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ABSTRACT
Recent results by the WMAP satellite suggest that the intergalactic medium was
significantly reionized at redshifts as high as z ∼ 17. At this early epoch, the first
ionizing sources likely appeared in the shallow potential wells of mini–halos with virial
temperatures Tvir < 104K. Once such an ionizing source turns off, its surrounding HII
region Compton cools and recombines. Nonetheless, we show that the “fossil” HII
regions left behind remain at high adiabats, prohibiting gas accretion and cooling
in subsequent generations of mini–halos. Thus, early star formation is self–limiting.
We quantify this effect to show that star formation in mini–halos cannot account for
the bulk of the electron scattering opacity measured by WMAP, which must be due
to more massive objects. We argue that gas entropy, rather than IGM metallicity,
regulates the evolution of the global ionizing emissivity, and impedes full reionization
until lower redshifts. We discuss several important consequences of this early entropy
floor for reionization. It reduces gas clumping, curtailing the required photon budget
for reionization. An entropy floor also prevents H2 formation and cooling, due to
reduced gas densities: it greatly enhances feedback from UV photodissociation of H2.
An early X-ray background would also furnish an entropy floor to the entire IGM;
thus, X-rays impede rather than enhance H2 formation. Future 21cm observations
may probe the topology of fossil HII regions.

1 INTRODUCTION

The high optical depth τ = 0.17 ± 0.04 detected by the
Wilkinson Microwave Anisotropy Probe (WMAP) satellite
has lent greater credence to the notion of an early period of
star formation and reionization, zr = 17 ± 8 (Kogut et al
2003; Spergel et al 2003). If indeed the first stars formed
at high redshift z ∼ 20, they are expected to form in mini–
halos1 with shallow potential wells, in which H2 cooling is
dominant (Abel, Bryan & Norman 2000; Bromm, Coppi
& Larson 2002). More massive halos with Tvir > 104K,
in which collisional ionization and line cooling can operate,
are expected to be very rare at these redshifts. Modulo the
effects of UV feedback on H2 formation and cooling, stars
forming in such halos could therefore play a dominant role in
an early reionization epoch. A great deal of effort has gone
into assessing the impact of UV feedback on H2 cooling, as
well as the counter-vailing effects of positive feedback effects
such as an early X-ray background (e.g., Haiman, Abel &
Rees (2000); Ciardi, Ferrara & Abel (2000); Ricotti, Gnedin
& Shull (2002); Machacek, Bryan & Abel (2001)).

1 For the purposes of this paper, a mini–halo is defined as any
halo with Tvir < 104K which cannot cool via atomic line cooling.

The main point of this paper is that the population
of mini–halos is likely to be considerably sparser than pre-
viously assumed. This is because mini–halo formation is
strongly suppressed even inside the fossil HII regions of dead
ionizing sources. Although such HII regions recombine and
cool by Compton scattering with cosmic microwave back-
ground (CMB) photons, they cannot cool to back to the tem-
perature of the undisturbed intergalactic medium (IGM).
Strong Jeans mass filtering takes place (Gnedin 2000), and
subsequent mini–halos will no longer be able to accrete gas
due to the smoothing effects of finite gas pressure. Thus,

once any patch of the universe is ionized, it can no longer

host any more mini–halos, even if it subsequently cools and

recombines. In effect, the birth of the first stars leads to the
demise of the mini–halo population: only one generation of
stars can form within these shallow potential wells.

While many authors have noted and commented on
the Jeans mass filtering after full reionization (Bullock,
Kravtsov & Weinberg 2000; Benson et al 2002; Somerville
2002), the Jeans filtering in fossil HII regions after ionizing
sources have turned off has not been studied. We argue that
it will strongly suppress the mini–halo population, with the
following interesting consequences:
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• Impact of Mini–Halo Population on Reioniza-
tion. Since the recombination time is shorter than the Hub-
ble time at high redshift, trec � tH , and the ionizing
sources, expected to be massive stars, have short lifetimes,
tMS ∼ 3 × 106yr � tH , many generations of star formation
are required to keep a given patch of the IGM ionized. How-
ever, once the first generation of stars born in mini–halos
dies out, subsequent generations will not be able to form
in mini–halos in a previously reionized patch of IGM, even
after the patch cools and recombines. This effect inevitably
produces a non–monotonic reionization history with an early
peak of partial reionization, followed by recombination and
eventual full reionization. This is qualitatively similar to
the reionization history derived by Cen (2003) and Wyithe
& Loeb (2003), although the physical reason for the non–
monotonic evolution in the present work is different (entropy
injection, rather than a pop III to pop II transition caused
by a universal metallicity increase). Regardless of the extent
of UV feedback effects on H2 production and cooling, the
majority of stars which reionized the universe were hosted
by more massive halos able to survive Jeans mass filtering,
Tvir > few × 104K.

• Photon Budget for Reionization. Dense gas that
collects in mini–halos can form a considerable sink of ioniz-
ing photons by boosting the overall effective gas clumping
factor CII = 〈n2

e〉/〈ne〉2 (Haiman, Abel & Madau 2001;
Barkana & Loeb 2002; Shapiro et al 2003). The clump-
ing factor CII increases rapidly at low redshift as structure
formation progresses; thus, despite the higher mean gas den-
sity n ∝ (1 + z)3 at high redshift, the recombination time
trec = 1/(αneCII) does not evolve strongly from z = 10−20.
However, if the universe is filled up with fossil HII regions at
high redshift, the photon budgets required to subsequently
ionize it and to keep it ionized are much lower, since gas
clumping in mini–halos is strongly suppressed.

• Source Clustering. Since preheating boosts the
threshold mass required for efficient gas cooling and star
formation, it increases the mean bias of the early proto-
galaxy population by a factor of a few (e.g., see figure 2 of
Oh, Cooray & Kamionkowski (2003)). This is likely to in-
crease the clustering amplitude of background fluctuations
due to these faint unresolved early proto-galaxies, such as:
the free-free background due to ionized halos (Oh 1999; Oh
& Mack 2003), Sunyaev-Zeldovich fluctuations due to high
redshift HII regions and supernovae winds (Knox et al 1999;
Oh, Cooray & Kamionkowski 2003; Santos 2003), and the
IR background due to stellar emission (Santos, Bromm &
Kamionkowski 2002; Magliocchetti, Salvaterra & Ferrara
2003; Haiman, Spergel & Turner 2003). The increase in
clustering bias boosts the amplitude of rms fluctuations by
a factor of several. This may be necessary, for instance, if
thermal SZ fluctuations from high-redshift supernovae are
to account for the small-scale CMB anisotropies observed
by BIMA and CBI (Oh, Cooray & Kamionkowski 2003).

• Star Formation History/Metallicity/IMF. Ini-
tially, each mini–halo is expected to harbor a single mas-
sive, metal–free star (no fragmentation is seen in numerical
simulations by Abel et al. 2000 and Bromm et al. 2002). Be-
cause of the preheating, no further mini–halos can form in

the entire comoving volume reionized by this mini–halo. As
a result, the first generation of stars is expected to form as
a population of single, isolated stars. Star formation ensues
again only once more massive halos with deeper potential
wells aggregate. These rare, high density peaks are likely
to coincide with the highly biased regions where the first
isolated stars had already formed. At the time of the for-
mation of deeper potential wells, such sites are inevitably
already polluted with metals, unless the first stars collapsed
directly to black holes without associated metal production.
As a result, the transition from pop III to pop II (metal free
to normal) stellar populations is associated with halo mass
scale. This is in contrast to scenarios (Cen 2003; Wyithe &
Loeb 2003) where star formation can continually proceed in
lower density peaks, which are far from the initial sites of
star formation and still contain relatively pristine gas (al-
lowing metal-free star formation to continue to relatively
low redshifts). Given the factor of ∼ 10 − 20 difference in
the ionizing photon production efficiency per unit mass be-
tween Pop III and Pop II stars (Tumlinson & Shull 2000;
Bromm, Kudritzki & Loeb 2001; Schaerer 2002), this will
have important consequences for the redshift evolution and
topology of reionization.
• 21cm Observations. It has been suggested that mini–

halos will be observable at the redshifted 21cm line fre-
quency both in emission (Iliev et al 2002a; Iliev et al 2002b),
and absorption (Furlanetto & Loeb 2002). If mini–halo for-
mation is strongly suppressed, these two windows on small-
scale structure during the cosmological Dark Ages will dis-
appear. 21cm observations of mini–halos therefore provide
an interesting probe of the topology of fossil HII regions: if
mini–halos are seen, that comoving patch of the IGM has
never been ionized. This is complementary to other observa-
tions such as Gunn-Peterson absorption, which only probe
the instantaneous ionization state.

