

Habitable Zones Around Massive Stars: From the Main Sequence to Supergiants

DEVESHE NANDAL ¹ AND ABRAHAM LOEB ¹

¹ *Center for Astrophysics, Harvard and Smithsonian, 60 Garden St, Cambridge, MA 02138, USA*

ABSTRACT

Massive stars dominate the radiative and mechanical feedback of young stellar populations, yet their intense ultraviolet fields and strong winds are typically presumed to preclude Earth-like habitability. We quantify this expectation by mapping time dependent habitable zones (HZs) for solar-metallicity stars with initial masses of $0.8\text{--}120 M_{\odot}$. Using GENEC evolutionary tracks with and without rotation, we compute bolometric “climate” HZ boundaries and enforce atmospheric-retention constraints from XUV-driven energy-limited escape and wind ram pressure against a dipolar magnetosphere for an Earth analogue. The operational inner edge is defined as the most restrictive of these limits, and we evaluate the cumulative duration of an operational HZ annulus, the longest continuous residence time for a planet on a fixed orbit, and the maximum number of dynamically packed terrestrial planets that can inhabit the annulus. We find a sharp main-sequence ceiling: while a $9 M_{\odot}$ star sustains an operational HZ for ~ 30 Myr at $\sim 70\text{--}130$ AU, the main-sequence annulus becomes brief and extremely narrow by $12 M_{\odot}$ and disappears by $15 M_{\odot}$. Post-main-sequence evolution can reopen HZs up to $\sim 25\text{--}30 M_{\odot}$, but only for $\sim 0.03\text{--}1.5$ Myr at hundreds to $\sim 10^3$ AU, disappearing by $\sim 40 M_{\odot}$ in our solar-metallicity grid. Rotation modestly increases habitable lifetimes near the upper main sequence without altering the high-mass ceiling. Initial Mass Function (IMF) weighting shows that massive stars contribute only $\sim 10^{-4}$ of the habitable planet-time budget. Even so, they still add of order a few 10^5 operationally habitable Earth analogues to the Milky Way at any instant (for a fiducial star-formation rate and occurrence factor). This implies that massive star systems are unlikely to dominate the Galaxy-wide habitability budget, but they may still provide a measurable set of short-lived, observationally distinct targets for biosignature searches.

Keywords: Massive stars (732) — Stellar evolutionary models (2046) — Supermassive black holes (1663) — Early universe (435) — Stellar accretion (1578)

1. INTRODUCTION

Massive stars ($M_{\star} \gtrsim 8 M_{\odot}$) are intrinsically rare in standard initial mass functions (e.g., E. E. Salpeter 1955; P. Kroupa 2001; G. Chabrier 2003), yet they dominate both the luminosity and mechanical power of young stellar populations. Their far-ultraviolet and ionizing photons shape the radiation environment of star forming regions, while their line driven winds and eventual core-collapse supernovae inject momentum and newly synthesized elements into the interstellar medium (e.g., A. Maeder 1997; H. Zinnecker & H. W. Yorke 2007; P. A. Crowther 2007; M. R. Krumholz 2014; N. Langer 2012). Because of these outsized impacts, the structure and evolution of massive stars, including mass loss, rota-

tion, and internal mixing have been studied in detail for decades (e.g., J. I. Castor et al. 1975; R. P. Kudritzki 2002; J. S. Vink et al. 2001; G. Meynet & A. Maeder 2006; I. Brott et al. 2011; S. Ekström et al. 2012). Modern stellar evolution calculations that incorporate these processes provide time-dependent luminosities, radii, effective temperatures, and mass-loss rates that underpin a wide range of astrophysical applications (e.g., P. Eggenberger et al. 2008; S. Ekström et al. 2012; D. Nandal et al. 2024). Yet one question that has received comparatively little quantitative attention is whether, and for how long, massive stars can host circumstellar environments compatible with surface liquid water and atmospheric retention on terrestrial planets.

The circumstellar habitable zone (HZ) has long served as a pragmatic first filter in the search for potentially habitable worlds (e.g., A. Loeb 2016; L. Kaltenegger & J. K. Faherty 2021; M. Lingam & A. Loeb 2021). Early

discussions of life supporting orbital regions go back to S.-S. Huang (1959, 1960), with the first systematic numerical HZ boundaries developed by M. H. Hart (1979) and the widely adopted modern baseline established by J. F. Kasting et al. (1993). In its classical climate definition, the HZ is the range of orbital distances where an Earth-like planet with a suitable atmosphere can sustain liquid water on its surface. Over the past decade, both 1D and 3D climate calculations have refined these limits and provided widely used flux-based prescriptions (e.g., F. Selsis et al. 2007; L. Kaltenegger & D. Sasselov 2011; R. K. Kopparapu 2013; R. K. Kopparapu et al. 2014; J. Yang et al. 2014)

Because stellar luminosities evolve, HZ boundaries are time dependent; this motivates metrics based on the duration of habitability, including the concept of a continuously habitable zone (e.g., A. J. Rushby et al. 2013; W. C. Danchi & B. Lopez 2013).

Most HZ studies and most observational searches for HZ planets have focused on low- and intermediate-mass stars (FGKM) (e.g., E. A. Gilbert et al. 2023). This emphasis is natural: such stars are far more numerous (e.g., E. E. Salpeter 1955; P. Kroupa 2001; G. Chabrier 2003), they remain on the main sequence for Gyr, and their AU-scale HZs produce orbital periods accessible to transit and radial-velocity surveys (e.g., W. J. Borucki et al. 2010; H. Rauer et al. 2014; G. R. Ricker et al. 2015). By contrast, early-type and massive stars are challenging targets for traditional planet searches because they are often rapid rotators with sparse spectral lines, and because their HZ radii scale outward roughly as $r \propto L_{\star}^{1/2}$, pushing temperate climates to tens or hundreds of AU (J. F. Kasting et al. 1993; L. Kaltenegger & J. K. Faherty 2021). The combination of wide orbits, strong ultraviolet radiation fields, and short lifetimes has led to the common assumption that massive stars are irrelevant to planetary habitability.

Habitability, however, is not determined by bolometric irradiation alone. High energy photons and particle outflows can drive rapid atmospheric erosion, modifying (or eliminating) surface habitability even when a planet receives temperate bolometric flux, and such loss processes can leave observable demographic imprints in exoplanet populations (e.g., V. S. Airapetian et al. 2020; T. J. David et al. 2021). A useful baseline for XUV-driven hydrodynamic escape is the energy-limited formalism originally developed for Solar System atmospheres (A. J. Watson et al. 1981) and widely applied to exoplanets (e.g., H. Lammer et al. 2003; A. Lecavelier Des Etangs 2007; J. E. Owen et al. 2012; J. C. Forbes & A. Loeb 2018). Stellar winds can also strip atmospheres and compress magnetospheres; in that con-

text, magnetic shielding and pressure balance arguments date back to early solar-wind/magnetosphere theory (S. Chapman 1931) and have been extended to exoplanetary environments (e.g., J.-M. Grießmeier et al. 2004; A. A. Vidotto et al. 2013; C. Pezzotti et al. 2025). These non-climate constraints become especially acute for massive stars, whose radiative output is concentrated at short wavelengths and whose line driven winds can exceed solar values by orders of magnitude (e.g., E. N. Parker 1958; J. I. Castor et al. 1975; J. S. Vink et al. 2001; J. Puls et al. 2008).

Beyond atmospheric loss, the formation and survival of planets on the wide orbits implied by massive star HZs is itself uncertain (e.g., A. J. Winter et al. 2022). Disk masses generally increase with stellar mass, providing more raw material for planet formation (e.g., S. M. Andrews et al. 2013; J. P. Williams & L. A. Cieza 2011), but external irradiation from nearby OB stars can photoevaporate and truncate disks in clustered environments (e.g., D. Johnstone et al. 1998). Existing work that incorporates stellar evolution has largely targeted Sun-like and lower-mass stars, or the post-main-sequence expansion of HZs around subgiants and giants (e.g., B. Lopez et al. 2005; W. C. Danchi & B. Lopez 2013; R. M. Ramirez & L. Kaltenegger 2016). To our knowledge, there has not been a systematic mapping of whether massive stars can host an operational habitable annulus once atmospheric retention constraints from XUV irradiation and winds are coupled to realistic massive star evolutionary tracks across both main-sequence and post-main-sequence phases.

In this paper, we connect massive star evolution to terrestrial planet habitability by computing time-dependent HZs for stars spanning $0.7\text{--}120 M_{\odot}$ at solar metallicity. We use Geneva GENEC evolutionary tracks with and without rotation (P. Eggenberger et al. 2008; S. Ekström et al. 2012) and define an “operational” HZ whose outer edge follows standard climate limits while whose inner edge is set by the most restrictive of three criteria: (i) the bolometric runaway-greenhouse limit, (ii) XUV-driven energy-limited atmospheric escape, and (iii) wind ram-pressure erosion moderated by a dipolar magnetosphere. We quantify the cumulative time an operational annulus exists, the maximum continuous residence time for a planet on a fixed orbit, and characteristic radii at which habitability is most likely during each evolutionary phase. Motivated by the large radial extent of HZs around luminous stars, we also estimate the maximum dynamical multiplicity of terrestrial planets that can be packed into the annulus and fold these results through Milky-Way-like initial mass functions to evaluate the population-

weighted contribution of massive stars. Our results show that operational main-sequence habitability terminates near $M_\star \sim 10\text{--}15 M_\odot$ depending on the residence criterion, with post-main-sequence evolution briefly reopening habitable annuli at higher masses, and that the mass weighted contribution of massive stars is negligible even though the absolute number of such systems in a Milky Way like galaxy can be large.

This paper is organized as follows. In Section 2 we describe the stellar evolution tracks, the climate and atmospheric-retention criteria, and our diagnostics for habitability and packed multiplicity. Section 3 presents the resulting time-dependent HZ maps, residence-time and multiplicity estimates, and IMF-weighted yields. In Section 4 we discuss physical interpretations, limitations, and observational implications. Section 5 summarizes our main conclusions.

2. METHODS

2.1. Stellar evolution tracks

Stellar evolution tracks at solar metallicity $Z = 0.014$ are computed with the Geneva Stellar Evolution Code (GENEC; (P. Eggenberger et al. 2008; D. Nandal et al. 2023, 2024)). The adopted initial rotation is $v_{\text{ini}}/v_{\text{crit}} = 0.4$, consistent with the standard Geneva rotating solar-metallicity grids (S. Ekström et al. 2012). The model set spans $M_{\text{ini}} = 0.8\text{--}120 M_\odot$. Tracks are analysed from the ZAMS to core helium exhaustion. If a track extends beyond that point then it is truncated at core He exhaustion for uniformity. The end time is denoted t_{end} . The final mass is $M_{\text{end}} \equiv M_\star(t_{\text{end}})$. The integrated mass loss is $\Delta M \equiv M_{\text{ini}} - M_{\text{end}}$. Values of $(t_{\text{end}}, M_{\text{end}}, \Delta M)$ are taken directly from the track output and summarised in Table 1.

The habitable zone (HZ) model uses the time series of stellar age t , bolometric luminosity $L_\star(t)$, effective temperature $T_{\text{eff}}(t)$, stellar mass $M_\star(t)$, central hydrogen mass fraction $X_{c,\text{H}}(t)$, and mass-loss rate $\dot{M}(t)$. The photospheric radius is inferred from

$$R_\star(t) = \left[\frac{L_\star(t)}{4\pi\sigma_{\text{SB}}T_{\text{eff}}(t)^4} \right]^{1/2}, \quad (1)$$

where σ_{SB} is the Stefan–Boltzmann constant.

We parameterise the wind terminal speed as a temperature dependent multiple of the escape speed,

$$v_\infty(t) = \eta_\infty[T_{\text{eff}}(t)] v_{\text{esc}}(t). \quad (2)$$

The escape speed is

$$v_{\text{esc}}(t) = \left(\frac{2GM_\star(t)}{R_\star(t)} \right)^{1/2}. \quad (3)$$

To mimic the usual bi-stability behaviour we adopt a two-branch scaling (J. S. Vink et al. 2001),

$$\eta_\infty(T_{\text{eff}}) = \begin{cases} \eta_{\text{hot}}, & T_{\text{eff}} \geq T_{\text{bist}}, \\ \eta_{\text{cool}}, & T_{\text{eff}} < T_{\text{bist}}. \end{cases} \quad (4)$$

We take $\eta_{\text{hot}} = 2.6$, $\eta_{\text{cool}} = 1.3$, and $T_{\text{bist}} = 2.1 \times 10^4 \text{ K}$. Main-sequence (MS) timesteps satisfy $X_{c,\text{H}} \geq X_{\text{crit}}$ with $X_{\text{crit}} = 0.01$. Post-MS timesteps satisfy $X_{c,\text{H}} < X_{\text{crit}}$. This split is used when reporting HZ windows and multiplicities.

2.2. Habitable-zone model

At each timestep the HZ is defined as an annulus $[r_{\text{in}}(t), r_{\text{out}}(t)]$ in astronomical units (AU). The outer edge is set by a bolometric “climate” criterion. The inner edge is the maximum of three constraints. These constraints are a climate inner edge, an XUV-driven atmospheric-loss edge, and a wind-pressure edge.

