
Spectrum (and other data) fitting 
 
We normally fit by minimizing a cost function, usually 2 :χ  
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where the ak are parameters (m of them in total), yi are measurements (e.g., the spectrum), 
xi are values of independent variable (e.g. wavelength or wavenumber), and σi are the 
uncertainties (1/σi

2 = weight). 

Linear case: F (xi ,a1,,am ) = ak X k (xi )
k=1
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∑ .  The Xk (xi )  are basis functions. They can be 

wildly nonlinear in xi (like a spectrum usually is): only the ak dependence is linear. They 
might be cross sections for different molecules, for example, making up a spectrum that 
is optically thin or that can be linearized using the Beer-Lambert condition. Then, 
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bi ≡ yi /σ i  and Aij ≡ X j (xi ) /σ i (m× n  matrix), then χ 2 = (b − Aa )2.  

at the minimum, ∂χ
2

∂a j
= 0, j =1,,m  

∂χ 2

∂a
= 0 = −2AT (b − Aa ), (AT A)a = ATb .  T denotes the transpose of the matrix. 

Our vector of parameters is thus a = (AT A)−1ATb .  
 

AT A  is usually called α ,α kj =
∂F (xi ,a )

∂a j

∂F (xi ,a )
∂aki

∑  

α  = ½ of the Hessian matrix (2nd derivatives of 2 )χ  
1 1( ) ,TA A Cα− −= ≡  the covariance matrix (of the standard errors). The uncertainty in 

each parameter is ( ) .j jj jka c cσ = gives the covariance among parameters. 

The correlation matrix .ij
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Minimum 2χ  gives a goodness of fit indicator, Γ n −m
2
, χ
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, 0 ≤ Γ ≤1. Γ is the 

probability that 2χ should exceed the fitted 2χ by chance (see Numerical Recipes for 
details). Rule of thumb: χ 2 ~ n −m is good. 
 
However, if the iσ are not known or trusted and the model is known to be good, one may 

use σ = RMS n
n −m

, RMS =
(yi − F (xi ,a ))
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.  If we do this, however, we cannot 

obtain an independent goodness of fit. 
 
Forms of spectral noise, signal-to-noise ratio (S/N) 
 
Horowitz and Hill, Chapter 7 has valuable 
discussions of noise types and sources. 
 
A Gaussian line, 
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where be is the half-width at 1/e intensity 
(hw1/e), to be compared later to the half-width 
at half maximum (HWHM) and the full-width at 
half maximum (FWHM). I prefer using hw1/e to describe Gaussians and HWHM for 
Lorentzian lineshapes (of which more later). 
 
Gaussians widths add in quadrature (when convolving): 2 2

1 2totalb b b= +  (Easy to show 
with the convolution theorem – try it!) 
 
Signal-to-noise-ratio, S/N 
 
Signal: The signal of a system increases linearly with power. Antenna temperature, TA: 
The signal (at a particular wavenumber, σ, or frequency, ν) is equivalent to the antenna 
being enclosed in a blackbody of temperature T. TA of a line is usually defined for the line 
center. 
 
Noise: We usually have (approximately) band-limited white Gaussian noise: 
• Equal power per Hz (or cm-1: a frequency unit) 
• Gaussian distribution (±) of amplitudes 
 



                            Measure at a given frequency: 

Gaussian description of noise: For noise, 

0 0, / 2n eb bσ = =  
bn = root-mean-square (RMS) noise = our noise for S/N purposes 
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Noise integrates up as t  (because Gaussians add in quadrature), while signal integrates 
up as t ⇒ S/N increases as t . 
 
Types of noise: 
 
1. Noise components from the instruments (detector noise, readout noise, electronic 

noise) will generally be independent of the spectral intensity. They are generally (to a 
reasonable degree of fidelity) described as Gaussian white noise. In radio physics and 
astronomy noise, squares of noise sources are often described as temperatures, which 
add linearly to give a noise system temperature: Remember that, in the Rayleigh-
Jeans limit, power is linearly proportional to temperature. Since noise increases 
as power , again because sources add in quadrature, noise temperature sources add 
linearly. 