The rest of this paper is organized as follows. In §2,
we compute the “entropy floor” due to early mini–halos. In
§3, we calculate the effects of this entropy floor on the gas
density profile in mini–halos. In §4, we discuss and quan-
tify several important effects of this entropy floor for reion-
ization, and in §5 we explicitly calculate the effect on the
reionization history. We summarize our findings and discuss
their implications in §6. Throughout this paper, we adopt
the background cosmological parameters as measured by the
WMAP experiment (Spergel et al. 2003, Tables 1 and 2),
Ωm = 0.29, ΩΛ = 0.71, Ωb = 0.047, h = 0.72 and an ini-
tial matter power spectrum P (k) ∝ kn with n = 0.99 and
normalization σ8 = 0.9.

2 ENTROPY FLOOR DUE TO EARLY
REIONIZATION

2.1 Entropy floor in Fossil HII regions

Early reionization introduces an ’entropy floor’ in the inter-
galactic medium which impedes gas accretion and cooling in
halos with Tvir < 104K which cannot excite atomic cooling.
Early reionization even introduces Jeans smoothing effects
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4 Oh & Haiman

as the ’entropy’ of the gas, even though it is not strictly
the thermodynamic entropy S ∝ log(K). This is a useful
convention because K is conserved when the gas evolves
adiabatically. Thus, it is conserved during Hubble expan-
sion, as well as during accretion onto halos (provided the
accretion shock is weak, gas will be accreted isentropically).
In Figure 2, we show the dependence of the final entropy
K on redshift (the dependence on Ti, t follow simply from
Figure 1). The gas has significantly lower entropy at higher
redshift, since Compton cooling is more efficient. However,
the final entropy at a given redshift depends only weakly on
the overdensity δ. Denser gas remains at higher tempera-
ture, since it recombines faster than it cools, and the com-
bination of higher temperature and higher density roughly
cancel K ∝ Tδ−2/3. We can therefore ignore the weak δ de-
pendence of K, and assume that it depends only on z. The

entropy floor is thus roughly independent of the details of

structure formation and gas density distribution.

It is useful to define a parameter which compares
the IGM entropy floor to the entropy generated by grav-
itational shock heating alone. Let us define the quan-
tity K̂ ≡ KIGM/Ko, where Ko = Tvir/n(rvir)

2/3, and
n(rvir) = (Ωb/Ωm)ρNFW (rvir)/(µmp) (and ρNFW is the
NFW (Navarro, Frenk & White 1997) dark matter den-
sity profile). This is the entropy due to shock heating alone
at the virial radius; the justification will become clearer in
the ensuing section. As K̂ increases, the Jeans smoothing
effects due to finite IGM entropy become increasingly more
significant. This parameter K̂(KIGM , Tvir, z) will be used
extensively in the following sections, and it is useful here to
get a sense of what values of K̂ are expected. In Figure 3,
we plot K̂ for a Tvir = 9000K halo as a function of redshift,
using KIGM(z) shown in Figure 2. Since K̂ ∝ T−1

vir , and a
Tvir = 9000K halo is about the most massive that would still
not experience atomic cooling, the solid line depicts a lower
limit on K̂ for all mini–halos. Appropriate values for K̂ for
smaller halos can be read off simply from the K̂ ∝ T−1

vir scal-

ing. We see that for most halos, K̂ > 1; although KIGM (z)
falls at high redshift, this is somewhat offset by the fact that
typical potential wells are much shallower, and thus Ko also
falls rapidly (as seen by the dashed lines, which depict K̂
for 2σ and 3σ fluctuations).

Typical values for K̂ are illustrated further in Figure
4, where we show the mass weighted fraction of mini–halos
which have entropy parameters less than a given K̂, given
by:

f(< K̂, z) =

∫ M(K̂)

MJ
dMM(dn/dM)

∫ Mu

MJ
dMM(dn/dM)

(4)

where M(K̂) is the mass corresponding to K̂ for a given
KIGM(z), MJ (z) is the cosmological Jeans mass (e.g., see
Barkana & Loeb (2002)), Mu(z) is the mass corresponding
to a Tvir = 104K halo, and dn/dM is the Press-Schechter
mass function. Virtually all halos have K̂ > 1 in fossil HII
regions at all redshifts of interest (z ∼< 20), and median

values of K̂ are much higher. We shall soon see that such
halos are subject to very substantial Jeans smoothing effects.

Figure 2. Dependence of the final entropy K = T/n2/3 on red-
shift z and overdensity δ. Points correspond to the analytic solu-
tion from equations 33 and 35. As in Figure 1, our fiducial patch
has Ti = 1, δ = 1, z = 19, t = 0.5tH(z = 19). The dependence on
Ti and t are the same as in Figure 1. The gas retains more entropy
at lower redshift, since Compton cooling is less efficient. However,
the final entropy shows only a weak dependence on overdensity δ:

the gas cools out at higher temperatures at higher densities, and
the increased temperature and density roughly cancel.

2.2 Entropy Floor due to X-rays

Reionization by X-rays (Oh 2001; Venketesan et al 2001)
would produce a warm (few ×100− 1000K), weakly ionized
IGM with an entropy floor similar to that in fossil HII re-
gions. Such X-rays could arise from supernovae, AGN, or
X-ray binaries, or in more exotic models with decaying mas-
sive sterile neutrinos (Hansen & Haiman 2003). The universe
is optically thick to all photons with energies:

E < Ethick = 1.8
(

1 + z

15

)0.5

x
1/3
HI keV (5)

where xHI is the mean neutral fraction, and we have as-
sumed σν ∝ ν−3. Thus, all energy radiated below Ethick

will be absorbed. The relative efficiency of UV photons and
X-rays in setting an entropy floor deserves detailed sepa-
rate study; here we discuss some salient points. UV photons
are an ’energetically extravagant’ means of producing an en-
tropy floor. Most of the energy injected by UV photons is
lost to recombinations and Compton cooling at high redshift;
we see in Figure 1 that the gas typically Compton cools to
Tfloor ∼ few × 100K at the redshifts of interest. Thus, only
∼ 10−2 of the heat injected by UV photons is eventually
utilized in setting the entropy floor; all energy expended inthegas
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Figure 3. The evolution of the dimensionless entropy parameter
K̂ ≡ KIGM/Ko as a function of redshift, assuming the gas cools
at the mean IGM density δ = 1. Here Ko is the gas entropy at the
virial radius due to shock heating alone, and KIGM is the entropy
of the fossil HII regions as computed in Figure 2. The solid line
describes a Tvir = 9000K halo, the most massive in which atomic
cooling is still not important. It therefore defines a lower limit on

K̂. The entropy parameter can be simply scaled (K̂ ∝ T−1
vir ) for

halos with lower virial temperatures. The dashed lines show K̂ for
2σ and 3σ halos at that redshift; the vast majority of mini–halos
have K̂ > 1.

combination time and the Compton cooling time are longer
than the Hubble time. In particular,

tC = 1.
(

xe

0.1

)−1 (

1 + z

15

)−2.5

tH (6)

and almost none of the entropy injected is lost to cooling.
Furthermore, a larger fraction of the X-ray energy goes to-
ward heating rather than ionization (in general, few×0.1 of
the energy of the hot photo-electron created by an X-ray
goes toward heating; this fraction quickly rises toward unity
as the medium becomes progressively more ionized (Shull
& van Steenberg 1985)). Thus, if εbol(X− ray)/εbol(UV) ≥
10−2 (where εbol is the comoving emissivity), X-rays could
be comparable or even more effective than UV photons in
setting an entropy floor. The relative emissivities of UV and
X-rays is unknown, but for supernovae could be as high as
(Oh 2001):

εbol(X− ray)

εbol(UV)
≈ 0.1

(

fesc

0.1

)−1 (

fX

0.1

)

(7)

where fesc is the escape fraction of ionizing UV photons
from the host halo, and fX is the fraction of supernova ex-
plosion energy which goes into soft X-rays, either through
inverse Compton scattering of CMB photons by relativistic
electrons (Oh 2001), or free-free emission from the hot SN
remnant.