2.2.1. Climate HZ

The climate HZ is implemented as a pure bolometric flux scaling with fixed effective flux thresholds (R. K. Kopparapu 2013). The inner and outer climate edges are

$$r_{\text{in,clim}}(t) = \left[\frac{L_\star(t)/L_\odot}{S_{\text{eff,in}}} \right]^{1/2}, \quad (5)$$

$$r_{\text{out,clim}}(t) = \left[\frac{L_\star(t)/L_\odot}{S_{\text{eff,out}}} \right]^{1/2},$$

where L_\odot is the solar luminosity. The adopted constants are $S_{\text{eff,in}} = 1.015$ and $S_{\text{eff,out}} = 0.35$. These are treated as fixed surrogates. No explicit spectral correction with T_{eff} is applied. The operational outer edge is

$$r_{\text{out}}(t) = r_{\text{out,clim}}(t). \quad (6)$$

2.2.2. XUV atmospheric-loss inner edge

The XUV constraint is evaluated for an Earth analog planet with mass $M_p = M_\oplus$ and radius $R_p = R_\oplus$. The atmosphere mass is fixed to $M_{\text{atm}} = 5 \times 10^{18} \text{ kg}$. The heating efficiency is ε . The exposure time is τ . A tidal correction factor is set to $K_{\text{tide}} = 1$.

A blackbody approximation is used to estimate the stellar XUV luminosity. The XUV fraction is

$$f_{\text{XUV}}(T_{\text{eff}}) = \frac{\int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} B_\lambda(\lambda, T_{\text{eff}}) \text{d}\lambda}{\sigma_{\text{SB}} T_{\text{eff}}^4 / \pi}, \quad (7)$$

where B_λ is the Planck function. The bandpass is $\lambda_{\text{min}} = 10 \text{ nm}$ to $\lambda_{\text{max}} = 118 \text{ nm}$. The corresponding XUV luminosity is

$$L_{\text{XUV}}(t) = 4\pi R_\star(t)^2 \sigma_{\text{SB}} T_{\text{eff}}(t)^4 f_{\text{XUV}}[T_{\text{eff}}(t)]. \quad (8)$$

246 The XUV inner edge is defined from an integrated
 247 energy-limited loss threshold (A. J. Watson et al. 1981),

$$248 \quad r_{\text{XUV}}(t) = \frac{1}{\text{AU}} \left[\frac{\varepsilon R_p^3 L_{\text{XUV}}(t) \tau}{4 G M_p K_{\text{tide}} M_{\text{atm}}} \right]^{1/2}. \quad (9)$$

249 where ε is the heating efficiency, R_p and M_p are the
 250 planet radius and mass, $L_{\text{XUV}}(t)$ is the stellar XUV lu-
 251 minosity, τ is the exposure time, G is the gravitational
 252 constant, K_{tide} is a tidal correction factor, M_{atm} is the
 253 atmospheric mass to be removed, and AU is the astro-
 254 nomical unit.

255 2.2.3. Wind pressure inner edge with dipole scaling

256 A wind truncation is computed from ram pressure bal-
 257 ance with a dipolar planetary magnetic field. The equa-
 258 torial surface field is B_p . The critical magnetopause dis-
 259 tance is $R_{\text{mp}} = R_{\text{crit}} R_p$ with dimensionless R_{crit} . Dipole
 260 scaling gives the field at the magnetopause,

$$261 \quad B_{\text{mp}} = \frac{B_p}{R_{\text{crit}}^3}. \quad (10)$$

262 The maximum magnetic pressure is

$$263 \quad P_{\text{max}} = \frac{B_{\text{mp}}^2}{2\mu_0} = \frac{B_p^2}{2\mu_0 R_{\text{crit}}^6}, \quad (11)$$

264 with vacuum permeability μ_0 . The wind ram pressure
 265 at orbital distance a is approximated as

$$266 \quad P_{\text{w}}(a, t) = \frac{\dot{M}(t) v_{\infty}(t)}{4\pi a^2}, \quad (12)$$

267 where \dot{M} is converted to SI units and v_{∞} follows Equa-
 268 tion 2. The wind inner edge follows from $P_{\text{w}} = P_{\text{max}}$,

$$269 \quad r_{\text{wind}}(t) = \frac{1}{\text{AU}} \left[\frac{\dot{M}(t) v_{\infty}(t)}{4\pi P_{\text{max}}} \right]^{1/2}. \quad (13)$$

270 The fiducial values are $B_p = 0.3$ G and $R_{\text{crit}} = 2.5$. The
 271 wind term is used as defined by Equation (13).

272 2.2.4. Operational HZ and scenarios

273 The operational inner edge is

$$274 \quad r_{\text{in}}(t) = \max[r_{\text{in,clim}}(t), r_{\text{XUV}}(t), r_{\text{wind}}(t)]. \quad (14)$$

275 A habitable annulus exists if $r_{\text{in}}(t) < r_{\text{out}}(t)$ with both
 276 edges finite and positive. Two reduced scenarios are also
 277 reported. The climate-only case sets $r_{\text{in}} = r_{\text{in,clim}}$. The
 278 climate+XUV case sets $r_{\text{in}} = \max(r_{\text{in,clim}}, r_{\text{XUV}})$.

279 2.3. Time-domain diagnostics

280 A Boolean mask $\mathcal{H}(t)$ is defined for timesteps satisfy-
 281 ing $r_{\text{in}}(t) < r_{\text{out}}(t)$. The longest continuous habitable
 282 interval is the maximum contiguous time segment for
 283 which $\mathcal{H}(t)$ holds. This is evaluated separately on the
 284 MS and post-MS.

285 A representative epoch is defined to report a single
 286 “widest-HZ” geometry. Within a given phase, the loga-
 287 rithmic width

$$288 \quad \Delta \ln r(t) = \ln \left[\frac{r_{\text{out}}(t)}{r_{\text{in}}(t)} \right] \quad (15)$$

289 is maximised over timesteps with $\mathcal{H}(t) = \text{true}$. The
 290 maximising time is denoted t_{\star} . When a model has any
 291 MS HZ timesteps, t_{\star} is taken on the MS. Otherwise it is
 292 taken on the post-MS. The radii ($r_{\text{in}}, r_{\text{out}}$) evaluated at
 293 t_{\star} define the annulus used for the headline multiplicity
 294 estimates.

295 2.4. Planet multiplicity in the HZ

296 Two multiplicity estimators map an annulus $[r_{\text{in}}, r_{\text{out}}]$
 297 into an upper bound on the number of planets.

298 2.4.1. Model A: minimum period-ratio packing

299 A geometric packing bound is obtained by enforcing
 300 a minimum adjacent period ratio $\mathcal{R} = P_{i+1}/P_i$. Kepler
 301 scaling gives a minimum semimajor-axis ratio $\alpha_{\min} =$
 302 $\mathcal{R}^{2/3}$. The maximum number of planets is

$$303 \quad N_{\text{max}} = \begin{cases} 0, & r_{\text{out}} \leq r_{\text{in}}, \\ 1 + \left\lfloor \frac{\ln(r_{\text{out}}/r_{\text{in}})}{\ln \alpha_{\min}} \right\rfloor, & r_{\text{out}} > r_{\text{in}}. \end{cases} \quad (16)$$

304 The fiducial choice is $\mathcal{R} = 1.33$, motivated by N-body
 305 instability experiments indicating that unstable multi-
 306 planet systems typically include at least one adjacent
 307 pair with $P_{i+1}/P_i < 1.33$ (D.-H. Wu et al. 2019).

308 2.4.2. Model B: mutual-Hill spacing with a solids budget

309 A second estimator adds a dynamical spacing condi-
 310 tion and a disk-mass budget. Equal-mass planets are
 311 assumed. Adjacent planets are required to be separated
 312 by K mutual Hill radii (B. Gladman 1993; J. E. Cham-
 313 bers et al. 1996). This is written as an approximate
 314 constant spacing ratio

$$315 \quad \mu = \left(\frac{2M_p}{3M_{\star}} \right)^{1/3}, \quad \alpha = \frac{K}{2}\mu, \quad \gamma = \frac{1+\alpha}{1-\alpha}, \quad (17)$$

316 which is valid for $\alpha < 1$. The spacing-only bound is

$$317 \quad N_{\text{space}} = 1 + \left\lfloor \frac{\ln(r_{\text{out}}/r_{\text{in}})}{\ln \gamma} \right\rfloor. \quad (18)$$

318 The available solids reservoir is parameterised as

$$319 \quad M_{\text{dust}} = M_{\text{dust},\odot} \left(\frac{M_\star}{M_\odot} \right), \quad (19)$$

320 with $M_{\text{dust},\odot} = 50 M_\oplus$. A rocky fraction $f_{\text{rock}} = 0.5$ is
321 adopted. The fraction of solids inside the HZ is com-
322 puted from a radial weight $w(a) \propto a^p$ over $[a_{\text{min}}, a_{\text{max}}]$,

$$323 \quad f_{\text{HZ}} = \frac{\int_{r_{\text{in}}}^{r_{\text{out}}} a^p da}{\int_{a_{\text{min}}}^{a_{\text{max}}} a^p da}, \quad (20)$$

324 with $p = 0$, $a_{\text{min}} = 0.1 \text{ AU}$, and $a_{\text{max}} = 100 \text{ AU}$. The
325 mass available to planets is

$$326 \quad M_{\text{avail}} = \varepsilon_{\text{form}} f_{\text{rock}} f_{\text{HZ}} M_{\text{dust}}, \quad (21)$$

327 with $\varepsilon_{\text{form}} = 0.5$. A minimum planet mass is imposed
328 as $M_{\text{min}} = 0.1 M_\oplus$. For each trial multiplicity N , the
329 planet mass is set to

$$330 \quad M_p(N) = \max \left(M_{\text{min}}, \frac{M_{\text{avail}}}{N} \right). \quad (22)$$

331 The reported multiplicity is the largest integer N
332 that satisfies both $N \leq \lfloor M_{\text{avail}}/M_{\text{min}} \rfloor$ and $N \leq$
333 $N_{\text{space}}[M_p(N)]$. The explored stability parameters are
334 $K \in \{12, 16, 20\}$ and the adopted disk parameters are
335 fiducial. Sensitivity is quantified by varying f_{rock} and
336 $\varepsilon_{\text{form}}$ by $\pm 30\%$ and repeating the solve.

337 2.5. Parameter exploration

338 Uncertainties in atmospheric escape and mag-
339 netospheric protection are explored on dis-
340 crete grids. The exposure time takes $\tau/\text{Myr} \in$
341 $\{0.01, 0.03, 0.1, 0.3, 1, 3, 10\}$, the heating efficiency
342 takes $\varepsilon \in \{0.05, 0.1, 0.3\}$, the surface field takes
343 $B_p/\text{G} \in \{0.1, 0.3, 1.0\}$ and finally, the critical standoff
344 distance takes $R_{\text{crit}} \in \{2.0, 2.5, 5.0\}$. For each track and
345 each parameter tuple, the radii $r_{\text{XUV}}(t)$ and $r_{\text{wind}}(t)$
346 are recomputed, then propagated into $r_{\text{in}}(t)$ through
347 Equation 14. Summary products include MS and
348 post-MS habitable intervals, representative radii at t_\star ,
349 and multiplicity–mass relations under Models A and B.

350 2.6. IMF-weighted habitability yield

351 To translate single-track habitable-zone (HZ) diagno-
352 stics into population-weighted expectations, we define a
353 time-integrated habitability yield for each stellar model
354 and multiplicity prescription. For a given track we
355 evaluate the instantaneous packing-limited multiplicity
356 $N_m(t)$ using Method $m \in \{\text{A, B}\}$ applied to the instan-
357 taneous annulus $[r_{\text{in}}(t), r_{\text{out,clim}}(t)]$, and we set $N_m(t) =$
358 0 whenever no annulus exists ($r_{\text{in}} \geq r_{\text{out,clim}}$). For

359 Method B, $N_B(t)$ additionally depends on the adopted
360 stability and disk-scale parameters (e.g., K and a_{max}).

361 The yield is then

$$362 \quad Y_m(M_{\text{ini}}) = \int N_m(t) H(t) dt, \quad (23)$$

363 which has units of planet–time (we report planet–Myr)
364 and is evaluated over MS and post-MS phases consis-
365 tently with the masks defined in Sections 2.3 and 2.4.

366 We then fold these per-mass yields through an initial
367 mass function (IMF) $\xi(M)$ and report the yield per unit
368 stellar mass formed,

$$369 \quad \bar{Y}_m = \frac{\int Y_m(M) \xi(M) dM}{\int M \xi(M) dM}, \quad (24)$$

370 together with the cumulative contribution from stars
371 above a threshold mass M_{cut} ,

$$372 \quad f_{\geq M_{\text{cut}},m} = \frac{\int_{M_{\text{cut}}} Y_m(M) \xi(M) dM}{\int Y_m(M) \xi(M) dM}. \quad (25)$$

373 Throughout, we compute these quantities over the mass
374 interval common to both grids so that rotating (S0.4)
375 and non-rotating (S0) results can be compared without
376 extrapolation.

377 2.7. Milky Way normalization of the IMF-integrated 378 yield

379 Our IMF-integrated yields are reported as $\bar{Y}_m(M_{\text{min}})$,
380 the habitable planet–time produced per unit stellar mass
381 formed, with units of planet–Myr M_\odot^{-1} , for multiplicity
382 Method $m \in \{\text{A, B}\}$. For a steady star-formation rate
383 \dot{M}_\star , the corresponding instantaneous Galactic inventory
384 of Earth-analogue HZ planets is obtained by dimensional
385 conversion,

$$386 \quad N_{\text{HZ,MW},m}(> M_{\text{min}}) = 10^6 \eta_{\oplus,m} \left(\frac{\dot{M}_\star}{M_\odot \text{ yr}^{-1}} \right) \bar{Y}_m(M_{\text{min}}), \quad (26)$$

387 where the factor 10^6 converts Myr to yr and $\eta_{\oplus,m}$ is
388 an effective occurrence factor for Earth analogues under
389 multiplicity Method m . The cumulative contribution
390 from stars above a threshold mass is then

$$391 \quad N_{\text{HZ,MW},m}(\geq M_{\text{cut}}) = f_{\geq M_{\text{cut}},m} N_{\text{HZ,MW},m}(> M_{\text{min}}), \quad (27)$$

392 with $f_{\geq M_{\text{cut}},m}$ defined in Equation (25). In this work we
393 evaluate $M_{\text{min}} = 0.8 M_\odot$, and we treat $\eta_{\oplus,m}$ as a scalar
394 normalization that can be replaced by a mass-dependent
395 occurrence model in future population syntheses.

