Spectrum (and other data) fitting

We normally fit by minimizing a cost function, usually y* :
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where the a; are parameters (m of them in total), y; are measurements (e.g., the spectrum),
x; are values of independent variable (e.g. wavelength or wavenumber), and o; are the
uncertainties (1/07 = weight).

Linear case: F'(x,a,-,a )= ZakX .(x,). The X, (x,) are basis functions. They can be
k=1
wildly nonlinear in x; (like a spectrum usually is): only the a; dependence is linear. They

might be cross sections for different molecules, for example, making up a spectrum that
is optically thin or that can be linearized using the Beer-Lambert condition. Then,

0F (x,,a)
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=X,(x,), (a isthe vector of the parameters)
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b=y, /0, and 4,=X (x)/0, (mxn matrix), then y° = (b — 4a)’.
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at the minimum, BZ =0,j=1L---,m
a.
J
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a;(_ =0=-2A4"(b - A4a), (4"A)a=A"b. T denotes the transpose of the matrix.
a

Our vector of parameters is thus @ = (4" 4)"'4"b.

: OF (x.,a) OF (x,,a)
A" 4 is usually called @, ot = i i
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o = ' of the Hessian matrix (2™ derivatives of )
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o' =(A" A)" = C, the covariance matrix (of the standard errors). The uncertainty in
each parameter is o(a,) =,/c;. ¢, gives the covariance among parameters.

G

CiCj

The correlation matrix =
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Minimum ;(2 gives a goodness of fit indicator, F[%,%), 0<I'<1. Tisthe

probability that yshould exceed the fitted y°by chance (see Numerical Recipes for
details). Rule of thumb: y* ~n—mis good.
However, if the o, are not known or trusted and the model is known to be good, one may

use o = RMS "

i (y,— F(x,a))’

n—m n

1/2
, RMS :{ } . If we do this, however, we cannot

i=1
obtain an independent goodness of fit.

Forms of spectral noise, signal-to-noise ratio (S/N)

Horowitz and Hill, Chapter 7 has valuable
discussions of noise types and sources.

A Gaussian line, HWHM
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where b, 1s the half-width at 1/e intensity

(hwl/e), to be compared later to the half~width
at half maximum (HWHM) and the full-width at
half maximum (FWHM). 1 prefer using hwl/e to describe Gaussians and HWHM for
Lorentzian lineshapes (of which more later).

Gaussians widths add in quadrature (when convolving): b, = b’ +b,” (Easy to show

with the convolution theorem — try it/)
Signal-to-noise-ratio, S/N

Signal: The signal of a system increases linearly with power. Antenna temperature, 74:
The signal (at a particular wavenumber, G, or frequency, V) is equivalent to the antenna
being enclosed in a blackbody of temperature 7. 74 of a line is usually defined for the line
center.

Noise: We usually have (approximately) band-limited white Gaussian noise:
e Equal power per Hz (or cm™: a frequency unit)
e Gaussian distribution (x) of amplitudes



Measure at a given frequency:

Probability

0 Amplitude ——

0

timelike ——»

Amplitude ———

Gaussian description of noise: For noise,
0,=0,b, =b /2

b, = root-mean-square (RMS) noise = our noise for S/N purposes

-1/2 2
Probability of amplitude A4, P, = (272) exp_{zzz 2}

Noise integrates up as Ji (because Gaussians add in quadrature), while signal integrates

n

up as t = S/N increases as Jt
Types of noise:

1. Noise components from the instruments (detector noise, readout noise, electronic
noise) will generally be independent of the spectral intensity. They are generally (to a
reasonable degree of fidelity) described as Gaussian white noise. In radio physics and
astronomy noise, squares of noise sources are often described as temperatures, which
add linearly to give a noise system temperature: Remember that, in the Rayleigh-
Jeans limit, power is linearly proportional to temperature. Since noise increases

as \/power , again because sources add in quadrature, noise temperature sources add
linearly.