Figure 4. The mass weighted fraction of mini–halos which have
entropy parameters < K̂, for z = 10, 15, 20, assuming KIGM(z)
shown in Figure 2. Virtually all halos have K̂ > 1, and the median
value of K̂ is substantially higher. Thus, the vast majority of halos
accrete gas isentropically.

To make a quick estimate, let us (fairly conservatively)
assume that fX ∼ 3% of the explosion energy of a super-
nova goes into soft X-rays. Of this, fheat ∼ 50% of the energy
goes into heating; the rest goes into secondary ionizations
and atomic excitations. A supernova releases EZ ∼ 0.5MeV
in explosion energy per metal baryon, relatively independent
of metallicity (a Pop III ’hypernova’ produces ∼ 100 times
more energy, but also ∼ 100 times more metals than a stan-
dard type II SN). X-ray heating thus results in an entropy
floor KIGM ≈ (fXEZfheatZ̄)/n2/3, or:

KIGM ≈ 20 eVcm2
(

fX

0.03

)(

fheat

0.5

)

(

Z̄

10−3Z�

)

(

1 + z

15

)−2

(8)

where Z̄ is the mean metallicity of the universe. This is
comparable to the entropy of fossil HII regions, but has a
much larger filling factor, of order unity. A metallicity of
Z̄ ∼ 10−3Z� corresponds to roughly ∼ 1 ionizing photon
per baryon in the universe, both for Pop II and Pop III
stars. Due to recombinations, the filling factor of ionized re-
gions will be of course considerably less than unity. However,
the filling factor of fossil HII regions, which is the relevant
quantity, will also be less than unity by a factor foverlap,
which represents the overlap of HII regions with fossil HII
regions which have recombined. Energy spent in reionizing
fossil HII regions is ’wasted’ in terms of establishing an en-
tropy floor. This factor is likely to be large because early
galaxy formation is highly biased, and higher mass halos
(which can resist feedback effects) will be born in regions
already pre-reionized by earlier generations of mini–halos.
A fossil HII filling factor of order unity with little overlap

c© 0000 RAS, MNRAS 000, 000–000
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can only be achieved if the formation of mini–halos is highly
synchronized (see discussion in section 5).

The mean free path of X-ray photons generally exceeds
the mean separation between sources, becoming comparable
to the Hubble length for ∼ 2keV photons. The entire uni-
verse is thus exposed to a fairly uniform X-ray background,
and the entire IGM acquires a uniform entropy floor, with an
amplitude which scales with the amount of star formation,
as in equation (8). Even regions far from sites of star forma-
tions, which have never been engulfed in an HII region, will
be affected. By contrast, in pure UV reionization scenarios,
there are large spatial fluctuations in entropy, which depend
on the topology of reionization, and the redshift at which a
comoving patch was last ionized.

Because of the relative uncertainty of the amplitude of
the X-ray background, we use the entropy floor associated
with fossil HII regions in the rest of this paper. The mass
fraction of affected mini–halos scales with the filling factor of
fossil HII regions. This is therefore a minimal estimate; the
filling factor could approach unity if X-rays are important.

We now consider the effects of a finite entropy floor on
mini–halo gas density profiles.

3 GAS DENSITY PROFILES

Once Compton cooling and radiative cooling become ineffi-
cient, the gas evolves adiabatically. We can therefore com-
pute static equilibrium density profiles, and see how they
change as a function of the entropy floor. The models we
construct are in the spirit of Voit et al (2002); Tozzi &
Norman (2001); Oh & Benson (2003); Babul et al (2002),
which match observations of low-redshift cluster X-ray pro-
files well.

Naively, one might assume that only gas which remains
at temperatures comparable to the virial temperatures of
mini–halos would suffer appreciable Jeans smoothing. Since
in many cases the IGM can cool down to few × 100K, one
might assume that this level of preheating would have negli-
gible effects on the density profile of gas in mini–halos. This
is false: the important quantity is not the temperature but
the entropy of the gas. Since gas in the IGM is heated at
low density, it has comparatively high entropy. Gas at mean
density which is heated to temperatures:

TIGM > 90
(

Tvir

3000K

)(

δ

200

)−2/3

K (9)

(where δ is the overdensity of the gas in the mini–halo in the
absence of preheating) will have entropy in excess of that ac-
quired by gravitational shock heating alone. Its temperature
will therefore exceed the virial temperature after infall and
adiabatic compression. As the level of preheating increases,
gas at progressively larger radii in the halo undergoes Jeans
smoothing effects. We now calculate this in detail.

We first construct the default entropy profile of the gas
without preheating. We assume that in the absence of heat-
ing or cooling processes, the gas distribution traces that of
the dark matter, an ansatz which is indeed observed in nu-
merical simulations (e.g., (Frenk et al 1999)) (the dark mat-
ter is assumed to follow the NFW (Navarro, Frenk & White

1997) profile). This assumption becomes inaccurate at the
very center of the halo, where finite gas pressure causes the
gas distribution to be more flattened and less cuspy than
the dark matter density distribution. In particular, even in
the absence of preheating the IGM has a finite temperature
after decoupling from the CMB and cooling adiabatically:
Tmin(z) ≈ 2.73(1 + zd)[(1 + z)/(1 + zd)]

2, where the matter-
radiation decoupling redshift zd ≈ 150. This gives rise to a
finite entropy floor:

Kmin = 4.6 × 10−2eVcm2, (10)

independent of redshift. Thus, there will be a finite core in
the gas density profile even in the absence of preheating.
In regions where gas traces the dark matter, hydrostatic
equilibrium gives the entropy profile due to shock heating
as:

Kshock(r) =
1

ρg(r)γ
× (11)

[
∫ r

rvir

−GM(r)ρg(r)

r2
dr +

ρg(rvir)

µmB
kBTvir.(rvir)

]

.

The final entropy profile is therefore K(r) =
max[Kmin, Kshock(r)]. Note that the mean molecular
weight is µ = 0.59 for fully ionized gas and µ = 1.22
for fully neutral primordial gas; in the paper we are
dealing with the case where the ionization fraction is small
and therefore use the latter figure. This results in virial
temperatures which are higher by a factor ∼ 2.

What is the effect of preheating on the entropy pro-
file? If the infall velocity does not exceed the local sound
speed, then the gas is accreted adiabatically and no shock
occurs; the gas entropy KIGM is therefore conserved. If gas
infall is supersonic, then the gas is shocked to the entropy
Kshock computed in equation (11). Tozzi & Norman (2001)
found that the transition between the adiabatic accretion
and shock heating regime is very sharp. To a very good
approximation K(M) = max(Kshock(M), KIGM); with this
new entropy profile we can compute density and tempera-
ture profiles. In fact, for most high redshift mini–halos the
’preheating’ entropy exceeds the shock entropy even at the
virial radius, so the gas mass is accreted isentropically. This
occurs when the entropy floor exceeds:

KIGM > 2.3 eV cm−3
(

Tvir

5000 K

)(

δ

50

)−2/3 (

1 + z

20

)−2

, (12)

where the gas overdensity δ ∼ 50 at the virial radius in
the absence of preheating is a weak function of the NFW
concentration parameter c. Although c depends weakly on
the collapse redshift, for simplicity we shall assume in this
paper that c = 5 for all mini–halos.