Table 1. Habitable-zone (HZ) summary for the rotating solar-metallicity GENEC grid ($Z = 0.014$, $v/v_{\text{crit}} = 0.4$). For each model we report M_{ini} , M_{fin} , the main-sequence lifetime t_{MS} , the post–main-sequence duration t_{post} , and the cumulative HZ durations $\Delta t_{\text{HZ,MS}}$ and $\Delta t_{\text{HZ,post}}$ defined by $r_{\text{in}}(t) < r_{\text{out,clim}}(t)$ with $r_{\text{in}} = \max(r_{\text{in,clim}}, r_{\text{wind}}, r_{\text{XUV}})$ and $r_{\text{out}} = r_{\text{out,clim}}$. The mean radii $\langle r_{\text{in}} \rangle$ and $\langle r_{\text{out}} \rangle$ are time-weighted over the timesteps that satisfy the HZ criterion, reported separately for MS and post-MS phases.

Model	M_{ini} [M_{\odot}]	M_{fin} [M_{\odot}]	t_{MS} [Myr]	t_{post} [Myr]	$\Delta t_{\text{HZ,MS}}$ [Myr]	$\Delta t_{\text{HZ,post}}$ [Myr]	$\langle r_{\text{in}} \rangle_{\text{MS}}$ [AU]	$\langle r_{\text{out}} \rangle_{\text{MS}}$ [AU]	$\langle r_{\text{in}} \rangle_{\text{post}}$ [AU]	$\langle r_{\text{out}} \rangle_{\text{post}}$ [AU]
P0p8Z14S0.4	0.800	0.796	22161.521	6786.888	21971.392	6786.888	0.594	1.020	1.017	1.746
P0p9Z14S0.4	0.900	0.898	13627.331	4861.156	13579.799	4861.156	0.777	1.334	1.193	2.050
P001Z14S0.4	1.000	0.998	8523.070	3835.352	8491.382	3835.352	0.982	1.686	1.418	2.436
P002Z14S0.4	2.000	1.956	1284.293	94.348	1283.497	94.348	4.552	7.817	8.908	15.298
P003Z14S0.4	3.000	2.983	403.946	48.270	403.683	48.270	10.258	17.616	11.835	20.325
P004Z14S0.4	4.000	3.965	188.782	38.578	188.655	38.578	17.701	30.399	23.092	39.658
P005Z14S0.4	5.000	4.940	108.861	19.970	108.779	19.970	26.663	45.790	37.050	63.629
P007Z14S0.4	7.000	6.868	50.811	7.758	50.775	7.758	48.311	82.967	70.112	120.409
P009Z14S0.4	9.000	8.517	31.082	4.131	31.058	4.131	74.021	127.123	112.872	193.843
P012Z14S0.4	12.000	10.224	18.278	2.291	1.150	2.206	256.046	263.236	184.113	313.684
P015Z14S0.4	14.999	11.071	13.372	1.583	0.000	1.485	269.231	461.641
P020Z14S0.4	19.998	7.179	9.451	0.936	0.000	0.596	380.618	649.631
P025Z14S0.4	24.995	9.690	7.858	0.686	0.000	0.215	499.339	855.779
P032Z14S0.4	31.990	10.125	6.601	0.579	0.000	0.036	1016.901	1170.374
P040Z14S0.4	39.981	12.332	5.662	0.475	0.000	0.000
P060Z14S0.4	59.950	17.981	4.466	0.366	0.000	0.000
P085Z14S0.4	84.901	26.393	3.715	0.327	0.000	0.000

3. RESULTS

We begin by mapping each rotating solar-metallicity GENEC track onto a time dependent habitable zone (HZ) band by combining classical climate boundaries with atmospheric retention constraints from XUV irradiation and wind erosion. Section 3.1 addresses the necessary condition for habitability by quantifying when an HZ annulus exists, defined by $r_{\text{in}}(t) < r_{\text{out,clim}}(t)$. Table 1 summarizes the full grid by reporting the MS and post-MS durations satisfying this criterion and the corresponding time-weighted mean radii. In Section 3.2 we will then address the stronger requirement that a planet at fixed semimajor axis can remain inside the evolving annulus for a continuous interval that is long enough to matter.

3.1. Existence of habitable-zone bands along rotating tracks

Figure 1 provides a guided view of the HZ evolution along representative tracks. Each panel shows the climate only edges $r_{\text{in,clim}}(t)$ and $r_{\text{out,clim}}(t)$ together with the adopted inner edge $r_{\text{in}}(t) = \max(r_{\text{in,clim}}, r_{\text{wind}}, r_{\text{XUV}})$. The shaded region marks

epochs where $r_{\text{in}} < r_{\text{out,clim}}$. The vertical black line indicates the end of core-H burning.

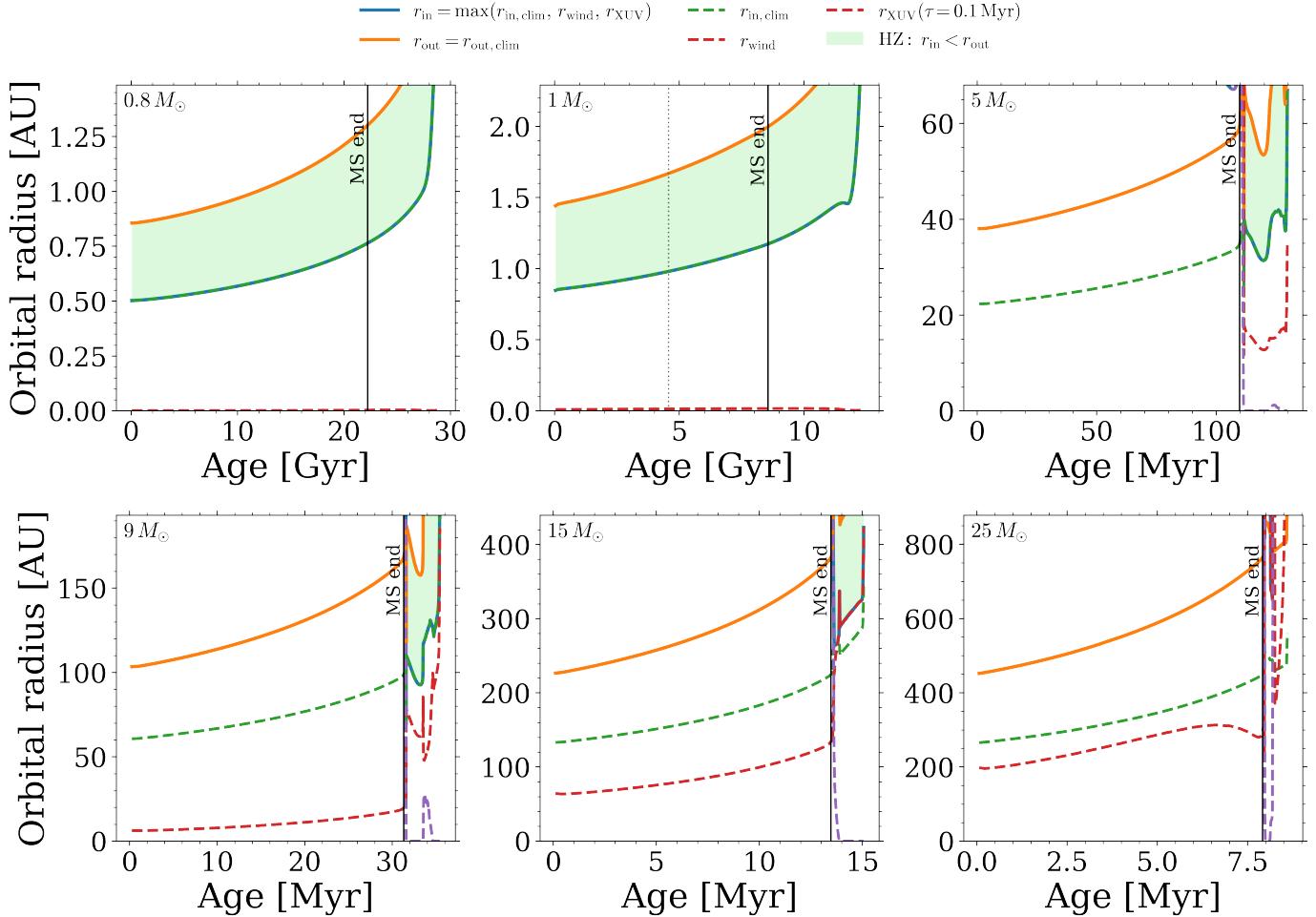
The $0.8-1 M_{\odot}$ panels illustrate the low-mass regime where atmospheric loss constraints remain subdominant and the HZ is effectively set by the climate band. A continuous MS annulus is present for essentially the full core-H lifetime, with $\Delta t_{\text{HZ,MS}} = 21971$ Myr for $t_{\text{MS}} = 22162$ Myr at $0.8 M_{\odot}$ and $\Delta t_{\text{HZ,MS}} = 8491$ Myr for $t_{\text{MS}} = 8523$ Myr at $1 M_{\odot}$ (Table 1). The corresponding MS-averaged radii are $\langle r_{\text{in}} \rangle_{\text{MS}} = 0.594$ and $\langle r_{\text{out}} \rangle_{\text{MS}} = 1.020$ AU at $0.8 M_{\odot}$, and $\langle r_{\text{in}} \rangle_{\text{MS}} = 0.982$ and $\langle r_{\text{out}} \rangle_{\text{MS}} = 1.686$ AU at $1 M_{\odot}$. Post-MS habitability remains long-lived in this mass range, shifting outward to $\langle r_{\text{in}} \rangle_{\text{post}} = 1.017$ AU and $\langle r_{\text{out}} \rangle_{\text{post}} = 1.746$ AU over $\Delta t_{\text{HZ,post}} = 6787$ Myr at $0.8 M_{\odot}$ and to $\langle r_{\text{in}} \rangle_{\text{post}} = 1.418$ AU and $\langle r_{\text{out}} \rangle_{\text{post}} = 2.436$ AU over $\Delta t_{\text{HZ,post}} = 3835$ Myr at $1 M_{\odot}$.

The $5-9 M_{\odot}$ panels shift the climate band to tens to hundreds of AU, reflecting the rapid rise in bolometric luminosity. An HZ annulus still exists for essentially the full MS, with $\Delta t_{\text{HZ,MS}} = 108.779$ Myr for $t_{\text{MS}} = 108.861$ Myr at $5 M_{\odot}$ and $\Delta t_{\text{HZ,MS}} = 31.058$ Myr for $t_{\text{MS}} = 31.082$ Myr at $9 M_{\odot}$ (Table 1).

441 The characteristic MS radii increase from $\langle r_{\text{in}} \rangle_{\text{MS}} = 26.663 \text{ AU}$ and $\langle r_{\text{out}} \rangle_{\text{MS}} = 45.790 \text{ AU}$ at $5 M_{\odot}$ to
 442 $\langle r_{\text{in}} \rangle_{\text{MS}} = 74.021 \text{ AU}$ and $\langle r_{\text{out}} \rangle_{\text{MS}} = 127.123 \text{ AU}$ at $9 M_{\odot}$. Post-MS windows persist but shorten to
 443 $\Delta t_{\text{HZ,post}} = 19.970 \text{ Myr}$ at $5 M_{\odot}$ and $\Delta t_{\text{HZ,post}} = 4.131 \text{ Myr}$ at $9 M_{\odot}$, while the mean radii move outward
 444 to $\langle r_{\text{in}} \rangle_{\text{post}} = 37.050 \text{ AU}$, $\langle r_{\text{out}} \rangle_{\text{post}} = 63.629 \text{ AU}$ and to
 445 $\langle r_{\text{in}} \rangle_{\text{post}} = 112.872 \text{ AU}$, $\langle r_{\text{out}} \rangle_{\text{post}} = 193.843 \text{ AU}$, respectively. In this intermediate-mass regime (Figure 1) the
 446 separation between constraints becomes visible, and the full-physics inner edge can depart from the climate inner
 447 edge as winds and high-energy irradiation begin to
 448 control atmospheric retention.

449 The bottom-middle and bottom-right panels ($15 M_{\odot}$ and $25 M_{\odot}$) demonstrate the high-mass outcome. Although a climate band exists at large radii, the MS
 450 HZ is absent for these models in Table 1, which implies $r_{\text{in}} \geq r_{\text{out,clim}}$ throughout core-H burning under
 451 the adopted XUV and wind scalings. Any remaining
 452 habitability is confined to brief post-MS intervals.
 453 At $15 M_{\odot}$ the post-MS HZ persists for $\Delta t_{\text{HZ,post}} = 1.485 \text{ Myr}$ with $\langle r_{\text{in}} \rangle_{\text{post}} = 269.231 \text{ AU}$ and $\langle r_{\text{out}} \rangle_{\text{post}} = 461.641 \text{ AU}$. At $25 M_{\odot}$, the post-MS window shortens to $\Delta t_{\text{HZ,post}} = 0.215 \text{ Myr}$ while shifting outward
 454 to $\langle r_{\text{in}} \rangle_{\text{post}} = 499.339 \text{ AU}$ and $\langle r_{\text{out}} \rangle_{\text{post}} = 855.779 \text{ AU}$. The persistence of a post-MS annulus at $15 M_{\odot}$ but
 455 not beyond $\sim 1 \text{ Myr}$ at higher mass motivates a practical
 456 threshold for existence based habitability. Requiring
 457 at least $\sim 1 \text{ Myr}$ of continuous annulus existence
 458 in any phase is satisfied at $15 M_{\odot}$ but fails by $20 M_{\odot}$
 459 where $\Delta t_{\text{HZ,post}} = 0.596 \text{ Myr}$, which places the transition
 460 near $\sim 18 M_{\odot}$ by interpolation across the sampled
 461 grid. The table further shows that even post-MS habitability
 462 vanishes at higher masses, reaching $\Delta t_{\text{HZ,post}} = 0$
 463 by $40 M_{\odot}$ in this set. The limiting physics in the massive star regime is therefore the atmospheric retention
 464 inner boundary and its mass dependence, rather than
 465 the existence of a climate HZ at large orbital radii.