2. A component to the whole system noise that is due to photon statistics, that is, to the
fact that we are counting a discrete number of photons, , is also proportional to JN
(proportional to ¢ for linear integration). The S/N is thus proportional to
N /N =+/N. Where the spectrum is larger (say, at the peak of an emission line),

the noise will be larger than at the trough, but the S/N signal will be lower. The
margin of error (1 standard deviation, although almost never stated) usually given in

political polls is 1/ JN ,where N is the number of persons polled. This can result in



less popular candidates having possibly negative approval ratings or likely voters!
See where the problem arises?

The second noise source is described by Poisson statistics: Poisson statistics describes
discrete events. From the Wikipedia:

In probability theory and statistics, the Poisson distribution is a discrete probability
distribution that expresses the probability of a number of events occurring in a fixed
period of time if these events occur with a known average rate and independently of the
time since the last event. The Poisson distribution can also be used for the number of
events in other specified intervals such as distance, area or volume ... The fluctuations
about the mean value of events are denoted as Poisson noise or (particularly in
electronics) as shot noise.

A good noise generation program is often very useful. noise.f90 is available at the class
website. You may want to generate a noise spectrum with this program and test it to see
how Gaussian the amplitude distribution is.

System temperature (7,) and noise temperature (7y)

At low o,

2 3
R(0,) = % 27kTceo® = Rayleigh-Jeans (RJ) limit.

(27he® =3.74177118x10™; 27tke = 2.6006643x10™)

T§,s and Ty are defined for 1 second integration time (o< Txt" 2).

Nonlinear fitting

In general, fitting is nonlinear: y° = 2[ y,—F(x.,a )] (suppress o, for now; it can
i=1
always be re-introduced).

oF (x,, ) oF (x,,a .
o = —22( —F(x, ))M =0, j=1,---m. If linear, M = X . Otherwise,
da, da, da, /
OF (x.,a) . . . e
a—’ may be calculated analytically sometimes (e.g., with some Hamiltonians in
a,.
J

spectroscopic analysis, and note LIDORT radiative transfer model, where Jacobian of the
intensity field is determined analytically), but usually not.

L3 5, P,y L)

, and also (for later use)
2da, I

k
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i j k \ajak
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Note that we are going to discard the 2™ order term before proceeding further. The
justifications are that a solution involving first derivatives should be valid for fitting an

arbitrary function near the y”minimum and that yi — F (x,,@) should be near zero (or

average to near zero) near the minimum, and should average out for a precise model, thus
allowing us to avoid the necessity to calculate second derivatives (and also to avoid the
instabilities they can generate if there are significant outliers or if the model does not
precisely fit the data — see Numerical Recipes for details). Also, Bevington and Robinson
note that it is “convenient to use a first order approximation for fitting nonlinear
functions.”
2,.,2

Then, X = 22

aajaak

OF (x,,@) OF (x,,a)
da da

i Jj k
OF (x,,@) OF (x,,a) 1 9y’
As before, 05=2 ) 9a :Eaa da.
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i j k

= the Hessian matrix

Consider how y* will vary near the minimum

for one of the set of parameters by expanding
in a Taylor series about a point near the
minimum:

9% 19°%,
+=24 19 2% da’
X =2 da, “ 2 da’ “ ,Iz
2
At the minimum, BL =0, and thus #° is
a,

1

approximately a quadratic function in the
parameter.

a —

Now expand y* for all parameters in a

Taylor series about a starting point This shows one dimension of the n-dimensional
5 5 . minimization forj=1,---, m.
X, (= x~ of the starting guess on parameters
a):
% ZO+Z 7505 22 1, Sa Sa, +--
a, da, Ba /

At the minimum, the first derlvatlves are zero:

o :a"§+z %, Sa,=0,k=1,
d(6a,) da, da, E)a




This is now analogous to our linear problem of before, now linearized in da :

B=éaca, 6a=Pa. (really §,c)

Iy B

Again, C=qa'
8 - aakaaj

(covariance of the standard errors, inverse of the Hessian of

1), the correlation matrix is ¢;/yJc;c; as before and the uncertainties of the parameters

are given as o(da ;) =,/c;;» but with some caveats (cf. Numerical Recipes), including the

correlation among parameters, and departures from assumptions of normally-distributed
(Gaussian) errors.