We have compared our entropy profiles calculated with
equation (11) with the prescription in Tozzi & Norman
(2001) (and also adopted by Oh & Benson (2003)). In this
method an accretion history for a halo is prescribed via ex-
tended Press-Schechter theory; this allows one to compute
the strength of the accretion shock and thus the gas en-
tropy (using standard Rankine-Hugoniot jump conditions)
for each Lagrangian mass shell. The two methods agree ex-

c© 0000 RAS, MNRAS 000, 000–000
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tremely well; we therefore use equation (11) for both speed
and simplicity.

Given an entropy profile, from hydrostatic equilibrium
the density profile of the gas is then given by:

ρ(r) = K̃(r)−1/γ × (13)
[

P (rvir)
1− 1

γ +
γ − 1

γ

∫ r

rvir

−dr′
GM(r′)

r′2
K̃(r′)−1/γ

]1/(γ−1)

.

where K̃ ≡ P/ρ5/3 = kB(µmH)−5/3K. The temperature
profile can then be determined from T = µmH

kB
K̃ργ−1

gas .
The solution of this equation requires a boundary

condition which sets the overall normalization, here ex-
pressed as P (rvir). There is some ambiguity in this choice.
The often used boundary condition Mg = fBMhalo at
r = rvir is unphysical as it does not take into account
the suppression of accretion due to finite gas entropy. We
make the following choice. Let us define Pshock(rvir) ≡
(Ωb/Ωm)ρ(rvir)/(µmH)kBTvir, the pressure at the virial
radius due to shock heating alone. For Kshock(rvir) >
KIGM, the final conditions at the virial radius are not
strongly affected by the entropy floor, since the shock boosts
the gas onto a new adiabat. We therefore set P (rvir) =
Pshock(rvir). The boundary condition must change when
KIGM > Kshock(rvir), when accretion takes place isentrop-
ically, and the entropy floor is fundamental in determining
the gas pressure. In this case, P (rvir) (which is essentially
a constant of integration) is chosen so that ρ(r) → ρ̄ as
r → ∞. The latter boundary condition implicitly assumes
that hydrostatic equilibrium prevails beyond the virial ra-
dius. This is questionable, but is arguably reasonable: the
gas sound speed cs = (γKIGMργ−1)1/2 in preheated gas is
much higher than in cold gas, which is essentially in free-
fall. The sound-crossing lengthscale over which hydrostatic
equilibrium can be established, Lsc ≈ cstH , is:

Lsc ≈ 1 kpch−1
(

KIGM

3eV cm2

)1/2 (

1 + z

20

)−0.5 (

δ

10

)1/3

(14)

which is ∼ 5 times larger than the virial radius for a ∼ 6000K
halo at the same redshift. Indeed, by definition Lsc > rvir

for Jeans smoothing effects to be important.
Having established the appropriate boundary condi-

tions, we can now compute detailed gas profiles. The en-
tropy, density, pressure and temperature profiles as a func-
tion of r̃ ≡ r/rvir are shown in Fig 5. These profiles are of
course universal and independent of halo mass once K̂ is set,
if the weak dependence of the NFW concentration param-
eter c with mass is ignored. As the entropy floor increases,
the central pressure and density decline, while the central
temperature increases. We see that reasonable values of the
entropy floor K̂ > 1 produce dramatic effects on the gas
density profile of the halo, smoothing it out considerably.

We now use these density profiles to compute how the
accreted gas fraction fg ≡ (Mg/Mhalo)/(Ωb/Ωm) scales with
the entropy parameter K̂. This is shown as the dark solid line
in Fig 6. Again, because of the self-similarity of the problem,
this plot is valid for mini–halos of all virial temperatures
at all redshifts, provided K̂ is appropriately re-scaled. It is
reassuring to see that fg is continuous at K̂ = 1, when we
switch from one boundary condition to another. This need

Figure 5. The dimensionless entropy K̃ = K/Ko, pressure
P̃ = P/Po, temperature T̃ = T/To, and density ρ̃ = ρ/ρo, as
a function of radius r̃ = r/rvir. Ko, Po, To are the values of
these quantities at rvir without preheating, while ρo = ρ̄b, the
mean baryonic density. The entropy profile K̃(r̃) uniquely speci-
fies P̃ (r̃), T̃ (r̃), ρ̃(r̃), independent of halo mass or redshift.

not have been the case, and gives us confidence that we
handle the transition to isentropic accretion correctly. We
see that realistic levels of the entropy floor (as computed in
§2) causes a substantial depression in gas fractions in mini–
halos.

It is interesting to compare our derived gas frac-
tions with other estimates. For the case where KIGM >
Kshock(rvir), accretion takes place isentropically. The halo
will therefore accrete gas at roughly the adiabatic Bondi
accretion rate (e.g., Balogh, Babul & Patton (1999)):

Ṁb ≈ 1.86πλG2M2
haloK̃

−3/2
IGM . (15)

The total accreted gas mass is then roughly Mgas ≈
min(fṀbtH , (Ωb/Ωm)Mhalo), where f is some unknown nor-
malization factor which takes into account the fact that the
total halo mass is not constant but was lower in the past
(and hence, that the gas accretion rate was lower in the
past). Another estimate which is a good fit to the results of
hydrodynamic simulations is (Gnedin 2000):

M̄b ≈
(Ωb/Ωm)Mhalo

[1 + (21/3 − 1)M1/2/Mhalo]3
. (16)

There is only one free parameter: M1/2, the mass of the
halo in which the gas mass fraction fg = 0.5. Gnedin (1999)
shows that M1/2 is well approximated by the “filtering mass”
MF . However, MF depends on the unknown thermal history
of the IGM. To make a self-consistent comparison, we com-
pute M1/2 with the density profiles computed with our fidu-
cial boundary conditions. Interestingly, we find that M1/2

roughly corresponds to the halo mass when accretion begins
to take place isentropically K̂ ∼ 1.

c© 0000 RAS, MNRAS 000, 000–000



8 Oh & Haiman

Figure 6. The gas fraction within the virial radius fgas =
(Mg/Mhalo)/(Ωb/Ωm) as a function of the entropy parameter K̂.
The solid line indicates our fiducial boundary conditions; the dot-
ted line corresponds to the Gnedin (2000) fit to numerical simu-
lations; while the dashed line corresponds to the Bondi accretion
prediction (valid only for isentropic accretion, K̂ > 1). All three
show good agreement. The self-similarity of this problem implies

that the computed gas fractions applies to mini–halos of all virial
temperatures, provided K̂ is appropriately scaled. For illustrative
purposes, appropriate values of K̂ for a mini–halo of Tvir = 5000K
at z = 20, 13 are shown (see Figure 3).

The results are shown in Figure 6. All three estimates
agree well (note that the normalization f of the Bondi ac-
cretion prediction is a free parameter; the plot shown is for
f = 0.3). The widely used Gnedin (2000) fitting formula
predicts even lower gas fractions (and as we will see, clump-
ing factors) at high entropy levels K̂ � 1. On the other
hand, the slope of the fg(K̂) relation for our boundary condi-
tions agrees very well with the Bondi accretion prediction in
this regime. Our boundary conditions therefore yield fairly
conservative estimates of the effects of preheating. More-
over, unlike these other estimates, we are able to compute
detailed density profiles, which is crucial for some of our
later calculations.

