenesis, Electroweak and QCD phase transitions, neutrino decoupling
Nucleosynthesis
Ionization history of the universe: cosmological recombination, reionization, the Lyman- α forest
The Microwave background: spectrum and anisotropy data from the COBE satellite and ground-based observations $$
IV. Origin of Structure In the Universe
Dark matter in the universe: evidence, searches: laboratory experiments, gravitational microlensing, Cold Dark Matter (CDM)
Primordial seeds of density fluctuations: linear theory, power-spectrum,
Spherical Collapse Model
Dark Matter Halos: mass distribution and virial properties

V. Formation of Galaxies and Their Feedback3/9; 3/11, 3/23, 4/1 Young galaxies at high redshifts and the epoch of reionization
Probing the Intergalactic Medium through the Lyman- α Line
21-cm Cosmology
Quasars and Gamma-Ray Bursts
Galaxy types: Spirals: Tully-Fisher relation; Ellipticals: fundamental plane
VI. The Interstellar Medium and the Formation of Stars $\dots 3/25, 3/30$
Physical conditions in the interstellar medium: densities, temperatures, dust
Star formation: virial equilibrium, the Jeans instability, effects of rotation and magnetic fields
Effects of stars on their environment: Strömgren spheres, supernova blast waves
VII. Stellar Structure
Hydrostatics: balance of momentum and energy, boundary conditions
Nuclear energy production: Coulomb barrier, the proton-proton chain, the CNO cycle, the triple-alpha reaction
Radiative transfer: opacity, conduction, convection
The Sun: properties, helioseismology, the solar neutrino puzzle
Polytropes: the Lane-Emden equation
The color-magnitude (H-R) diagram: main sequence, giants, supergiants, evolutionary tracks
VIII. White Dwarfs, Neutron Stars and Black Holes 4/13, 4/15
White Dwarfs: degenerate electron gas, the Chandrasekhar mass
Neutron stars: degenerate neutron gas, pulsars
Stellar collapse and Supernovae
Black holes: properties, evidence for their existence: stellar binaries, galactic nuclei
Massive black holes in distant quasars and nearby galaxies
Accretion flows near neutron stars and black holes: spherical accretion, the α -model
Presentations and Summary