479 3.2. Fixed-orbit residence times: feasibility beyond HZ 480 existence


481 Section 3.1 established when an HZ annulus exists,
 482 meaning that at a given time there is a non-empty interval of radii satisfying $r_{\text{in}}(t) < r < r_{\text{out,clim}}(t)$. A
 483 distinct question is feasibility for a single planet on a
 484 fixed orbit, because the HZ boundaries sweep outward as
 485 $L_{\star}(t)$ and the atmospheric-loss constraints evolve. For
 486 a fixed semimajor axis a we define the residence time
 487 as the longest contiguous time interval during which
 488 $r_{\text{in}}(t) < a < r_{\text{out,clim}}(t)$ holds, and we then maximize
 489 over a . We compute this maximum separately on the
 490 MS and post-MS by restricting the search to the cor-

492 responding time domains, and we denote the results by
 493 $\Delta t_{\text{res,MS}}$ and $\Delta t_{\text{res,post}}$.

494 Figure 2 contrasts the existence times from Table 1
 495 with the corresponding residence maxima. At low mass
 496 the two MS measures are nearly identical because the
 497 HZ band evolves slowly, so a broad range of a remains
 498 inside continuously. For example at $1 M_{\odot}$ the MS ex-
 499 istence time is $\Delta t_{\text{HZ,MS}} = 8.49 \times 10^3 \text{ Myr}$ and the opti-
 500 mal residence time tracks it closely in Fig. 2. At inter-
 501 mediate masses, the same remains true in an abso-
 502 lute sense even though the clock is faster. At $5 M_{\odot}$
 503 we have $\Delta t_{\text{HZ,MS}} = 1.09 \times 10^2 \text{ Myr}$, and by $9 M_{\odot}$ it
 504 is $\Delta t_{\text{HZ,MS}} = 3.11 \times 10^1 \text{ Myr}$, with $\Delta t_{\text{res,MS}}$ remaining
 505 comparable because the MS band still sweeps outward
 506 smoothly enough that one can choose an orbit that stays
 507 inside for most of the MS.

508 The divergence between existence and residence
 509 emerges in the transition regime where atmospheric re-
 510 tention and rapid structural evolution compress the us-
 511 able band and increase its sweep rate. The relevant
 512 control parameter is not only the shrinking MS life-
 513 time but also the growth and variability of $r_{\text{in}}(t) =$
 514 $\max(r_{\text{in,clim}}, r_{\text{wind}}, r_{\text{XUV}})$, which steepens with stellar
 515 mass as winds strengthen and the spectrum hardens. As
 516 a result, $r_{\text{in}}(t)$ can approach $r_{\text{out,clim}}(t)$ and the band can
 517 become both narrow and fast-moving, so the inequality
 518 $r_{\text{in}}(t) < a < r_{\text{out,clim}}(t)$ cannot be maintained for long at
 519 any fixed a . This is why the MS residence curve in Fig. 2
 520 drops sharply beyond the point where the MS band is
 521 still present but no longer quasi-stationary. A concrete
 522 example is the $12 M_{\odot}$ track, which still has a non-zero
 523 MS existence time in Table 1 ($\Delta t_{\text{HZ,MS}} = 1.15 \text{ Myr}$), yet
 524 Fig. 2 shows that the maximum contiguous MS residence
 525 time is already pushed below the $\sim 1 \text{ Myr}$ benchmark.
 526 In this sense, the residence framing tightens the practi-
 527 cal mass ceiling for continuous MS habitability, because
 528 it requires not only the existence of an annulus but also
 529 that the annulus does not sweep past any fixed orbit too
 530 rapidly.

531 The post-MS behaviour is similar in trend but is set
 532 by even faster luminosity and temperature evolution, so
 533 residence and existence are typically closer to each other
 534 and both are short. At $15 M_{\odot}$ Table 1 gives $\Delta t_{\text{HZ,post}} =$
 535 1.49 Myr and Fig. 2 indicates an optimal post-MS resi-
 536 dence time of the same order, whereas by $25 M_{\odot}$ the
 537 post-MS existence time is $\Delta t_{\text{HZ,post}} = 2.15 \times 10^{-1} \text{ Myr}$
 538 and the corresponding residence maximum is compa-
 539 rably brief. Thus, even when a post-MS HZ annu-
 540 lus exists, the rapid outward sweep of the boundaries
 541 limits any fixed-orbit residence to $\lesssim \text{Myr}$ scales for
 542 massive stars, reinforcing that feasibility is controlled
 543 by atmospheric-retention constraints and evolutionary

Figure 1. Time evolution of habitable-zone radii for six rotating solar-metallicity GENEC tracks ($0.8, 1, 5, 9, 15$, and $25 M_{\odot}$; model identifiers are shown in the upper-left of each panel). The climate-only inner and outer boundaries are $r_{\text{in,clim}}$ (green dashed) and $r_{\text{out,clim}}$ (orange), while the adopted inner edge is $r_{\text{in}} = \max(r_{\text{in,clim}}, r_{\text{wind}}, r_{\text{XUV}})$ (blue); r_{wind} (magenta dashed) and r_{XUV} (purple dashed, computed for $\tau = 0.1$ Myr) denote the wind- and XUV-limited constraints on atmospheric retention. The habitable band (light green shading) is defined by $r_{\text{in}} < r_{\text{out,clim}}$ at a given time. Vertical black lines mark the end of core-H burning (MS end).

544 sweep rates rather than by the presence of a climate
 545 band at large radii.

546 3.3. Habitable-zone planet multiplicity

547 Figure 3 converts the phase-averaged HZ annuli in Ta-
 548 ble 1 into a maximum number of planets that can be si-
 549 multaneously accommodated within the HZ on the MS
 550 and post-MS. The calculation is a packing problem. For
 551 a given annulus, the multiplicity scales with the avail-
 552 able logarithmic radial span, $\ln(\langle r_{\text{out}} \rangle / \langle r_{\text{in}} \rangle)$, divided by
 553 the logarithmic spacing imposed by the adopted mu-
 554 tual-Hill stability criterion (parameterized by K). Integer
 555 plateaus therefore arise naturally whenever the HZ log-
 556 width varies slowly with mass, even though the HZ radii
 557 themselves change by orders of magnitude.

558 *Method A: geometric packing only.* In the simplest
 559 limit (left panel), we ignore disk truncation and solids

560 budgets and treat the HZ annulus as continuously avail-
 561 able for packing. This yields a nearly mass-invariant MS
 562 plateau with $N_{\text{MS}} = 4$ from 0.8 to $9 M_{\odot}$, followed by a
 563 rapid collapse to $N_{\text{MS}} = 1$ at $12 M_{\odot}$ and $N_{\text{MS}} = 0$ for
 564 $M_{\text{ini}} \geq 15 M_{\odot}$. The post-MS curve remains at $N_{\text{post}} = 4$
 565 through $25 M_{\odot}$, then drops to $N_{\text{post}} = 1$ at $32 M_{\odot}$ and
 566 vanishes for $M_{\text{ini}} \geq 40 M_{\odot}$. The panel is intentionally
 567 first-order in its physical interpretation. For low and
 568 intermediate masses, climate-based HZ edges scale ap-
 569 proximately as $r \propto \sqrt{L_{\star}}$, so the logarithmic width re-
 570 mains of order unity. At higher masses, enhanced high-
 571 energy irradiation and winds shift the effective inner
 572 edge outward, reducing the annulus to the point that
 573 it is geometrically too narrow (or disappears) for multi-
 574 ple Hill-stable orbits.

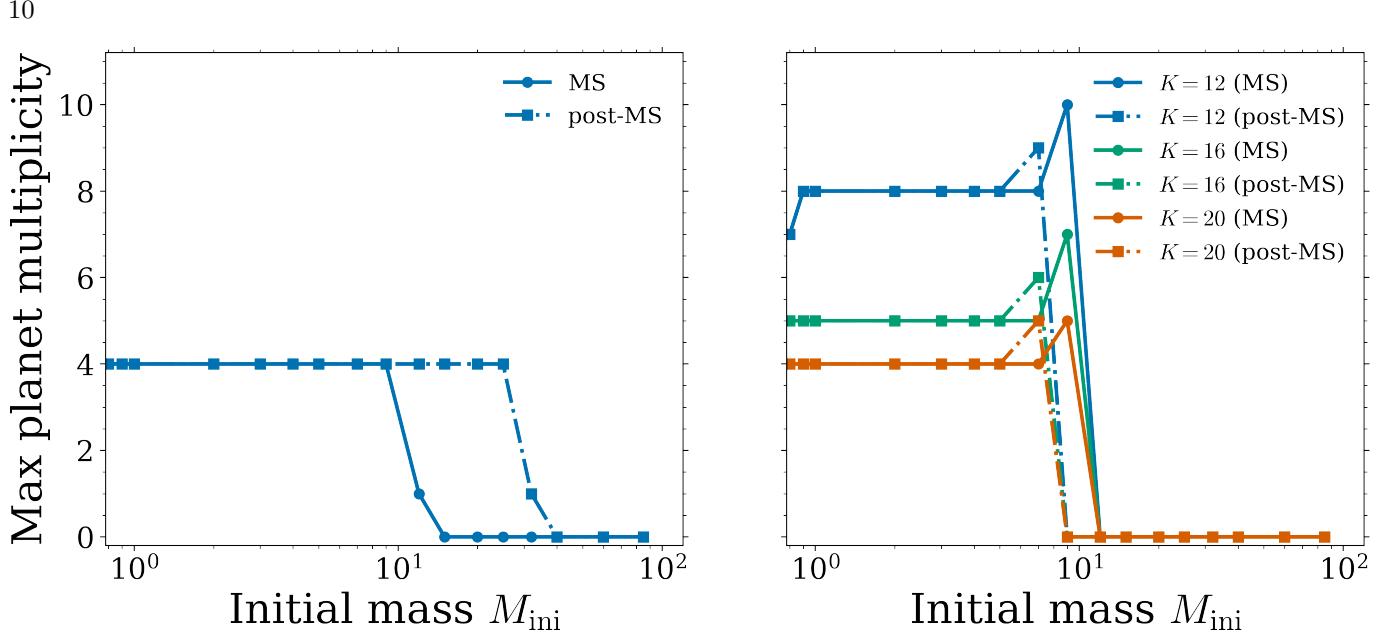
575 *Method B: disk-coupled packing with a finite solids
 576 reservoir.* The right panel adopts a more realistic archi-

Figure 2. Existence time and maximum fixed-orbit residence time versus initial mass for the rotating solar-metallicity GENEC grid. Solid curves show the cumulative HZ existence durations Δt_{HZ} and dashed curves show the maximum contiguous residence time $\Delta t_{\text{res}} = \max_a \Delta t(a)$, each evaluated separately on the MS and post-MS. Horizontal lines indicate benchmark residence requirements.

ture constraint by coupling the HZ to a finite solids reservoir with an outer disk scale and a radial solids weighting. This is motivated by standard disk models in which solids surface densities follow a declining power law and disks are truncated at $\mathcal{O}(10^2)$ AU by formation conditions, viscous evolution, and photoevaporation. We show three stability spacings, $K = \{12, 16, 20\}$, where larger K enforces wider separations and therefore lowers N at fixed annulus width. The MS trend is a plateau spike-collapse sequence with explicit values: for $0.8\text{--}7 M_{\odot}$ we obtain $N_{\text{MS}} = (7, 5, 4)$ at $0.8 M_{\odot}$ and $N_{\text{MS}} = (8, 5, 4)$ from 0.9 to $7 M_{\odot}$ for $(K12, K16, K20)$, then a pronounced spike at $9 M_{\odot}$ to $N_{\text{MS}} = (10, 7, 5)$, and finally $N_{\text{MS}} = 0$ for $M_{\text{ini}} \geq 12 M_{\odot}$. The post-MS sequence is similar but terminates earlier: $N_{\text{post}} = (7, 5, 4)$ at $0.8 M_{\odot}$, $N_{\text{post}} = (8, 5, 4)$ from 0.9 to $5 M_{\odot}$, a modest enhancement at $7 M_{\odot}$ to $N_{\text{post}} = (9, 6, 5)$, and $N_{\text{post}} = 0$ for $M_{\text{ini}} \geq 9 M_{\odot}$.