There are two other quantities which are of particular
interest when computing density profiles. One is the central
density ρc, which affects the ability of mini–halos to form
H2 in the face of UV photo-dissociation. Another is the gas
clumping of the halo, defined as:

Chalo =
〈n2〉
〈n〉2 . (17)

where the brackets indicate a volume averaged quantity,

〈X〉 =
1

V

∫ rvir

0

dr4πr2X. (18)

Note that Chalo ≥ 1 always. The clumping factor Chalo plays

Figure 7. The effect of increasing the entropy parameter K̂ on
the central gas density ρ̃c = ρc/ρ̄ (bottom panel), and gas clump-

ing C
1/2
halo

(top panel), as defined in equation (17). The solid lines
correspond to our fiducial boundary conditions, while the dashed
lines correspond to adjusting P (rvir) to reproduce the gas frac-
tions from the Gnedin (2000) fit to numerical simulations (the
results for the Bondi accretion prediction are almost identical to

the solid curve). Both ρ̃c and C
1/2
halo

decline rapidly as K̂ increases.

a central role in determining the photon budget required for
reionization; we evaluate the global clumping factor in the
following section. In Figure 7, we show the effect of increas-
ing the entropy parameter K̂ on the central density and
clumping factor. Both decline rapidly with K̂. We shall use
these two results in the following sections.

We now use these gas density profiles to compute global
effects of mini–halo suppression.

4 GLOBAL EFFECTS OF MINI–HALO
SUPPRESSION

4.1 Suppression of Collapsed Gas Fraction and
Gas Clumping

An entropy floor suppresses the fraction of gas which is
bound within mini–halos. As we discuss in §4.4, the mean
21cm emission from mini–halos is directly proportional to
this global gas fraction; if it is strongly suppressed the sig-
nal will be unobservable. The global collapsed gas fraction
is:

fgas =
1

ρb

∫ Mu

Ml

dM
dn

dM
fbfhalo,g(K̂)M (19)

where fB = Ωb/Ωm, fhalo,g(K̂) is the halo gas fraction as
in Figure 6, and ρb is the comoving baryon density. This is
shown in the bottom panel of Figure 9. Curves are shown

c© 0000 RAS, MNRAS 000, 000–000
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Figure 9. The evolution of the collapsed gas fraction in mini–
halos (lower panel) and the gas clumping factor (upper panel)
with redshift. The results are shown for no preheating (with
KIGM = Kmin), as well as constant values of entropy KIGM =
1, 10 eV cm2 and the redshift-dependent entropy KIGM(z) shown
in the top panel of Figure 2. Both the global gas fraction in mini–
halos and gas clumping are strongly suppressed for realistic values

of the entropy floor. In particular, C → 1 for realistic values of
KIGM, greatly reducing the photon budget required for reioniza-
tion.

(Oh & Haiman (2002), hereafter OH02). The H2 abundance
can only exceed this if three-body processes are important,
which only takes place at very high density n > 108cm−3.

In OH02, we showed that the minimum temperature
Tmin a parcel of gas can cool to depends almost exclusively
on tcool/tdiss ∝ JUV/n (see Figure 6 of OH02). This scal-
ing behavior is only broken when the gas approaches high
densities n > 104cm−3 (at this point, the cooling time be-
comes independent of density and tcool/tdiss ∝ JUV). How-
ever, the latter regime is never reached in pre-heated gas,
which is at much lower densities (n ∼ 104cm−3 corresponds
to δ ∼ 6×106 at z = 19). In subsequent discussion, we shall
assume the dependence of Tmin on JUV/n shown in Figure
6 of OH02.

Thus, in the presence of a radiation field JUV, the gas
must be at a minimum density ncrit to cool down to a tem-
perature Tmin. We have already calculated the maximum
central density nc of gas in a halo given an entropy param-
eter K̂, as in Figure 7. If the central density is less than
the critical density, nc < ncrit, then none of the gas in the
halo can cool down to Tmin. For a given entropy param-
eter K̂, there is therefore a minimum radiation field JUV

above which no gas can cool down to Tmin. We plot this in
the top panel of Figure 10. This plot is valid for all halos
at all redshifts provided K̂ and JUV are both rescaled ap-
propriately (note that since n ∝ (1 + z)3, to keep JUV/n
constant, JUV ∝ (1 + z)3). To get a sense of typical val-

ues of JUV, the radiation field corresponding to nγ ionizing
photons per baryon in the universe is JUV ≈ hP c

4π
nγnb(1 +

z)3/10−21erg s−1 cm−2 Hz−1 sr−1 ≈ 10nγ

(

1+z
16

)3
(where nb

is the comoving baryon number density, and hP is the Planck
constant).

We see that an entropy floor greatly reduces the radi-
ation field required to prevent gas cooling. For reasonable
values of K̂, the reduction can be as much as four orders
of magnitude. Thus, even if there is only a very weak radi-
ation field, in the presence of an entropy floor effective H2

cooling
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Figure 10. Top panel: The critical radiation field JUV required
to suppress gas cooling below some temperature T , as a function
of entropy parameter K̂. An entropy floor greatly reduces the
radiation field required to photo-dissociate H2, by several orders
of magnitude. Note that JUV ∝ (1 + z)3; the curves shown are
for a halo at z = 14. Bottom panel: The fraction of gas in a
halo able to cool below temperature T , for JUV = 10−3 (lines),

and JUV = 10−1 (dots connected by lines), at z = 14. Beyond a
critical value of K̂, the cooled gas fraction plummets dramatically.

ment corresponds to ∼ 1f−1
Z ionizing photon per baryon in

the universe (where fZ is the volume filling factor of met-
als). Thus, metal line cooling becomes significant only at late
times. 2) After an ionizing source turns off and explodes
as a supernova, the metal-polluted region is much smaller
than the fossil HII region (Madau, Ferrara & Rees 2001).
Most of the volume is therefore still of pristine composi-
tion, and undergoes the entropy floor suppression we have
described. The metal-polluted region lies close to the high
density peak where the very first stars formed, where in any
case, more massive halos Tvir > 104K will collapse. To sum-
marize: metal line cooling is therefore unlikely to spoil our
assumption of adiabaticity in most of the volume of the fos-
sil HII region. The exception is at the most highly biased
density peaks, where metals can be thought of as effectively
increasing the star formation efficiency.

The net result is that entropy injection greatly boosts
the negative feedback from early star formation: the entropy
floor in reionized regions results in low density cores in the
center of halos, in which H2 is easily photo-dissociated by a
weak external UV radiation field.

4.3 Negative Feedback from X-rays

It is often argued that X-rays boost H2 production and cool-
ing in mini–halos, by penetrating deep into the dense core
and increasing the free electron fraction, which is critical for
gas phase H2 production. Thus, X-rays are thought to exert
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be much harder, since photoelectric absorption hardens the
spectrum away from the source.

What is the heating associated with this radiation field?
As we argued in §2.2 above, all energy in the X-ray radiation
field with EL < E < Ethick (as defined in §5) will be absorbed
by the IGM, since the universe is optically thick at these
frequencies. The radiation field may be subdivided into two
components. The “mean field” consists of photons with E >
Eoverlap, where Eoverlap is defined by:

λmfp(E) > n−1/3
source for E > Eoverlap (23)

i.e., photons with E > Eoverlap (typically, Eoverlap ∼ 100eV)
have a mean free path greater than the mean separation be-
tween sources, so that a homogeneous ionizing background
is established. The “fluctuating field” consists of photons
with E < Eoverlap; this component is dominated by radi-
ation from a single source, and is subject to large Poisson
fluctuations. We are interested in the heating due to the
’mean field’, which can lead to an entropy floor even outside
the HII regions of ionizing sources. It is:

Ėheat = fheat

∫ νthick

νoverlap

dνεν ≈ fheat
4π

lH
JXνLln

(

νthick

νthin

)

(24)

where fheat is the
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Figure 12. The UV background JUV required to suppress cooling
down to some temperature Tmin, as a function of fX = JX/JUV.
The curves plotted are for a Tvir = 5000K halo at z = 19; the
results may be rescaled to other halos by rescaling the x-axis:
fX ∝ Tvir(1 + z)5. Also shown as dashed and dotted lines are
the maximum value of fX ≈ 1 in the hardest sources, and the
minimum typical value of fX ≈ 0.1 required for X-rays to ex-

ert a positive feedback effect; the shaded region therefore shows
the possible region whereby X-rays were assumed exert a pos-
itive feedback effect. Instead, we see that such a strong X-ray
background exerts a negative feedback effect. By inducing a low
density core in the halo, an X-ray background in the required
zone reduces by 1− 2 orders of magnitude the minimum UV flux
required to suppress cooling, compared to the case where fX → 0.