 
2. A component to the whole system noise that is due to photon statistics, that is, to the 

fact that we are counting a discrete number of photons, N, is also proportional to N  
(proportional to t for linear integration). The S/N is thus proportional to 
/ .N N N=  Where the spectrum is larger (say, at the peak of an emission line), 

the noise will be larger than at the trough, but the S/N signal will be lower. The 
margin of error (1 standard deviation, although almost never stated) usually given in 
political polls is 1/ ,N where N is the number of persons polled. This can result in 



less popular candidates having possibly negative approval ratings or likely voters! 
See where the problem arises? 

 
The second noise source is described by Poisson statistics: Poisson statistics describes 
discrete events. From the Wikipedia: 
 
In probability theory and statistics, the Poisson distribution is a discrete probability 
distribution that expresses the probability of a number of events occurring in a fixed 
period of time if these events occur with a known average rate and independently of the 
time since the last event. The Poisson distribution can also be used for the number of 
events in other specified intervals such as distance, area or volume … The fluctuations 
about the mean value of events are denoted as Poisson noise or (particularly in 
electronics) as shot noise. 
 
A good noise generation program is often very useful. noise.f90 is available at the class 
website. You may want to generate a noise spectrum with this program and test it to see 
how Gaussian the amplitude distribution is. 
 
System temperature (Tsys) and noise temperature (TN) 
 
At low σ, 
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Tsys and TN are defined for 1 second integration time (∝ T×t-1/2). 
 
Nonlinear fitting 
 

In general, fitting is nonlinear: χ 2 = [yi − F (xi ,a )]
2
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n

∑  (suppress iσ for now; it can 

always be re-introduced). 
 
∂χ 2
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= −2 (yi − F (xi ,a ))
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= X j .  Otherwise, 

∂F (xi ,a )
∂a j

may be calculated analytically sometimes (e.g., with some Hamiltonians in 

spectroscopic analysis, and note LIDORT radiative transfer model, where Jacobian of the 
intensity field is determined analytically), but usually not. 

For convenience, βk ≡ − 1
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This shows one dimension of the n-dimensional 
minimization for j = 1, ⋅ ⋅ ⋅ , m. 
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                                                                                0            unstable 
 
Note that we are going to discard the 2nd order term before proceeding further. The 
justifications are that a solution involving first derivatives should be valid for fitting an 
arbitrary function near the 2χ minimum and that yi − F (xi ,a )  should be near zero (or 
average to near zero) near the minimum, and should average out for a precise model, thus 
allowing us to avoid the necessity to calculate second derivatives (and also to avoid the 
instabilities they can generate if there are significant outliers or if the model does not 
precisely fit the data – see Numerical Recipes for details). Also, Bevington and Robinson 
note that it is “convenient to use a first order approximation for fitting nonlinear 
functions.” 

Then, ∂2χ 2
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Consider how 2χ  will vary near the minimum 
for one of the set of parameters by expanding 
in a Taylor series about a point near the 
minimum: 

χ 2 = χ0
2 +

∂χ0
2

∂ai
δai +

1
2
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2
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At the minimum, 
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 and thus 2χ  is 

approximately a quadratic function in the 
parameter.  
 
Now expand 2χ  for all parameters in a 
Taylor series about a starting point 
2 2
0 (χ χ=  of the starting guess on parameters 
a ): 

χ 2 = χ0
2 +

∂χ0
2

∂a j
δa j

j
∑ + 1

2
∂2χ0

2

∂ak∂a j
δa jδak

j
∑

k
∑ +.  

At the minimum, the first derivatives are zero: 
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This is now analogous to our linear problem of before, now linearized in :aδ  
 
β = δaα , δa = βα −1.  (really 0 0,β α ) 

Again, C =α −1 = ∂2χ
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 (covariance of the standard errors, inverse of the Hessian of 

2χ ), the correlation matrix is /ij ii jjc c c  as before and the uncertainties of the parameters 

are given as ( ) ,j jja cσ δ =  but with some caveats (cf. Numerical Recipes), including the 
correlation among parameters, and departures from assumptions of normally-distributed 
(Gaussian) errors. 
 
Aside on correlated parameters 
 
The correlation matrix describes how entangled parameters are. Even with a “perfect” 
model, the fact that the measurements have noise will cause parameters to be correlated, 
particularly when they are physically related (e.g., for O3 versus height). Negative 
correlation (the most common type) means that an increase in parameter ai will be 
partially offset by a decrease in parameter aj. 
 