Aside on correlated parameters

The correlation matrix describes how entangled parameters are. Even with a “perfect”
model, the fact that the measurements have noise will cause parameters to be correlated,
particularly when they are physically related (e.g., for Oz versus height). Negative
correlation (the most common type) means that an increase in parameter a; will be
partially offset by a decrease in parameter a;.

Consider a case where atmospheric ozone measurements are fitted to a model with 11
layers, 3 in the troposphere (1-3) and 8 in the stratosphere (4-11). If a; and a; are adjacent
parameters (or even if they are not adjacent) denoting ozone amounts, with uncertainties

1/2
oi and 0j, then a; + a; has uncertainty o, , = [O_iz + Gj + 2c0r1j0'l.0'j} , wWhere cor;; is the

off-diagonal term of the (symmetric) correlation matrix. cor;; would normally be
negative, so that the uncertainty for the sum of the ozone in the two layers would be less

than the RSS of the corresponding layer uncertainties. To put it more simply, in terms of

the covariance matrix, o, =[c, + ¢+ 2c. ]” :

The uncertainty for the tropospheric ozone is

n=1 n 172
O o {ZO' +22€0r0‘0‘} ,n=3.

i=1 j=i+l

The uncertainty for the stratospheric ozone is

1/2
strat_|:zo- +ZZCOI:/O-I‘O-]':| ’n:11

i=4 j=i+l

The uncertainty for the total ozone is

1/2
O total [20 +chor,,0i0j} ,n=11.

i=1 j=i+l



Back to fitting: We showed a case where we started close enough to the multi-
dimensional minimum to solve by a linear expansion. We would be done except for the
pesky problem of finding the minimum efficiently. Numerous methods, such as grid
searches, efc., exist for doing so. For many nonlinear problems the Levenberg-Marquardt
method is a standard and generally useful approach. It provides an elegant way to
approach the solution (the minimum) quickly when the starting guess is far away and
gently when the minimum is being approached.

The Levenberg-Marquardt method

If we are far from the solution we want to travel in the direction opposite the gradient
(i.e., in the direction of the steepest descent). When we get near, we would like to switch
over to moving along the curvature (as above), linearizing the solution.

. : : S0yt . . : .
Gradient search: The gradient vector is Vy’ = 2 BZ a, a,=aunitvector in the

Jj=1 a j ‘

direction of a;. Take a step in the direction of steepest descent, i.e., =V y°, then re-
calculate the gradient (perhaps using the Hessian to do so).

2
Remember B, = —% ?)Z
a

k

, so that Jq, (the step) = constant x3,. But what is the

constant? How do we choose it? This is the clever part of the Levenberg-Marquardt
method: /3, has dimension 1/ay, so the constant must have dimension a,f. So far, only

k

1/044 has dimensiona; . So, choose a step 8a, = ,or 8 =Aa, da,.Ais an adjustable

kk
parameter introduced to modulate the ¢, scale. The following change, employing an

adjustable A, allows us to vary continuously between a gradient search (steepest descent)
and a linearized solution as the minimum is approached:

o, (1+A), j=k

P j#*k

Instead of B =daa,choose B =dac’, where o, ={

Large A = steepest descent (¢ is diagonally dominant)
Small A = linearized (Newton’s method)

The recipe: Start with 4 =0.001(for historical reasons) and starting parameters a .

1. Compute y°(@)
2. éa=p(@)",compute y*(a+da)
3. If y*(a+8a)> y’(a) = A=Ax10
If y’(a+8a)< y’(a) = A=21/10,a=a+da

Convergence:
1. Preset minimum in x> (sometimes referred to as the “only” way)



2. Relative change in all parameters < preset
3. Maximum iterations

After convergence, set A =0 and calculate C=¢'.

A very nice version of a similar method, with lots of bells and whistles comes from
CERN: elsunc.lc, elsunc.f90 (available on the website).

Caveats: There can be local minima that confuse the solution and broad minima that
make convergence slow. There are cases when parameters may be close to degenerate (as
in the ozone case mentioned above) where parameters are strongly correlated and where
the interplay among parameters slows conversion.