Mini–halos are too faint to be seen individually in emis-
sion, and can only be detected statistically through bright-
ness temperature fluctuations. Provided TS � TCMB (where
TS is the spin temperature), the 21cm flux S is independent
of the spin temperature, and depends only on the HI mass,
S ∝ MHI . Thus, S(halos)/S(IGM) is simply equal to the
collapsed gas mass fraction in mini–halos, which is always
less than unity. The mini–halo signal is much smaller if an
entropy floor exists, since the collapsed gas fraction declines
rapidly: the bottom panel of Figure 9 can simply be read off
as S(halos)/S(IGM). Thus, the IGM dominates 21cm emis-
sion. Mini–halos dominate only when: (i) the IGM spin tem-
perature has not yet decoupled from the CMB (the critical
thermalization radiation field J21 such that TS → Tα ≈ TK ,
where Tα is the color temperature of the radiation field, is
J21 ≈ 5([1+ z]/10) (Madau, Meiskin & Rees 1997)) (ii) the
filling factor of fossil HII regions is small. The high WMAP

optical depth, which implies significant reionization at high
redshift, pushes the latter constraint to high redshift and
thus low radio frequencies vobs = 93([1 + z]/15)MHz, mak-
ing this a very challenging observation.

We now turn to absorption signatures. How does the

mini–halo 21cm absorption signature scale with the IGM
entropy? The IGM 21cm optical depth is:

τν ≈ 10−2

(

TCMB(z)

TS

)

(

1 + z

10

)1/2

xHI. (29)

See Madau, Meiskin & Rees (1997) for expressions for the
spin temperature TS(J21, nHI , TK); we do not reproduce
them here. We use a fit to the results of Allison & Dal-
garno (1969) for the collisional coupling coefficient C10 for
TK < 1000K, with a C10 ∝ T−0.33

K extrapolation for higher
temperatures. The mini–halo 21cm optical depth along an
impact parameter α to the halo center is (Furlanetto & Loeb
2002):

τhalo(α, ν) =
3hP c3A10

32πkBν2
o

∫

dR
nHI(r)

Ts(r)
√

πb(r)
exp

[

−v(ν)2

b2(r)

]

(30)

where A10 = 2.85×10−15s−1 is the spontaneous emission co-
efficient, b(r)2 = 2kBTK/mp is the gas Doppler parameter,
r2 = R2 + α2, and v(ν) = c(ν − νo)/νo). Unlike Furlanetto
& Loeb (2002), we do not attempt to model the velocity
field of the infall region, which we ignore; the total observed
optical depth is taken to be τtot = τhalo + τIGM. The veloc-
ity field in the preheated gas will differ significantly from
the Bertschinger self-similar solution they assume, since gas
pressure retards accretion; the infall region optical depth
will be smaller because of the reduced gas column. Since
even in their case the contribution of the infall region to
21cm absorption is small (see their Fig. 2, where the equiv-
alent width drops drastically for α > rshock), our neglect is
justified.

In Fig. 13, we show the optical depth as a function of
observed frequency, for different levels of the entropy param-
eter K̂. The values of K̂ shown correspond to IGM temper-
atures of TIGM = 70, 700, 7000K; since fossil HII regions at
z=10 cannot significantly cool below 7000K (see Fig. 1), the
value of K̂ = 50 is most appropriate. We see that the opti-
cal depth contribution from mini–halos falls drastically with
increasing K̂. Also shown is the optical depth for J21 = 10.
The radiation field drives TS → TK , reducing the 21cm op-
tical depth τ ∝ T−1

S .

Since τIGM also depends on K̂, the most relevant quan-
tity for detecting a mini–halo is the observed equivalent
width:

〈∆ν〉 =
2

1 + zh

[
∫

∞

νo

dν(1− eτtot )− (1− eτIGM)

]

(31)

which measures the 21cm absorption due to the mini–halo in
excess of that due to the IGM. It falls rapidly with K̂ and is
extremely small for the most likely value of K̂ = 50. Figures
13 and 14 can be compared with Fig. 1 and 2 of Furlanetto
& Loeb (2002) (although note that in Fig. 13, we plot τ as
a function of observed rather than intrinsic frequency). An
entropy floor greatly reduces the cross-sectional area over
which an observable absorption signal may be detected. If
one detects significant mini–halo absorption over a large co-
moving patch along the line of sight to a radio source, one
can place an upper limit on the entropy floor there. This in
turn places an upper limit on the high-redshift X-ray back-
ground (from equation 8), as well as a lower limit on the

c© 0000 RAS, MNRAS 000, 000–000



14 Oh & Haiman

Figure 13. Mini–halo optical depth profiles as a function of ob-
served frequency for a 2×106M�h−1 halo at z = 10, all for impact
parameters of α = 0.3rvir. The values of K̂ = 0.5, 5, 50 shown
correspond to IGM temperatures of TIGM = 70, 700, 7000K; since
fossil HII regions at z=10 cannot significantly cool below 7000K,
the value of K̂ = 50 is most appropriate. Solid lines correspond
to J21 = 0; dashed lines correspond to J21 = 10. The entropy

floor makes the mini–halo contribution to the 21cm absorption
undetectable.

redshift at which that patch was first reionized (since fossils
from higher redshift have lower entropy, as in Fig 2).

The chief driver of high-redshift 21cm proposals has
of course been to observe the IGM itself in 21cm emission
(Madau, Meiskin & Rees 1997; Tozzi et al 2000; Ciardi
& Madau 2003). We note that if the filling factor of fossil
HII regions is large, conditions are very favorable for such
observations. Provided TS → TK in the IGM, the only con-
dition for the IGM to be seen in 21cm emission against the
CMB is for TK � TCMB(zobs). This is certainly satisfied in
fossil HII regions. It was previously thought that recoil heat-
ing from Lyα photons could heat neutral regions (Madau,
Meiskin & Rees 1997), but a detailed calculation (Chen &
Miralda-Escude 2003) shows the heating to be insufficient.
In that case, a high-redshift X-ray background would be re-
quired to heat neutral regions. Such concerns are moot if a
period of early reionization took place (as seems to be indi-
cated by WMAP observations), followed by recombination:
large tracts of warm, largely neutral gas would exist. Note,
however, that brightness temperature fluctuations can only
be detected if the contribution from unresolved radio point
sources (Tozzi et al 2000; Oh & Mack 2003) can be suc-
cessfully removed by using spectral structure in frequency
space.

Figure 14. The observed 21cm absorption equivalent width of a
2× 106M�h−1 halo at z = 10, for J21 = 0, 1, 10, as a function of
K̂. Solid lines are for an impact parameter of α = 0.3rvir, while
dashed lines are for α = 0.7rvir. The equivalent width falls rapidly
as the entropy floor rises; for the expected value of K̂ = 50 at this
redshift, equivalent widths are very small.

5 EFFECTS ON GLOBAL REIONIZATION
SCENARIOS

5.1 General Considerations

We next address the effect of the suppression of mini–halo
formation on the global reionization history. The importance
of the effect depends on (1) the synchronization of the for-
mation of mini–halos tsync relative to the typical lifetime
tion of the ionizing source, which determines the fraction of
mini–halos subjected to feedback, as well as (2) on the re-
combination time trec relative to tsync, which determines how
long the ionized regions last and thus the fraction of active
(as opposed to fossil) ionized regions at any given time.