The $9 M_{\odot}$ spike is the central diagnostic of Method B and it has a simple physical origin. It marks the last MS model whose HZ still lies near the outer edge of the adopted solids reservoir, so the system benefits simultaneously from (i) the weakened Hill-spacing constraint at larger M_{\star} and (ii) a non-negligible disk-HZ overlap. Table 1 shows that the $9 M_{\odot}$ MS HZ spans $\langle r_{\text{in}} \rangle_{\text{MS}} \simeq 74$ AU to $\langle r_{\text{out}} \rangle_{\text{MS}} \simeq 127$ AU, placing a substantial fraction of the annulus at the reservoir boundary. Just beyond this point, the overlap collapses and the multiplicity becomes mass-starved, not packing-limited. This is why the post-MS multiplicity already falls to zero at $9 M_{\odot}$ in Method B: the post-MS inner edge moves beyond the reservoir scale ($\langle r_{\text{in}} \rangle_{\text{post}} \simeq 113$ AU), eliminating the sup-

ply of solids to the HZ annulus even though a formal post-MS HZ exists in Table 1.


The combined message of Fig. 3 is therefore twofold. First, stellar evolution sets when an HZ exists and how wide it is, which explains the geometric plateaus and the disappearance of MS habitability above $\simeq 12 M_{\odot}$. Second, once disk coupling is enforced, the dominant uncertainty shifts to the disk scale and solids redistribution: the $9 M_{\odot}$ spike identifies the upper-mass boundary where a massive star MS HZ can still be fed by a plausible solids reservoir. Beyond that boundary, the limiting factor is no longer the star’s ability to host an HZ, but the disk’s ability to deliver solids to it.

3.4. Rotation effects on habitable zone evolution

We quantify rotation sensitivity by comparing models at fixed M_{ini} and $Z = 0.014$ from the rotating grid (S0.4, “rot”) and the non-rotating grid (S0, “non-rot”). The HZ boundaries follow the operational definitions in Section 2.2. The outer edge is the climate boundary $r_{\text{out,clim}}(t)$ from Equation 5. The inner edge is $r_{\text{in,op}}(t) \equiv r_{\text{in}}(t)$ from Equation 14. Main-sequence (MS) and post-MS phases are separated using the $X_{c,\text{H}}$ criterion in Section 2.1. In Figure 4 the MS panels use stellar age, while the post-MS panels use time since TAMS. A habitable annulus exists when $r_{\text{in,op}}(t) < r_{\text{out,clim}}(t)$. When a phase contains no habitable timesteps we set $\Delta t_{\text{HZ}} = 0$ and we treat a_{res} as undefined for that phase.

At $9 M_{\odot}$ on the MS (Figure 4, top-left), both rot and non-rot models maintain a broad annulus that drifts outward with age. The inner edge rises from ~ 65 AU to ~ 90 AU over the non-rot MS, while the climate outer edge rises from ~ 105 AU to ~ 150 AU. The rotating track follows nearly the same loci at fixed age, but it extends to later times and slightly larger terminal radii. Table 1 gives $\langle r_{\text{in}} \rangle_{\text{MS}} = 74.0$ AU and $\langle r_{\text{out}} \rangle_{\text{MS}} = 127.1$ AU for the rotating model. The MS width is therefore typically $r_{\text{out,clim}} - r_{\text{in,op}} \sim 40\text{--}70$ AU. Rotation mainly changes the clock. The annotated ratio gives $t_{\text{MS,rot}}/t_{\text{MS,nonrot}} = 1.188$, so $t_{\text{MS,nonrot}} \simeq 26.2$ Myr given $t_{\text{MS,rot}} = 31.08$ Myr in Table 1.

At $20 M_{\odot}$ on the MS (Figure 4, top-right), the climate band remains at large radii, with $r_{\text{out,clim}} \sim 350\text{--}600$ AU. The operational inner edge is far larger, with $r_{\text{in,op}} \sim 1.6\text{--}2.0 \times 10^3$ AU. Thus $r_{\text{in,op}}$ exceeds $r_{\text{out,clim}}$ by a factor of $\sim 3\text{--}5$ throughout core-H burning, so an MS annulus never forms for either model. The lifetime ratio is still substantial, with $t_{\text{MS,rot}}/t_{\text{MS,nonrot}} = 1.229$ and $t_{\text{MS,nonrot}} \simeq 7.69$ Myr from $t_{\text{MS,rot}} = 9.45$ Myr (Table 1). This has no impact on MS habitability because the limiting condition is the operational constraint

Figure 3. Maximum HZ planet multiplicity inferred from Table 1. Solid lines denote MS values and dash-dotted lines denote post-MS values. Left: Method A (geometric packing only, $K = 12$) gives $N_{\text{MS}} = 4$ for $0.8\text{--}9 M_{\odot}$ and a sharp collapse at higher mass, while post-MS multiplicity persists to $25 M_{\odot}$. Right: Method B couples the HZ to a finite solids reservoir and shows $K = \{12, 16, 20\}$; it yields an MS plateau at low mass, a spike at $9 M_{\odot}$, and rapid suppression once the HZ moves beyond the reservoir scale.

rather than the climate band. At solar metallicity this is consistent with a regime where wind and irradiation terms become dominant at high mass, while rotation only perturbs the timing and the detailed trajectory in $L_{\star}(t)$ and $T_{\text{eff}}(t)$.

Post-MS evolution at $9 M_{\odot}$ (Figure 4, bottom-left) preserves a sustained annulus across the full post-MS interval for both models. Table 1 gives $\Delta t_{\text{HZ,post}} = 4.13$ Myr with $\langle r_{\text{in}} \rangle_{\text{post}} = 112.9$ AU and $\langle r_{\text{out}} \rangle_{\text{post}} = 193.8$ AU for the rotating track. The plotted boundaries fluctuate around these means, with widths typically of order 60–120 AU. Rotation changes the post-MS duration only mildly. The ratio $t_{\text{post,rot}}/t_{\text{post,nonrot}} = 1.044$ implies $t_{\text{post,nonrot}} \simeq 3.96$ Myr given $t_{\text{post,rot}} = 4.13$ Myr. In this mass range the longer rotating clock maps directly into a modest increase in cumulative habitable time.

Post-MS evolution at $20 M_{\odot}$ (Figure 4, bottom-right) shows an early transient where $r_{\text{in,op}}$ is initially very large and then collapses within ~ 0.1 Myr to values below $r_{\text{out,clim}}$. During the mid post-MS interval the models sustain a wide annulus, with representative values $r_{\text{in,op}} \sim 350\text{--}450$ AU and $r_{\text{out,clim}} \sim 560\text{--}650$ AU. Table 1 gives $\langle r_{\text{in}} \rangle_{\text{post}} = 380.6$ AU and $\langle r_{\text{out}} \rangle_{\text{post}} = 649.6$ AU for the rotating model, consistent with the plotted mid-interval geometry. The key difference is late-time behavior. The rotating track exhibits a strong rise in $r_{\text{in,op}}$ beginning near $(t - t_{\text{TAMS}}) \simeq 0.7$ Myr, which pushes $r_{\text{in,op}}$ well beyond $r_{\text{out,clim}}$ and terminates

the annulus. This indicates that the operational constraint becomes more restrictive late in the post-MS evolution. The figure alone does not identify which component of Equation (14) dominates the surge, but it is naturally associated with a rise in the wind- or XUV-limited contribution. The phase duration ratio is $t_{\text{post,rot}}/t_{\text{post,nonrot}} = 0.967$, so rotation slightly shortens the post-MS clock at $20 M_{\odot}$.

Figure 5 summarizes the rotation response across the full grid. On the MS, rotation increases the cumulative habitable time at low and intermediate mass. The gain peaks near $9\text{--}10 M_{\odot}$ at $\simeq 20\%$ of $t_{\text{MS,nonrot}}$. This is consistent with Figure 4 because $\Delta t_{\text{HZ,MS}} \approx t_{\text{MS}}$ at $9 M_{\odot}$ in Table 1. The MS signal collapses to zero by $\sim 15\text{--}20 M_{\odot}$ because the MS annulus is absent in both grids. On the post-MS, the rotation-induced change in habitable time is modest at intermediate mass, and it becomes negative at $M \gtrsim 20 M_{\odot}$. At $20\text{--}25 M_{\odot}$ the reduction is a few percent of $t_{\text{MS,nonrot}}$, which corresponds to a few 10^{-1} Myr, and it matches the earlier termination of the post-MS annulus for the rotating case in Figure 4. The residence-orbit response is larger than the time budget response. On the MS, a_{res} shifts outward by $\sim 8\text{--}12\%$ where an MS HZ exists. On the post-MS, the shift reaches $\sim 30\%$ near $9\text{--}10 M_{\odot}$ and rises to $\sim 60\text{--}65\%$ by $25 M_{\odot}$. Across the solar-metallicity grid, rotation therefore acts mainly as a timing and orbit-selection effect at intermediate mass, while the existence of habitability at high mass is con-

717 trolled by operational limits that are closely tied to mass
 718 loss.

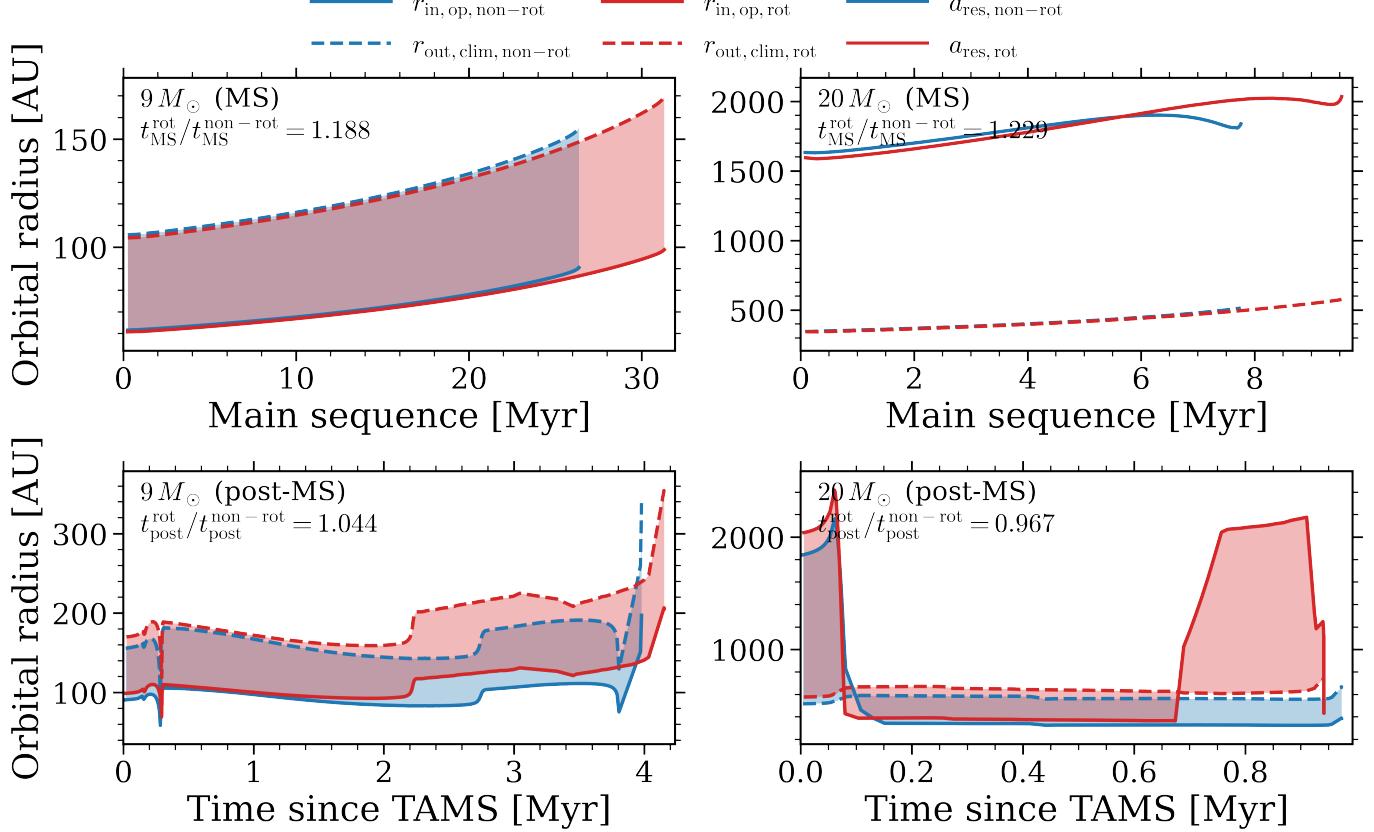
719 *3.5. IMF-weighted contribution of massive stars*

720 The track-level analysis above shows that HZ annuli
 721 can exist at intermediate mass and can persist briefly at
 722 higher mass, but the population relevance depends on
 723 IMF weighting. We therefore fold the time-integrated
 724 yields $Y_A(M_{\text{ini}})$ and $Y_B(M_{\text{ini}}; K, a_{\text{max}})$ through several
 725 Milky-Way-like IMFs and evaluate two diagnostics on
 726 the initial-mass interval common to the non-rotating
 727 and rotating grids. We compute the IMF-integrated
 728 yield per unit stellar mass formed, \bar{Y} , and we quantify
 729 the massive star contribution with the fraction of the
 730 yield numerator contributed by $M_{\text{ini}} \geq M_{\text{cut}}$, denoted
 731 $f_{\geq M_{\text{cut}}}$. We adopt $M_{\text{cut}} = 8 M_{\odot}$ as the conventional
 732 massive star boundary. For Method B we fix $K = 16$ and
 733 bracket the uncertain outer disk scale with $a_{\text{max}} = 100$
 734 and 1000 AU.