Consider a case where atmospheric ozone measurements are fitted to a model with 11 
layers, 3 in the troposphere (1-3) and 8 in the stratosphere (4-11). If ai and aj are adjacent 
parameters (or even if they are not adjacent) denoting ozone amounts, with uncertainties 

σi and σj, then ai + aj has uncertainty σ i+ j = σ i
2 +σ j

2 + 2corijσ iσ j
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,  where corij is the 

off-diagonal term of the (symmetric) correlation matrix. corij would normally be 
negative, so that the uncertainty for the sum of the ozone in the two layers would be less 
than the RSS of the corresponding layer uncertainties. To put it more simply, in terms of 
the covariance matrix, σ i+ j = [cii + c jj + 2cij ]

1/2.  
 
The uncertainty for the tropospheric ozone is 

σ trop = σ i
2 + corijσ iσ j
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The uncertainty for the stratospheric ozone is 
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The uncertainty for the total ozone is 

σ total = σ i
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Back to fitting: We showed a case where we started close enough to the multi-
dimensional minimum to solve by a linear expansion. We would be done except for the 
pesky problem of finding the minimum efficiently. Numerous methods, such as grid 
searches, etc., exist for doing so. For many nonlinear problems the Levenberg-Marquardt 
method is a standard and generally useful approach. It provides an elegant way to 
approach the solution (the minimum) quickly when the starting guess is far away and 
gently when the minimum is being approached. 
 
The Levenberg-Marquardt method 
 
If we are far from the solution we want to travel in the direction opposite the gradient 
(i.e., in the direction of the steepest descent). When we get near, we would like to switch 
over to moving along the curvature (as above), linearizing the solution. 

Gradient search: The gradient vector is ∇χ 2 = ∂χ 2

∂a j
â j ,

j=1

n

∑ â j = a unit vector in the 

direction of aj. Take a step in the direction of steepest descent, i.e., 2,χ−∇  then re-
calculate the gradient (perhaps using the Hessian to do so). 

Remember βk = − 1
2
∂χ 2

∂ak
,  so that kaδ (the step) = constant ×βk .  But what is the 

constant? How do we choose it? This is the clever part of the Levenberg-Marquardt 
method: kβ has dimension 1/ak, so the constant must have dimension 2 .ka  So far, only 

1/αkk has dimension 2 .ka  So, choose a step δak =
βk
λα kk

, or βk = λα kkδak . λ is an adjustable 

parameter introduced to modulate the kkα scale. The following change, employing an 
adjustable λ, allows us to vary continuously between a gradient search (steepest descent) 
and a linearized solution as the minimum is approached: 

Instead of β = δaα , choose β = δa ′α ,where ′α jk =
α jk (1+ λ), j = k

α jk , j ≠ k

⎧
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Largeλ ⇒ steepest descent (α is diagonally dominant) 
Smallλ ⇒ linearized (Newton’s method) 
 
The recipe: Start with 0.001λ = (for historical reasons) and starting parameters a . 
 

1. Compute 2( )aχ  
2. δa = β ( ′α )−1, compute 2( )a aχ δ+  
3. If χ 2 (a +δa) > χ 2 (a) ⇒ λ = λ ×10                                                                                    

If χ 2 (a +δa) < χ 2 (a) ⇒ λ = λ /10, a = a +δa  
 
Convergence: 

1. Preset minimum in 2χ  (sometimes referred to as the “only” way) 



2. Relative change in all parameters < preset 
3. Maximum iterations 

 
After convergence, set 0λ =  and calculate 1.C α−=  
 
A very nice version of a similar method, with lots of bells and whistles comes from 
CERN: elsunc.lc, elsunc.f90 (available on the website). 
 
Caveats: There can be local minima that confuse the solution and broad minima that 
make convergence slow. There are cases when parameters may be close to degenerate (as 
in the ozone case mentioned above) where parameters are strongly correlated and where 
the interplay among parameters slows conversion. 
 
More on retrieval theory 
 
Optimal estimation (and much other retrieval theory, see C. Rodgers references for 
details) is often derived in terms of: 
 
Weighting functions 

i
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j
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a
∂=
∂

 

The ijK  give a broad idea of information content. They show the part of the atmospheric 
profile (e.g.) that is represented by each measurement. Remember that 
χ 2 = (yi − F (xi ))
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i
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=∑  (in the linear case). Then, ( ).ij jK X i=  

 
Example: SBUV weighting functions 
• 10 spectral bands (albedo) 
• 1 total ozone construct 
 
Contribution functions 

Dy =
∂â
∂y
; Da =

∂â
∂a 0

  â ≡  final parameters; 0 :a a priori parameters 

These are sensitivities of the solution vector â  to the measurements (y) and the a priori 
information 0( ).a  They are normally calculated after the solution, to provide a 
diagnostic. 
 