In the limit of tsync � tion, the fossil HII regions would
appear only after all the mini–halos had already formed,
and hence the feedback would have no effect on the total
amount of reionization by mini–halos. In the absence of any
other feedback effects, the IGM could then, in principle, be
fully reionized by mini–halos, given a high enough ionizing
photon production efficiency (although would subsequently
recombine).

In the opposite limit, tsync � tion, the contribution of
mini–halos to reionization will be strongly suppressed. We
can obtain a rough estimate for the maximum fraction of
the IGM that can be ionized by the mini–halos. During the
lifetime of its resident ionizing source, each mini–halo pro-
duces an ionized volume VHII, which will correspond to the
total number Nγ of ionizing photons injected into the IGM,
i.e. n̄V ≈ Nγ , where n̄ is the mean hydrogen density. To a
good approximation, recombinations can be ignored in this
phase, since massive stars have lifetimes shorter than the
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recombination time, trec ≈ 3×107[C(1+z)/25]−3 years (see
Fig. 15 below). On the other hand, the recombination time is
shorter than the Hubble time, trec/thub ≈ [C(1+ z)/11]−1.5,
so in general, at high redshift z > 10, and for clumping
factors C > 1, the ionized volume will recombine once its
driving source turns off.

As argued above, for the purpose of the mini–halo sup-
pression, we may nevertheless simply imagine that the HII
region never recombines. Ignoring recombinations inside the
ionized region, this is equivalent to setting the size of the
fossil HII region to be the maximum (comoving) size of the
active HII region, reached at the time when the ionizing
source turns off.

The evolutions of the radii of the active and fossil HII re-
gions are illustrated in Figure 15 for a single 103 M� metal–
free star that turns on at z = 25. We follow the expansion of
the ionization front RS by solving the standard differential
equation, taking into account ionizations, recombinations,
and the Hubble expansion (e.g. Shapiro & Giroux 1987; Cen
& Haiman 2000). We assume a constant clumping factor of
C = 1 (upper solid curve) or C = 10 (lower solid curve). We
assume further that the metal free star emits 40, 000 ionizing
photons per stellar proton at a constant rate for ∼ 3 × 106

years (Tumlinson & Shull 2000; Bromm, Kudritzki & Loeb
2001; Schaerer 2002). Once the ionizing source turns off, the
solid curves show the formal solution for the evolution of the
ionization front. 4 The dashed curves show the size of the
fossil HII region.

We can next consider the evolution of the volume filling
factor of the fossil HII regions from the ensemble of mini–
halos, and define the epoch zf when the filling factor of these
fossils reaches unity. As argued above, no new mini–halos
can form at z < zf . At this epoch, the global ionized fraction
will be smaller than unity, because each fossil HII region has
already partially recombined. Thus the global ionized frac-
tion will be ∼ exp(−tsync/t̄rec), assuming that the sources
typically turned off a time tsync ago, and t̄rec is the aver-
age recombination time over the interval tsync. For example,
assuming that the fossil HII regions overlap at zf = 20,
with the typical sources born at z = 25, and the recombi-
nation time evaluated at z = 22.5 (with C = 1), we find
tsync ≈ t̄rec ≈ 5× 107 years, and a maximal ionized fraction
of ∼ 30%.

5.2 Models for the Reionization History

To refine the above considerations, we next compute the evo-
lution of the global ionized fraction using a semi–analytical
model adopted from Haiman & Holder (2003, hereafter
HH03). For technical details, the reader is referred to that
paper. Here we only briefly summarize the main ingredients
of the model, and describe the modifications we made to

4 This formal solution predicts a shrinking of the ionization front.
In reality, once the source turns off, recombinations throughout
the ionized region will decrease the ionized fraction uniformly
by the factor [RS/RS,max]3, rather than reduce the size of a
highly ionized volume. However, for our purposes of computing
the global ionized fraction, the two interpretations are equivalent.



16 Oh & Haiman

back). The evolution of FHII in this model is shown by the
upper thin solid curve in Figure 16 (with C = 1 in the upper
panel, and C = 10 in the lower panel). As the figure shows,
in the absence of other feedback effects (see discussion in
Haiman, Abel & Rees 2000 and Haiman 2003 for other feed-
back effects), the mini–halos could ionize the IGM in full by
z ∼ 14 (C = 1), or nearly fully by z ∼ 10 (if clumping is
assumed to be more significant, C = 10).

We next compute FHII in the same model, except that
we exclude the formation of new mini–halos in fossil HII re-
gions. This is easily accomplished in practice: the suppres-
sion factor (1−FHII) for the formation rate of mini–halos is
replaced by a factor (1 − F ′

HII). Here the fossil filling factor
F ′

HII is computed the same way as the ionized fraction FHII,
except that the individual ionized regions are assumed to fol-
low the dashed curves from Figure 15 rather than the solid
curves. In Figure 16, we show the evolution of the volume
filling factor F ′

HII of the fossil HII regions (dashed curves),
as well as the reionization history FHII(z) as the thick solid
curves. Finally, for reference, we show FHII(z) with mini–
halos completely excluded (ε = 0) as the lower thin solid
curves.

As apparent from Figure 15, the exclusion of new mini–
halo formation from the fossil HII regions causes a significant
suppression of the total ionized fraction that can be reached
by mini–halos. Under the rather optimistic set of assump-
tions described by the thick solid curve in the upper panel,
the maximum ionized fraction that can be reached is ∼ 40%.
In reality, clumping is unlikely to be unity in the immediate
vicinity ( ∼< 100 kpc) of the ionizing sources (Haiman, Abel
& Madau 2000).

The total electron scattering optical depth attributable
to mini–halos (the appropriately weighted integral between
the thick solid curve and the lower thin solid curve) is
τ = 0.07 and τ = 0.014 in the C = 1 and C = 10 cases, re-
spectively. This makes it unlikely that mini–halos can fully
account for the large optical depth τ = 0.17 measured by
WMAP. Note the thick curve in the upper panel of Figure 16
has a total τ = 0.2 (τ = 0.07 attributable to minihalos, and
τ = 0.13 to larger halos), so that it is consistent with the
WMAP measurement. Note that raising the efficiencies in
mini–halos would not increase the optical depth attributed
to minihalos, since feedback then would set in earlier (we
have explicitly verified that τ is approximately independent
of efficiencies over a range of multiplicative factors 0.1 - 10
for ε). Finally, note that the suppression considered here and
shown in Figure 16 provides a negative feedback in addition

to the negative feedback expected from H2 photodissociation
(Haiman, Rees & Loeb 1997; Haiman, Abel & Rees 2000).
In fact, as discussed above, preheating amplifies the effect
of the H2-photodissociative negative feedback.

Because an entropy floor essentially eliminates gas
clumping due to mini-halos (as shown in section 4.1), the
reionization history is likely to more closely approximate
the C=1 case than the C=10 case until low redshifts z < 10
(when gas clumping due to larger structures predominates).
An entropy floor therefore has two countervailing effects on
reionization: by suppressing star formation in mini–halos, it
reduces the comoving emissivity. However, by reducing gas

Figure 16. The evolution of the volume filling fraction FHII of
ionized hydrogen in reionization models with different assump-
tions about feedback on mini–halo formation. The upper and
lower panels assume constant clumping factors of C = 1 and
C = 10, respectively. In both panels, the dashed curves show the
volume filling fraction of the fossil HII regions. The thick solid
curves show the evolution of FHII assuming that mini–halos can-

not form inside fossil HII regions. The upper solid curves assume
that mini–halos are only excluded from forming inside active ion-
ized regions. Finally, the lower solid curves ignore the contribution
to FHII from any mini–halos.

clumping, it also reduces the photon budget required for
reionization. It is interesting to note that that the evolution
of the filling factor is non-monotonic for the C=1 case: feed-
back due to early reionization naturally produces a bump
in the comoving emissivity, and a pause ensues before larger
halos (which can resist feedback) collapse. This is similar to
the reionization histories derived by (Cen 2003; Wyithe &
Loeb 2003), but is regulated by feedback from the entropy
floor rather than a Pop III to Pop II transition due to a
universal metallicity increase.