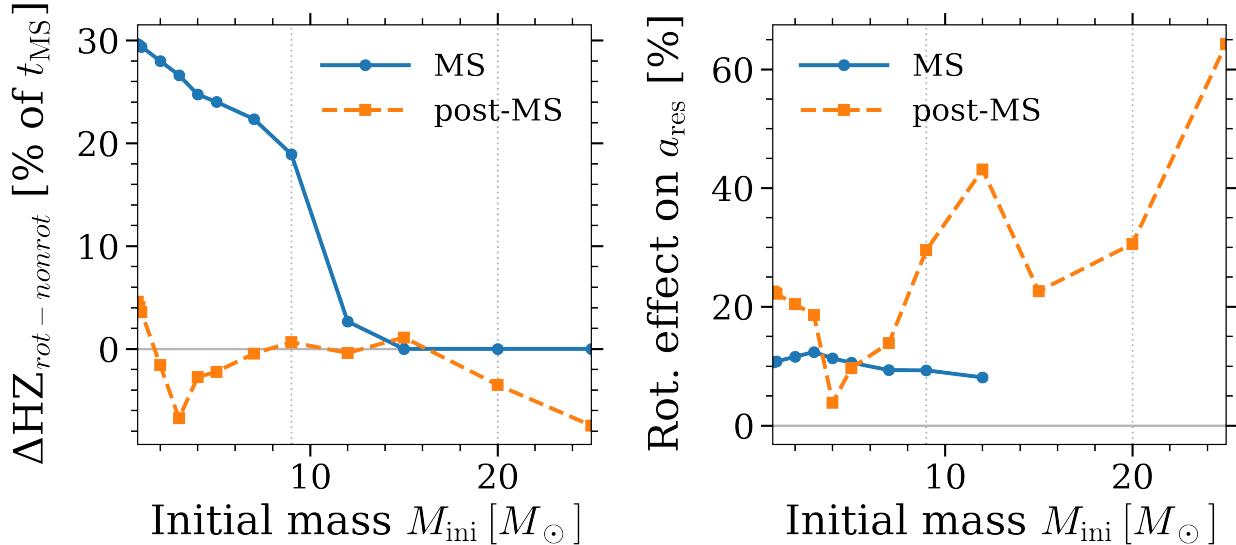
735 Figure 6 shows the IMF-weighted habitability-yield
 736 density, $d\bar{Y}/d\log_{10} M_{\text{ini}}$ (per dex), for the P. Kroupa
 737 (2001) IMF, with color distinguishing S0 and S0.4 and
 738 line style distinguishing Method A from Method B.
 739 Each point gives the yield density associated with an
 740 initial-mass bin, plotted at the log-midpoint of the bin;
 741 multiplying by the bin width $\Delta \log_{10} M$ recovers that
 742 bin's contribution to the total \bar{Y} . The mass ranking is
 743 strongly bottom-heavy because the lowest-mass tracks
 744 combine Gyr-scale HZ persistence with near-constant
 745 packing at low M_{ini} , while higher-mass tracks evolve
 746 rapidly and their operational HZ windows contract.
 747 Bins above a few solar masses contribute at the $\lesssim 10^{-3}$
 748 level relative to the total on this scale. Method B tracks
 749 Method A closely at low mass because the HZ typically
 750 remains well inside the adopted semimajor-axis domain.
 751 At higher mass the Method B contribution is modestly
 752 reduced because the operational boundaries sweep out-
 753 ward more rapidly and more often approach the im-
 754 posed outer scale a_{max} , which down-weights long-lived
 755 contributions at large radii. The difference between
 756 $a_{\text{max}} = 100$ and 1000 AU is therefore best interpreted as
 757 a controlled bracketing rather than a qualitative change
 758 in the mass ranking.

759 Table 2 summarizes the corresponding IMF-integrated
 760 values of \bar{Y} and the massive star numerator fraction $f_{\geq 8}$
 761 for Salpeter, Kroupa, and Chabrier IMFs. The rotat-
 762 ing versus non-rotating difference in \bar{Y} remains at the
 763 percent level on the common interval for both meth-
 764 ods. The massive star contribution is extremely small
 765 for all IMFs. For Method B with $K = 16$ we obtain
 766 $f_{\geq 8} \simeq (5\text{--}8) \times 10^{-5}$, with only a few-percent change
 767 between $a_{\text{max}} = 100$ and 1000 AU. This robustness im-

768 plies that even when HZ annuli occur at high mass, their
 769 contribution to the IMF-integrated planet-time budget
 770 is negligible under Milky-Way-like IMFs.


771 We now convert the IMF-integrated yields into an
 772 instantaneous Milky-Way inventory using the normal-
 773 ization in Section 2.7. For a fiducial Milky-Way star-
 774 formation rate $\dot{M}_{\star} = 1.9 M_{\odot} \text{ yr}^{-1}$ and an effective
 775 Earth-analogue occurrence factor $\eta_{\oplus} = 0.1$, we ob-
 776 tain $N_{\text{HZ,MW}}(M_{\text{ini}} \geq 0.8 M_{\odot}) \simeq (2.4\text{--}2.8) \times 10^9$ across
 777 the IMF choices in Table 2, with percent-level differ-
 778 ences between S0 and S0.4. This number is an order-
 779 of-magnitude estimate of the instantaneous Milky-Way
 780 inventory of Earth analogues that satisfy our adopted
 781 HZ and atmospheric-retention criteria. It is not a time-
 782 integrated count over the Galaxy's formation history.

783 The impact of extending the analysis to massive stars
 784 can be expressed using $f_{\geq 8}$. Across Methods A and B
 785 we find $f_{\geq 8} \sim (0.6\text{--}1.3) \times 10^{-4}$, so the massive star con-
 786 tribution is $N_{\text{HZ,MW}}(\geq 8 M_{\odot}) \simeq (1.5\text{--}3.5) \times 10^5$ for the
 787 same fiducial \dot{M}_{\star} and η_{\oplus} . Thus including massive stars
 788 changes the Milky-Way total by only $\Delta N/N \sim 10^{-4}$,
 789 because the IMF strongly favours low masses and be-
 790 cause high-mass HZ windows are short even when they
 791 exist. In absolute terms, however, the extension adds of
 792 order a few 10^5 additional potentially habitable Earth
 793 analogues at any instant, which is a large number of extra
 794 targets even though it is a negligible fraction of the
 795 total. This statement should be interpreted strictly in
 796 the sense of our criteria: it does not imply that such
 797 planets host life, but it does increase the number of
 798 worlds that meet the adopted habitability filters, and
 799 any expectation value for inhabited worlds scales with
 800 that absolute count. Method B reduces the high-mass
 801 tail relative to Method A since enforcing $a_{\text{max}} = 100$ or
 802 1000 AU suppresses multiplicity at high mass, but this
 803 difference only affects the already small $\geq 8 M_{\odot}$ contribu-
 804 tion and leaves the Galaxy-integrated total essentially
 805 unchanged.


806 **4. DISCUSSION**

807 *4.1. Dominant limiters and interpretation of
 808 IMF-weighted yields*

809 Figure 6 shows that the cumulative yield fraction
 810 above M_{cut} falls extremely rapidly for all IMFs and
 811 for both S0 and S0.4. The key quantitative outcome
 812 is $f_{\geq 8} \sim 10^{-4}$, with the exact value set by the IMF and
 813 weakly by rotation. Therefore massive stars contribute a
 814 negligible share of the total Earth-analogue planet-time
 815 budget under Milky-Way-like IMFs. This behaviour fol-
 816 lows from IMF weighting combined with short high-mass
 817 windows and rapid boundary sweep, while the integral
 818 is dominated by long-lived low-mass tracks.

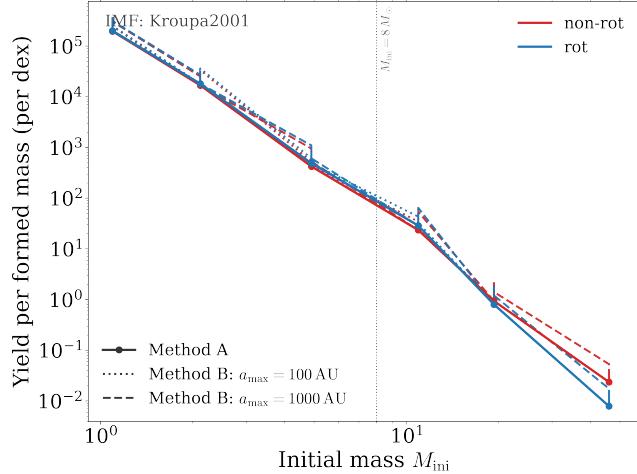

Figure 4. Rotation versus non-rotation comparison of HZ boundary evolution at $9 M_{\odot}$ (left) and $20 M_{\odot}$ (right). Blue curves show non-rot S0 models and red curves show rot S0.4 models. Solid curves plot the operational inner edge $r_{\text{in,op}}(t)$ and dashed curves plot the climate outer edge $r_{\text{out,clim}}(t)$. Thin horizontal lines mark the residence-orbit locations a_{res} in each phase. Top panels use MS age. Bottom panels use time since TAMS. Shading marks epochs where an annulus exists, with overlap between rot and non-rot shown in purple. The annotated ratios give $t_{\text{MS,rot}}/t_{\text{MS,nonrot}}$ (top) and $t_{\text{post,rot}}/t_{\text{post,nonrot}}$ (bottom).

Figure 5. Grid-wide rotation sensitivity of habitable time budgets and the residence orbit. Left panel shows $100(\Delta t_{\text{HZ,rot}} - \Delta t_{\text{HZ,nonrot}})/t_{\text{MS,nonrot}}$ for MS and post-MS phases. Right panel shows $100[a_{\text{res,rot}}/a_{\text{res,nonrot}} - 1]$ for MS and post-MS phases. Vertical dotted lines mark $M_{\text{ini}} = 9$ and $20 M_{\odot}$, matching the detailed comparisons in Figure 4.

Table 2. IMF-integrated habitability yield per unit stellar mass formed on the mass interval common to the rotating and non-rotating grids. We report the total yield \bar{Y} for S0 and S0.4 for Method A and for Method B with $K = 16$ at $a_{\max} = 100$ AU and $a_{\max} = 1000$ AU. We also report the fraction of the yield numerator contributed by $M_{\text{ini}} \geq 8 M_{\odot}$, $f_{\geq 8}$, which isolates the massive star contribution independent of the IMF mass normalization.

Method	IMF	$Y_{\text{non-rot}}$	Y_{rot}	$f_{\geq 8, \text{non-rot}}$	$f_{\geq 8, \text{rot}}$
Method A	Salpeter	1.4×10^4	1.5×10^4	1.1×10^{-4}	1.3×10^{-4}
Method A	Kroupa2001	1.3×10^4	1.4×10^4	1.1×10^{-4}	1.3×10^{-4}
Method A	Chabrier2003	1.2×10^4	1.3×10^4	1.2×10^{-4}	1.4×10^{-4}
Method B: $a_{\max} = 100$ AU	Salpeter	1.4×10^4	1.5×10^4	1.2×10^{-4}	1.5×10^{-4}
Method B: $a_{\max} = 100$ AU	Kroupa2001	1.3×10^4	1.4×10^4	1.2×10^{-4}	1.4×10^{-4}
Method B: $a_{\max} = 100$ AU	Chabrier2003	1.3×10^4	1.3×10^4	1.2×10^{-4}	1.5×10^{-4}
Method B: $a_{\max} = 1000$ AU	Salpeter	1.4×10^4	1.5×10^4	1.3×10^{-4}	1.5×10^{-4}
Method B: $a_{\max} = 1000$ AU	Kroupa2001	1.3×10^4	1.4×10^4	1.3×10^{-4}	1.5×10^{-4}
Method B: $a_{\max} = 1000$ AU	Chabrier2003	1.3×10^4	1.3×10^4	1.3×10^{-4}	1.5×10^{-4}

Figure 6. IMF-weighted habitability-yield density per logarithmic initial-mass interval (per dex), evaluated over MS+post-MS evolution on the initial-mass range common to the non-rotating (S0) and rotating (S0.4) grids. Blue curves show S0.4 and red curves show S0. Markers with solid lines show Method A. Dotted and dashed curves show Method B for $a_{\max} = 100$ AU and $a_{\max} = 1000$ AU, respectively, using the fiducial packing parameter $K = 16$. For clarity the plotted IMF is fixed to the Kroupa (2001) form; Salpeter and Chabrier IMFs preserve the qualitative mass ranking and are summarized in Table 2. Points are plotted at the log-midpoint of each initial-mass bin, and the vertical dotted line marks $M_{\text{ini}} = 8 M_{\odot}$.

Method A and Method B differ only in the assumed availability of wide orbits. Method A uses the full instantaneous annulus between $r_{\text{in},\text{op}}$ and $r_{\text{out},\text{clim}}$, then applies the packing prescription. Method B enforces $a \leq a_{\max}$ and tests whether the small high-mass tail is supported by very wide separations. The 100 AU and 1000 AU cases therefore only matter where surviving HZ occupancy approaches those scales, so they mainly reshape the high-mass tail without changing the IMF-driven conclusion above.

Rotation can shift track-level HZ timing and radii, but Table 2 shows that \bar{Y} changes at only the percent level between S0 and S0.4 because the IMF integral is controlled by low masses. Our integrals begin at $0.8 M_{\odot}$, so the reported normalizations are conservative for a full Galactic inventory. When we translate \bar{Y} into a Milky-Way number we are estimating an instantaneous quasi-steady inventory that scales with the present-day star-formation rate and the Earth-analogue occurrence factor, not a time-integrated count over Galactic history.