Averaging kernels 

A = DyK = ∂â
dy

∂F
∂a

= ∂â
∂a
,  the way the solution changes, given changes in the atmosphere. 

“Each channel contributes in a complicated way to the overall retrieval.” 



 
Gives an estimate of the vertical resolution in the case of SBUV retrievals, for example. 
 
Compare with a δ-function or “bump” analysis. 
 
Often (as in the case of several instruments on the NASA EOS satellites) it has become 
common to use Twomey-Tikhonov/Phillips-Tikhonov regularization and do Optimal 
Estimation-type diagnostics at the end, i.e., yD  and A  at the linearization point. 
 
Why constrain the solution? (i.e., why do regularization?) Measurement noise may easily 
be amplified in the retrieval process – especially in the inversion of the α  (curvature) 
matrix: 
a = (AT A)−1ATb Aij = X j (xi ) /σ i

bi = yi /σ i

 at the linearization point. 

 
Twomey-Tikhonov regularization 
 
The linear solution from before was a = (AT A)−1ATb .  
It can be smoothed by a = (AT A+ γ H )−1ATb .  γ is an adjustable parameter, H is a square 
matrix (e.g., ).H I=  The purpose of introducing this smoothing contribution is to 
decrease noise sensitivity. Common choices: 
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This will smooth out differences in a  (zig-zagging of solution). 
 
Squared 2nd differences, (Δ2 fn )

2 = ( fn+2 − 2 fn+1 + fn )
2  is accomplished by 
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This smoothes “2nd derivatives” in the solution vector. 
 
Outline of several other important methods 
 
First, develop the matrix version of the cost function 

χ 2 =
yi − F (xi ,a )
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= (yi − F (xi ,a ))
T Sy

−1(yi − F (xi ,a )).  

 
yS  is the measurement error covariance matrix,   

Sy (i, j) =σ iσ j ,σ iσ j = 0, i ≠ j for 
uncorrelated uncertainties, a common assumption for measurements. 

  

∂χ 2
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= 0 = −2
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Optimal Estimation solution 
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We have added a vector of a priori parameters 0a  and their covariance 1.aS
−  Then, if 

there is no correlation among a priori values (index j) or measurements (index i), the 
covariance matrices are diagonal and 
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.  However, there usually is correlation. The a 

priori values are treated as data. They act to constrain the solution based upon what we 
know about the problem, e.g. ozone values from a climatology. The trick is to estimate 
,aS  which is to say, how confident are we about how well we know the a priori so that it 

can be appropriately weighted in the solution. A typical form for aS  is 

Sa (i,i) =σ a
2 (i); Sa (i, j) =σ a (i)σ a ( j)exp−

zi − z j
h
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, i ≠ j,  h is the correlation length. 



 
Then, proceed to develop about a linearization point – if the problem is nonlinear, 
estimate and then re-linearize as before. Upon taking a step in parameter space, say from 
ka  to 1,ka +  2χ  is re-evaluated as 

χ 2 = Sa
−1/2 (ak+1 − a

0 )
2

2
+ Sy

−1/2{Kk (ak+1 − ak ) − [y − F (x ,ak )]} 2
2
,  where the notation 

implies summing the squares of the diagonal elements. Upon convergence, the solution 

has covariance C = (Sa
−1 + KTSy

−1K )−1,  and χ 2 = Sa
−1/2 (a − a 0 )

2

2
+ Sy

−1/2[y − F (x ,a )]
2

2
.  

 
In more standard notation, for a step in parameter space 
 

χ 2 = Sa
−1/2 (ak+1 − a0 ) 2

2
+ Sy

−1/2{Kk (ak+1 − ak ) − [Y −F(ak )] 2
2
,  and, upon convergence, the 

solution has covariance C = (Sa
−1 +KTSy

−1K)−1,  and 

χ 2 = Sa
−1/2 (a− a0 ) 2

2
+ Sy

−1/2[Y −F(a)]
2

2
.  

 
Other methods: Onion-peeling, global fitting – for limb. 