6 CONCLUSIONS

In this paper, motivated by the WMAP results, we have con-
sidered the feedback effect of early reionization/preheating
on structure formation. This feedback effect is inevitable in
any reionization scenario in which star formation throughout
the universe is not completely synchronized. Our principal
conclusions are as follows:

1. Fossil HII regions have a residual entropy floor after
recombination and Compton cooling which is higher than
the shock entropy for mini–halos (Tvir < 104K); thus, such
halos accrete gas isentropically. The IGM entropy depends
primarily on the redshift and only weakly on the overden-
sity δ; it is thus largely independent of the details of struc-
ture formation. For this reason, and also because it is con-
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served during adiabatic accretion or Hubble expansion, the
gas entropy is a more fundamental variable to track than the
temperature. We provide a simple analytic formula for the
temperature (and hence entropy K = T/n2/3), in equations
33 and 35. An early X-ray background would also heat the
entire IGM to similarly high adiabats. The entropy floor due
to the latter would be much more spatially uniform.

2. We apply the entropy formalism used to calculate
the effect of preheating on low-redshift galaxy clusters to
the high–redshift minihalos. We obtain detailed gas density
and pressure profiles, which we use to calculate the impact
of preheating on the central density, accreted gas fraction,
gas clumping factor, and mini–halo baryonic mass function.

3. These quantities can then be used to calculate global
effects of preheating. The collapsed gas fraction in minihalos
falls by ∼ 2 orders of magnitude, while the gas clumping
factor falls to C → 1, as for a uniform IGM. An entropy floor
reduces the photon budget required for full reionization by
about an order of magnitude, by reducing gas clumping and
eliminating the need for mini–halos to be photo-evaporated
before reionization can be completed.

4. However, an entropy floor does not necessarily pro-
mote early reionization: it also sharply reduces the comoving
emissivity. By reducing the central gas densities in mini–
halos, preheating impedes H2 formation and cooling, and
reduces the critical UV background required for H2 sup-
pression by 2-4 orders of magnitude. Thus, once a comoving

patch of the IGM is reionized, no subsequent star formation

in mini–halos can take place in that volume. The patch can
only be reionized by more massive halos T > 104K, which
can undergo atomic cooling. By furnishing an entropy floor,
X-rays also suppress H2 formation. Thus, contrary to con-
ventional wisdom, X-rays provide negative rather than pos-
itive feedback for early star formation.

5. Mini-halos will not be observable in 21cm emis-
sion/absorption in fossil HII regions. Thus, 21cm observa-
tions provide an unusual probe of the topology of reioniza-
tion: mini-halos trace out regions of the IGM which have
never been ionized. If mini-halos are seen in large numbers,
this places an upper limit on the filling factor of fossil HII
regions and the X-ray background at that redshift.

6. We have computed the reionization histories as in
HH03, but taking the feedback effect of an entropy floor
(and reduction of gas clumping) into account. The strong
feedback in fossil HII regions imply that HII fronts at high
redshift never overlap, and global reionization at high red-
shift does not occur. This limits the contribution of mini–
halos to the reionization optical depth τ < 0.07, almost in-
dependent of star formation efficiency in mini–halos (if star
formation is more efficient, feedback sets in earlier). Thus,
the bulk of the optical depth observed by WMAP must come
from more massive objects.

7. Strikingly, we obtain a double-peaked reionization
history: an early peak in which the universe is filled with fos-
sil HII regions, followed by a pause before more massive ha-
los collapse which finally fully reionize the universe. This is
similar to ’double reionization’ scenarios computed by other
authors (e.g. Cen (2003); Wyithe & Loeb (2003)), but one
in which the the comoving emissivity is regulated by gas en-

tropy, rather than a Pop III to Pop II transition due to a
universal metallicity increase. This last point deserves ad-
ditional comment. A metallicity-regulated evolution of the
emissivity requires that metal pollution is fairly spatially
uniform. However, different parts of the IGM likely undergo
the Pop III to Pop II transition at different epochs. Further-
more, an increase in metallicity does not necessarily result
in a drop in the overall emissivity: metal line cooling likely
results in a larger star formation efficiency in halos, since
metals are not subject to internal UV photo-dissociation,
unlike H2. The factor of ∼10 drop in the HI ionizing emis-
sivity per stellar baryon could be outweighed by the increase
in the total mass of stars formed. In comparison, we argue
that an entropy-regulated transition is inevitable, and there-
fore more robust. This is an important conclusion, given the
possibility that future CMB polarization studies will be able
to distinguish among different reionization histories (HH03;
Holder et al 2003).

In this semi-analytic study, we essentially assumed a
single value of the entropy floor at each redshift, for all ha-
los. In reality, as we discussed above, there should be large
fluctuations in entropy, depending on the topology/history
of reionization and the accretion/merger history of halos. It
would be interesting to study these effects in detail in three
dimensional numerical simulations. To begin with, it would
be interesting to re-run existing simulations of the collapse
of gas in mini–halos, but adding an entropy floor in the ini-
tial conditions. Such studies could quantify more precisely
the effects of an entropy floor in suppressing H2 formation
and cooling in mini–halos. In fact, since densities are lower
and gas cooling is reduced, it should be a computationally
more tractable problem. With the aid of larger volumes,
several global issues mentioned above could be addressed:
for instance, a global, self-consistent study of feedback as in
Machacek, Bryan & Abel (2001), but including the effects
of both the entropy floor and UV feedback. Because of its
strong effect on the evolution of the comoving emissivity, gas
entropy acts as a self-regulating mechanism which likely has
a strong influence in controlling the progress of reionization.
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APPENDIX I: ANALYTIC EXPRESSION FOR
THE FINAL TEMPERATURE

It is useful to have an approximate analytic expression for
the final temperature a parcel of gas cools down to, given the
initial temperature Ti, redshift z, overdensity δ and length
of time spent cooling t. This allows one to quickly estimate
the effect of early reionization in different situations with-
out evolving the full chemistry code. We develop such an
expression in this Appendix.

At the redshifts and overdensities of interest, Comp-
ton cooling dominates by far. The most relevant physics is
Compton cooling and hydrogen recombination:

Ṫ = −8

3

aT 4
γ σT

mec

xe

1 + xe
(T − Tγ) (32)

ẋe = −x2
enα

Note that (T − Tγ) ≈ T since T � Tγ , and α ∝ T−0.7 in
the temperature range of interest. Assuming the gas is fully
ionized xe = 1 at some initial temperature Ti, we obtain the
analytic solution:

T (xe) = Ti

[

1 + 1.4A
(

ln
(

1 + xe

xe

)

− ln(2)
)]−1/0.7

(33)

where

A ≡ 4

3

aT 4
γ σT

nα(Ti)mec
=

trec(Ti)

tC
∝ (1 + z)

δ
T 0.7

i (34)

This gives temperature as a function of ionization fraction
xe. We therefore need to know the final ionization fraction.
How can we estimate it? If the gas recombines isothermally
at temperature T ′, the ionization fraction is given by:

xe(t) =
xo

1 + (t/trec(T ′))
(35)

where xo = 1 is the initial ionization fraction. If the gas cools
as it recombines, substituting the instantaneous tempera-
ture T ′ into the expression, would overestimate the speed
of recombination and underestimate xe. We find that if we
substitute T ′ = 2T and substitute this into equation 33,
the solution of this non-linear equation for Tf is remarkably
close to the full non-equilibrium solution (see points in Fig-
ure 1). We have also verified that we obtain fairly accurate
results for xe(t). Equations 33 and 35 thus give Tf (z, δ, Ti, t).
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Our neglect of recombination line cooling fails in high
density regions. This leads to at most a factor ∼ 2 error in
the final temperature, since recombination line cooling can
cool gas down to at most ∼ 5000K. The entire discussion
assumes that H2 formation and cooling is not competitive
with Compton cooling, which is generally true in low density
regions.
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