4.2. Detectability with the transit method: the long-period barrier

Our operational HZ places temperate orbits around intermediate and high mass stars at tens to hundreds

of AU (Table 1). The immediate implication is simple: the corresponding orbital periods are far longer than the time baselines of transit surveys. Kepler's third law, written in a convenient scaling form, is

$$P \simeq 1 \text{ yr} \left(\frac{a}{\text{AU}} \right)^{3/2} \left(\frac{M_{\star}}{M_{\odot}} \right)^{-1/2}, \quad (28)$$

where a is the semimajor axis. For $5 M_{\odot}$, Table 1 gives $\langle r_{\text{in}} \rangle_{\text{MS}} = 26.7$ AU and $\langle r_{\text{out}} \rangle_{\text{MS}} = 45.8$ AU. Taking a characteristic separation $a_{\text{mid}} \equiv (\langle r_{\text{in}} \rangle \langle r_{\text{out}} \rangle)^{1/2} \approx 35$ AU yields $P \simeq 92$ yr. The effect is even more extreme at higher mass. In our fiducial $15 M_{\odot}$ model the MS annulus vanishes, and the remaining post-MS window lies at $\langle r_{\text{in}} \rangle_{\text{post}} = 269$ AU to $\langle r_{\text{out}} \rangle_{\text{post}} = 462$ AU, implying $a_{\text{mid}} \approx 3.5 \times 10^2$ AU and $P \simeq 1.7 \times 10^3$ yr.

These periods are simply incompatible with the cadence and duration of transit missions. *TESS* typically monitors a field for ~ 27 days (with longer coverage only near the continuous viewing zones), and *Kepler*- and *PLATO*-class surveys extend this to only a few years (e.g., G. R. Ricker et al. 2015; W. J. Borucki et al. 2010; H. Rauer et al. 2014). Multi-transit confirmation is therefore out of reach. Even a single-transit detection is strongly suppressed when $P \gg T_{\text{obs}}$, because one must both align the orbit and “catch” the transit in the observing window:

$$p_{1\text{tr}} \sim \left(\frac{R_{\star}}{a} \right) \left(\frac{T_{\text{obs}}}{P} \right). \quad (29)$$

For the $5 M_{\odot}$ case, adopting an illustrative MS radius $R_{\star} \sim 3R_{\odot}$ and a generous $T_{\text{obs}} = 4$ yr gives $p_{1\text{tr}} \sim 2 \times 10^{-5}$. A single *TESS* sector reduces this further by ~ 27 d/4 yr $\approx 1/54$. Finally, the signal itself becomes smaller as stars get larger: for terrestrial planets, $\delta \approx (R_p/R_{\star})^2 \approx 84$ ppm $(R_{\star}/R_{\odot})^{-2}$, placing Earth-analogue depths at a few ppm on the MS and well below 1 ppm for post-MS radii. In practice, variability in hot, massive stars only strengthens this conclusion. Taken together, these scalings imply that transits are not a practical discovery channel for temperate terrestrial planets in the massive star HZs predicted by our model.

4.3. Direct detection at tens- 10^3 AU: separation is favorable, contrast is not

Wide HZ orbits are a mixed case for direct detection. On the sky, they are easy to separate: $\theta \simeq a/d$ gives $\theta \simeq 0''.35$ for $a \simeq 35$ AU at $d = 100$ pc, and $\theta \simeq 3''.5$ for $a \simeq 350$ AU. The challenge is not resolving the planet, but collecting enough photons against the glare of the host.

889 In reflected light, the planet/star flux ratio at phase
 890 angle α can be summarized by

891

$$C_{\text{ref}} \sim A_g \Phi(\alpha) \left(\frac{R_p}{a} \right)^2, \quad (30)$$

892 so moving the HZ outward rapidly drives the contrast
 893 down as a^{-2} . For an Earth analogue with $A_g \Phi \simeq 0.1$,
 894 we find $C_{\text{ref}} \sim 1.5 \times 10^{-13}$ at $a \simeq 35$ AU and $C_{\text{ref}} \sim$
 895 1.5×10^{-15} at $a \simeq 350$ AU. These levels sit orders of mag-
 896 nitude below the $\sim 10^{-10}$ contrast scale typically associ-
 897 ated with reflected-light exoEarth imaging requirements
 898 of coronographs (e.g., M. W. McElwain et al. 2025). This
 899 steep penalty is the direct-imaging counterpart of the
 900 basic climate scaling: because the HZ expands roughly
 901 as $r \propto \sqrt{L_*}$, it quickly moves into a regime where
 902 reflected-light detection of temperate terrestrial planets
 903 becomes prohibitive. However, one can search for HZ
 904 around massive stars with a few solar masses.

905 Thermal emission in the mid-infrared avoids the ex-
 906 plicit a^{-2} suppression, but it trades contrast for sen-
 907 sitivity. A $T \sim 300$ K, R_\oplus planet is intrinsically faint,
 908 and massive stars are rare enough that promising targets
 909 tend to be farther away. This is precisely the motivation
 910 for MIR interferometry concepts (e.g., S. P. Quanz et al.
 911 2022; E. Alei et al. 2022). Moreover, for $M_* \gtrsim 15 M_\odot$
 912 the habitable window in our grid is post-MS (Table 1).
 913 Any thermal-IR assessment should therefore use track-
 914 derived $R_*(t_*)$ and $T_{\text{eff}}(t_*)$ evaluated at the representa-
 915 tive epoch defined in section 2.3.

916 **4.4. How detectability scales with stellar mass:**
 917 *Sun-like hosts versus 5, 10, and 15 M_\odot*

918 Around Sun-like stars, the classic picture holds: AU-
 919 scale HZ orbits yield $P \sim 1$ yr, transit probabilities of
 920 order $p_{\text{tr}} \sim R_*/a \sim 5 \times 10^{-3}$, and Earth-analogue depths
 921 of $\delta \sim 84$ ppm. In reflected light, these systems define
 922 the familiar exoEarth benchmark $C_{\text{ref}} \sim 10^{-10}$. In our
 923 rotating grid, increasing stellar mass primarily pushes
 924 the HZ outward (Table 1). That single shift drives the
 925 two key detection penalties at once: periods grow as
 926 $P \propto a^{3/2}$, while reflected-light contrast falls as $C_{\text{ref}} \propto$
 927 a^{-2} .

928 For $5 M_\odot$, the MS HZ spans ~ 27 – 46 AU, so $P \simeq 92$ yr
 929 and $C_{\text{ref}} \sim 10^{-13}$ at $a \sim 35$ AU. The $\sim 10 M_\odot$ regime
 930 lies near a sharp transition in our grid. At $9 M_\odot$ the MS
 931 HZ spans ~ 74 – 127 AU, implying $P \simeq 3 \times 10^2$ yr and
 932 $C_{\text{ref}} \sim \text{few} \times 10^{-14}$ at $a \sim 10^2$ AU. By $12 M_\odot$ the MS
 933 annulus is both brief ($\Delta t_{\text{HZ,MS}} = 1.15$ Myr) and nar-
 934 row ($\langle r_{\text{in}} \rangle_{\text{MS}} \simeq 256$ AU, $\langle r_{\text{out}} \rangle_{\text{MS}} \simeq 263$ AU), pushing
 935 characteristic periods to $P \sim 10^3$ yr. At $15 M_\odot$ the MS
 936 HZ disappears entirely. Habitability is then confined
 937 to a short post-MS episode ($\Delta t_{\text{HZ,post}} = 1.49$ Myr) at
 938 ~ 269 – 462 AU, where $P \simeq 1.7 \times 10^3$ yr and $C_{\text{ref}} \sim 10^{-15}$.

939 The message is therefore not subtle: once the HZ
 940 moves to tens hundreds of AU, transits lose their lever-
 941 age and reflected light imaging runs out of contrast. In
 942 our grid, the highest-mass cases also shift habitability
 943 to brief post-MS windows, which further motivates long
 944 wavelength direct detection approaches if such planets
 945 exist in nature.

946 **5. SUMMARY AND CONCLUSION**

947 Massive stars dominate the radiative output of young
 948 stellar populations, but their winds and high-energy
 949 emission also push temperate climates to wide or-
 950 bits where atmospheric retention is difficult. This
 951 paper quantifies where these two tendencies balance
 952 for Earth analogues at solar metallicity. We coupled
 953 GENEC evolutionary tracks to climate boundaries and
 954 to atmospheric-retention limits, and we defined an op-
 955 erational habitable annulus using $r_{\text{out}} = r_{\text{out,clim}}$ and
 956 $r_{\text{in,op}} = \max(r_{\text{in,clim}}, r_{\text{wind}}, r_{\text{XUV}})$.

957 We then characterized habitability in three comple-
 958 mentary ways, the total time an annulus exists, the
 959 longest continuous residence time at any fixed orbit, and
 960 the maximum number of dynamically packed Earth ana-
 961 logues that can fit inside the annulus under two plausible
 962 orbit-availability prescriptions. Finally, we folded these
 963 results through Milky-Way-like IMFs to estimate the in-
 964 stantaneous Galactic inventory of Earth analogues that
 965 satisfy the adopted climate and retention filters. The
 966 principal results are as follows:

- 967 *1. A sharp main-sequence ceiling appears near $\sim 10 M_\odot$.* At $9 M_\odot$ an operational MS annulus per-
 968 sists for $\Delta t_{\text{HZ,MS}} = 31.06$ Myr with character-
 969 istic radii ~ 74 – 127 AU, while by $12 M_\odot$ it be-
 970 comes a brief and extremely narrow episode with
 971 $\Delta t_{\text{HZ,MS}} = 1.15$ Myr and $\langle r_{\text{in}} \rangle_{\text{MS}} \simeq 256$ AU and
 972 $\langle r_{\text{out}} \rangle_{\text{MS}} \simeq 263$ AU. By $15 M_\odot$ no MS operational
 973 annulus remains in our grid.
- 975 *2. Post-MS habitability survives to higher masses, but*
 976 *it is intrinsically short and wide-orbit.* At $15 M_\odot$
 977 the post-MS window lasts $\Delta t_{\text{HZ,post}} = 1.49$ Myr
 978 and lies at ~ 269 – 462 AU. At $25 M_\odot$ it con-
 979 tracts to $\Delta t_{\text{HZ,post}} = 0.215$ Myr at ~ 499 – 856
 980 AU. A residual window persists at $32 M_\odot$ for only
 981 $\Delta t_{\text{HZ,post}} = 0.036$ Myr at $\sim 10^3$ AU scales, and it
 982 vanishes by $40 M_\odot$ in our models.
- 983 *3. Residence time is the limiting factor.* In the transi-
 984 tion regime, the HZ can exist yet migrate outward
 985 too quickly for sustained habitability at any fixed
 986 orbit. The $12 M_\odot$ track demonstrates this: a finite
 987 MS existence time, but a longest contiguous MS
 988 residence time below ~ 1 Myr.

989 4. *Multiplicity is robust at low mass and collapses at*
 990 *high mass, and uncertainties in wide-orbit avail-*
 991 *ability mainly reshape a negligible tail.* The max-
 992 *imum packed multiplicity remains near-constant*
 993 *through $\sim 9 M_{\odot}$ but it falls sharply once the op-*
 994 *erational band becomes narrow and fast-moving,*
 995 *and it vanishes on the MS by $\geq 15 M_{\odot}$.* Al-
 996 *ternative assumptions about the availability of*
 997 *very wide orbits change the high-mass contribu-*
 998 *tion modestly, but they do not alter the mass rank-*
 999 *ing because the relevant windows are short and*
 1000 *rare.*

1001 5. *The Milky-Way inventory is set by low-mass hosts,*
 1002 *while massive stars contribute a negligible frac-*
 1003 *tion but a large absolute number.* For $M_{\star} =$
 1004 $1.9 M_{\odot} \text{ yr}^{-1}$ and an effective Earth-analogue oc-
 1005 *currence factor $\eta_{\oplus} = 0.1$, we obtain an instant-*
 1006 *aneous inventory of $N_{\text{HZ,MW}}(M_{\text{ini}} \geq 0.8 M_{\odot}) \simeq$*
 1007 $(2.4\text{--}2.8) \times 10^9$ Earth analogues satisfying our cri-
 1008 *teria. Across our bracketing assumptions we find*
 1009 $f_{\geq 8} \sim (0.6\text{--}1.3) \times 10^{-4}$, which implies $N_{\text{HZ,MW}}(\geq$
 1010 $8 M_{\odot}) \simeq (1.5\text{--}3.5) \times 10^5$ and a net change of only
 1011 $\Delta N/N \sim 10^{-4}$ even though the absolute incre-
 1012 *ment is of order a few 10^5 worlds at any instant.*

1013 Across all of these metrics, the controlling failure
 1014 mode at high mass is the loss of scale separation between
 1015 the inner and outer edges, because $r_{\text{in,op}}(t)$ steepens and
 1016 becomes more time-variable with stellar mass until the
 1017 inequality $r_{\text{in,op}}(t) < r_{\text{out,clim}}(t)$ is satisfied only inter-
 1018 *mittently and for rapidly sweeping, geometrically thin*
 1019 *bands.*

1020 Detectability reflects the same geometry rather than
 1021 the same demographics. The large separations help an-
 1022 gular resolution, but they impose extreme period and
 1023 reflected-light penalties, with $C_{\text{ref}} \sim 1.5 \times 10^{-13}$ at

1024 $a \simeq 35 \text{ AU}$ and $C_{\text{ref}} \sim 1.5 \times 10^{-15}$ at $a \simeq 350 \text{ AU}$
 1025 for an Earth analogue.

1026 In the follow-up work, we plan to venture from a
 1027 Milky-Way snapshot to a cosmic history and to test
 1028 whether the same operational ceiling persists when stel-
 1029 lar populations change. Applying the framework to
 1030 metal-poor tracks with evolving IMFs and cosmic star-
 1031 formation histories will let us ask a sharp question, when
 1032 do long-lived operational annuli first become common
 1033 enough to matter, and does the answer shift in envi-
 1034 ronments where massive stars are more numerous. This
 1035 extension should be paired with planet models that de-
 1036 part from Earth analogues, because super-Earth grav-
 1037 ities, higher atmospheric masses, and different volatile
 1038 inventories can move the retention-limited inner edge
 1039 and may broaden the narrow transition regime around
 1040 $\sim 10\text{--}12 M_{\odot}$. The main physical uncertainty to tighten
 1041 is the time dependence of the high-energy and wind forc-
 1042 ing. A valuable test is to replace the adopted XUV and
 1043 wind prescriptions with empirically calibrated, track-
 1044 dependent histories and to propagate them through es-
 1045 cape models that include atmospheric chemistry and
 1046 magnetic protection. Finally, the wide-orbit regime
 1047 that dominates massive star HZ radii should be con-
 1048 fronted with formation and survival physics in OB en-
 1049 vironments, including disk truncation, external photoe-
 1050 vaporation, dynamical heating in clusters, and the role
 1051 of binarity, because these effects set whether the large-
 1052 separation annuli identified here can plausibly be popu-
 1053 lated by terrestrial planets.

ACKNOWLEDGMENTS

1054 DN was supported by the Swiss National Science Fund
 1055 (SNSF) Postdoctoral Fellowship, grant number: P500-
 1056 2235464. AL was supported in part by the Black Hole
 1057 Initiative at Harvard University, funded by grants from
 1058 JTF and GBMF, and by the Galileo Project.

REFERENCES

1060 Airapetian, V. S., Barnes, R., Cohen, O., et al. 2020,
 1061 *International Journal of Astrobiology*, 19, 136,
 1062 doi: [10.1017/S1473550419000132](https://doi.org/10.1017/S1473550419000132)

1063 Alei, E., Konrad, B. S., Angerhausen, D., et al. 2022,
 1064 *Astronomy & Astrophysics*, 665, A106,
 1065 doi: [10.1051/0004-6361/202243760](https://doi.org/10.1051/0004-6361/202243760)

1066 Andrews, S. M., Rosenfeld, K. A., Kraus, A. L., & Wilner,
 1067 D. J. 2013, *ApJ*, 771, 129,
 1068 doi: [10.1088/0004-637X/771/2/129](https://doi.org/10.1088/0004-637X/771/2/129)

1069 Borucki, W. J., Koch, D. G., Brown, T. M., et al. 2010,
 1070 *ApJL*, 713, L126, doi: [10.1088/2041-8205/713/2/L126](https://doi.org/10.1088/2041-8205/713/2/L126)

1071 Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, *A&A*,
 1072 530, A115, doi: [10.1051/0004-6361/201016113](https://doi.org/10.1051/0004-6361/201016113)

1073 Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, *ApJ*, 195,
 1074 157, doi: [10.1086/153315](https://doi.org/10.1086/153315)

1075 Chabrier, G. 2003, *PASP*, 115, 763, doi: [10.1086/376392](https://doi.org/10.1086/376392)

1076 Chambers, J. E., Wetherill, G. W., & Boss, A. P. 1996,
 1077 *Icarus*, 119, 261, doi: [10.1006/icar.1996.0019](https://doi.org/10.1006/icar.1996.0019)

1078 Chapman, S. 1931, Proceedings of the Physical Society, 43, 1127 Loeb, A. 2016, ApJL, 819, L21,
1079 26, doi: [10.1088/0959-5309/43/1/305](https://doi.org/10.1088/0959-5309/43/1/305) doi: [10.3847/2041-8205/819/2/L21](https://doi.org/10.3847/2041-8205/819/2/L21)

1080 Crowther, P. A. 2007, ARA&A, 45, 177, 1128 Lopez, B., Schneider, J., & Danchi, W. C. 2005, ApJ, 627,
1081 doi: [10.1146/annurev.astro.45.051806.110615](https://doi.org/10.1146/annurev.astro.45.051806.110615) 974, doi: [10.1086/430416](https://doi.org/10.1086/430416)

1082 Danchi, W. C., & Lopez, B. 2013, ApJ, 769, 27, 1131 Maeder, A. 1997, A&A, 321, 134

1083 doi: [10.1088/0004-637X/769/1/27](https://doi.org/10.1088/0004-637X/769/1/27) 1132 McElwain, M. W., Mawet, D., Ruffio, J.-B., et al. 2025,
1084 David, T. J., Contardo, G., Sandoval, A., et al. 2021, AJ, 1133 arXiv e-prints, arXiv:2510.02547,
1085 161, 265, doi: [10.3847/1538-3881/abf439](https://doi.org/10.3847/1538-3881/abf439) doi: [10.48550/arXiv.2510.02547](https://doi.org/10.48550/arXiv.2510.02547)

1086 Eggenberger, P., Meynet, G., Maeder, A., et al. 2008, 1135 Meynet, G., & Maeder, A. 2006, in Astronomical Society of
1087 Ap&SS, 316, 43, doi: [10.1007/s10509-007-9511-y">10.1007/s10509-007-9511-y">the Pacific Conference Series, Vol. 355, Stars with the
1088 Ekström, S., Georgy, C., Eggenberger, P., et al. 2012, B\[e\] Phenomenon, ed. M. Kraus & A. S. Miroshnichenko,
1089 A&A, 537, A146, doi: \[10.1051/0004-6361/201117751">27, doi: \\[10.48550/arXiv.astro-ph/0511269\\]\\(https://doi.org/10.48550/arXiv.astro-ph/0511269\\)\]\(https://doi.org/10.1051/0004-6361/201117751\)](https://doi.org/10.1007/s10509-007-9511-y)

1090 Forbes, J. C., & Loeb, A. 2018, MNRAS, 479, 171, 1139 Nandal, D., Regan, J. A., Woods, T. E., et al. 2023, A&A,
1091 doi: [10.1093/mnras/sty1433](https://doi.org/10.1093/mnras/sty1433) 677, A155, doi: [10.1051/0004-6361/202346938](https://doi.org/10.1051/0004-6361/202346938)

1092 Gilbert, E. A., Vanderburg, A., Rodriguez, J. E., et al. 1140 Nandal, D., Meynet, G., Ekström, S., et al. 2024, A&A,
1093 2023, ApJL, 944, L35, doi: [10.3847/2041-8213/acb599">684, A169, doi: \[10.1051/0004-6361/202346979\]\(https://doi.org/10.1051/0004-6361/202346979\)](https://doi.org/10.3847/2041-8213/acb599)

1094 Gladman, B. 1993, Icarus, 106, 247, 1141 Owen, J. E., Clarke, C. J., & Ercolano, B. 2012, MNRAS,
1095 doi: [10.1006/icar.1993.1169](https://doi.org/10.1006/icar.1993.1169) 422, 1880, doi: [10.1111/j.1365-2966.2011.20337.x](https://doi.org/10.1111/j.1365-2966.2011.20337.x)

1096 Grießmeier, J.-M., Stadelmann, A., Penz, T., et al. 2004, 1142 Parker, E. N. 1958, ApJ, 128, 664, doi: [10.1086/146579](https://doi.org/10.1086/146579)

1097 A&A, 425, 753, doi: [10.1051/0004-6361/20035684](https://doi.org/10.1051/0004-6361/20035684) 1143 Pezzotti, C., Buldgen, G., Magaudda, E., et al. 2025, A&A,
1098 Hart, M. H. 1979, Icarus, 37, 351, 694, A179, doi: [10.1051/0004-6361/202452580](https://doi.org/10.1051/0004-6361/202452580)

1099 doi: [10.1016/0019-1035\(79\)90141-6](https://doi.org/10.1016/0019-1035(79)90141-6) 1144 Puls, J., Vink, J. S., & Najarro, F. 2008, A&A Rv, 16, 209,
1100 Huang, S.-S. 1959, PASP, 71, 421, doi: [10.1086/127417](https://doi.org/10.1086/127417) doi: [10.1007/s00159-008-0015-8](https://doi.org/10.1007/s00159-008-0015-8)

1101 Huang, S.-S. 1960, PASP, 72, 489, doi: [10.1086/127586](https://doi.org/10.1086/127586) 1145 Quanz, S. P., Ottiger, M., Fontanet, E., et al. 2022, A&A,
1102 Johnstone, D., Hollenbach, D., & Bally, J. 1998, ApJ, 499, 664, A21, doi: [10.1051/0004-6361/202140366](https://doi.org/10.1051/0004-6361/202140366)

1103 758, doi: [10.1086/305658](https://doi.org/10.1086/305658) 1152 Ramirez, R. M., & Kaltenegger, L. 2016, ApJ, 823, 6,
1104 Kaltenegger, L., & Faherty, J. K. 2021, Nature, 594, 505, doi: [10.1038/s41586-021-03596-y](https://doi.org/10.1038/s41586-021-03596-y) doi: [10.3847/0004-637X/823/1/6](https://doi.org/10.3847/0004-637X/823/1/6)

1105 doi: [10.1088/2041-8205/736/2/L25](https://doi.org/10.1088/2041-8205/736/2/L25) 1153 Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimental
1106 Kaltenegger, L., & Sasselov, D. 2011, ApJL, 736, L25, 1154 Astronomy, 38, 249, doi: [10.1007/s10686-014-9383-4](https://doi.org/10.1007/s10686-014-9383-4)

1107 doi: [10.1088/2041-8205/736/2/L25](https://doi.org/10.1088/2041-8205/736/2/L25) 1155 Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015,
1108 Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, 1156 Journal of Astronomical Telescopes, Instruments, and
1109 Icarus, 101, 108, doi: [10.1006/icar.1993.1010](https://doi.org/10.1006/icar.1993.1010) 1157 Systems, 1, 014003, doi: [10.1117/1.JATIS.1.1.014003](https://doi.org/10.1117/1.JATIS.1.1.014003)

1110 Kopparapu, R. K. 2013, ApJL, 767, L8, 1158 Rushby, A. J., Claire, M. W., Osborn, H., & Watson, A. J.
1111 doi: [10.1088/2041-8205/767/1/L8](https://doi.org/10.1088/2041-8205/767/1/L8) 2013, Astrobiology, 13, 833, doi: [10.1089/ast.2012.0938](https://doi.org/10.1089/ast.2012.0938)

1112 Kopparapu, R. K., Ramirez, R. M., SchottelKotte, J., et al. 1159 Salpeter, E. E. 1955, ApJ, 121, 161, doi: [10.1086/145971](https://doi.org/10.1086/145971)

1113 2014, ApJL, 787, L29, doi: [10.1088/2041-8205/787/2/L29](https://doi.org/10.1088/2041-8205/787/2/L29) 1160 Selsis, F., Kasting, J. F., Levrad, B., et al. 2007, A&A,
1114 Kroupa, P. 2001, MNRAS, 322, 231, 476, 1373, doi: [10.1051/0004-6361:20078091](https://doi.org/10.1051/0004-6361:20078091)

1115 doi: [10.1046/j.1365-8711.2001.04022.x](https://doi.org/10.1046/j.1365-8711.2001.04022.x) 1161 Vidotto, A. A., Jardine, M., Morin, J., et al. 2013, A&A,
1116 Krumholz, M. R. 2014, PhR, 539, 49, 557, A67, doi: [10.1051/0004-6361/201321504](https://doi.org/10.1051/0004-6361/201321504)

1117 doi: [10.1016/j.physrep.2014.02.001](https://doi.org/10.1016/j.physrep.2014.02.001) 1162 Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001,
1118 Kudritzki, R. P. 2002, ApJ, 577, 389, doi: [10.1086/342178](https://doi.org/10.1086/342178) A&A, 369, 574, doi: [10.1051/0004-6361:20010127](https://doi.org/10.1051/0004-6361:20010127)

1119 Lammer, H., Selsis, F., Ribas, I., et al. 2003, ApJL, 598, 1163 Watson, A. J., Donahue, T. M., & Walker, J. C. G. 1981,
1120 L121, doi: [10.1086/380815](https://doi.org/10.1086/380815) Icarus, 48, 150, doi: [10.1016/0019-1035\(81\)90101-9](https://doi.org/10.1016/0019-1035(81)90101-9)

1121 Langer, N. 2012, ARA&A, 50, 107, 1164 Williams, J. P., & Cieza, L. A. 2011, ARA&A, 49, 67,
1122 doi: [10.1146/annurev-astro-081811-125534](https://doi.org/10.1146/annurev-astro-081811-125534) doi: [10.1146/annurev-astro-081710-102548](https://doi.org/10.1146/annurev-astro-081710-102548)

1123 Lecavelier Des Etangs, A. 2007, A&A, 461, 1185, 1165 Winter, A. J., Haworth, T. J., Coleman, G. A. L., &
1124 doi: [10.1051/0004-6361:20065014](https://doi.org/10.1051/0004-6361:20065014) 1166 Nayakshin, S. 2022, MNRAS, 515, 4287,
1125 Lingam, M., & Loeb, A. 2021, Life in the Cosmos: From 1167 doi: [10.1093/mnras/stac1564](https://doi.org/10.1093/mnras/stac1564)

1126 Biosignatures to Technosignatures 1168 Wu, D.-H., Zhang, R. C., Zhou, J.-L., & Steffen, J. H. 2019,
1169 MNRAS, 484, 1538, doi: [10.1093/mnras/stz054](https://doi.org/10.1093/mnras/stz054)

1177 Yang, J., Boué, G., Fabrycky, D. C., & Abbot, D. S. 2014, 1179 Zinnecker, H., & Yorke, H. W. 2007, *ARA&A*, 45, 481,
1178 ApJL, 787, L2, doi: [10.1088/2041-8205/787/1/L2](https://doi.org/10.1088/2041-8205/787/1/L2) 1180 doi: [10.1146/annurev.astro.44.051905.092549](https://doi.org/10.1146/annurev.astro.44.051905.092549)