More on retrieval theory

Optimal estimation (and much other retrieval theory, see C. Rodgers references for
details) is often derived in terms of:

Weighting functions
_9F,
;==
da,

The K give a broad idea of information content. They show the part of the atmospheric

profile (e.g.) that is represented by each measurement. Remember that

X =20, Fx)),

F(x,)= Zaka ({) (in the linear case). Then, K, = X (7).

k=1

Example: SBUV weighting functions
e 10 spectral bands (albedo)
e | total ozone construct

Contribution functions
D = %; D = ﬁ

. A 1/
These are sensitivities of the solution vector a to the measurements (y) and the a priori
information (z°). They are normally calculated affer the solution, to provide a
diagnostic.

a = final parameters; a° :a priori parameters

Averaging kernels

A=D K = a_aa_F = a—a, the way the solution changes, given changes in the atmosphere.
7 dy da da

“Each channel contributes in a complicated way to the overall retrieval.”



Gives an estimate of the vertical resolution in the case of SBUV retrievals, for example.
Compare with a d-function or “bump” analysis.

Often (as in the case of several instruments on the NASA EOS satellites) it has become
common to use Twomey-Tikhonov/Phillips-Tikhonov regularization and do Optimal
Estimation-type diagnostics at the end, i.e., D, and 4 at the linearization point.

Why constrain the solution? (i.e., why do regularization?) Measurement noise may easily
be amplified in the retrieval process — especially in the inversion of the & (curvature)

matrix:
a=(4"4)"'4"b 4,=X (x)/0,

1

at the linearization point.
bi =i / o,

Twomey-Tikhonov regularization

The linear solution from before was @ =(4"4)" 4"b.
It can be smoothed by @ = (4" 4+yH) ' A"b. yis an adjustable parameter, H is a square
matrix (e.g., H = I). The purpose of introducing this smoothing contribution is to

decrease noise sensitivity. Common choices:
Squared 1* differences, (f,,, — f,)’,is accomplished by

I -1
-1 2 -1
-1 2 g
g & 8
H= g 8 8
g & 8
g 2 -1
-1 2 -1
-1 1

This will smooth out differences in @ (zig-zagging of solution).

Squared 2" differences, (A*f)* =(f.,,—2f,,,+f,)" is accomplished by



1 =2 1 ]
2 5 —4 1
1 4 6 g
1 g g g
H= g 8 8
g g g |1
g 6 —4 1
1 4 5 =2
1 2 1

“2nd

This smoothes derivatives” in the solution vector.

Outline of several other important methods

First, develop the matrix version of the cost function

I Z{ o a)} =, = Fx,@)' 8, (3, F(x,,@).

S, is the measurement error covariance matrix, §y(i, Jj)= 00,,00,= 0,i# jfor

uncorrelated uncertainties, a common assumption for measurements.

/A 2[M} S ' (y,— F(x,,a)).
oa Jda l l

Optimal Estimation solution

[—aF(’ﬁ’“_)} §-l(y4—F(x,,&)):Oz[—aF(x_f’“_)} S (y,— F(x,a))+ S (@-a") =0.
oa ot l oa Y l ’

We have added a vector of a priori parameters a° and their covariance S'. Then, if

there is no correlation among a priori values (index j) or measurements (index i), the
covariance matrices are diagonal and

F
x’ 2( “ ] + Z[yT(x”a)j However, there usually is correlation. The a

l

priori values are treated as data. They act to constrain the solution based upon what we
know about the problem, e.g. ozone values from a climatology. The trick is to estimate
S, which is to say, how confident are we about how well we know the a priori so that it

can be appropriately weighted in the solution. A typical form for S, is

2
S (i,i)= O'j(i); S (i,))= O'H(i)O'a(j)eXp—l: i P "} ,1# J, his the correlation length.




Then, proceed to develop about a linearization point — if the problem is nonlinear,
estimate and then re-linearize as before. Upon taking a step in parameter space, say from
a, to a,,,, y isre-evaluated as

2

2 —
7 =[s" @, -2 +[s, "k @, -a) -1 - F=.a)

implies summing the squares of the diagonal elements. Upon convergence, the solution

, Where the notation

2
2

has covariance C = (§;1 + KTS;IK)_I, and )(2 = Hga‘”(a - ﬁo)Hz + Hg}j”[y - F()?,Fl)]”j.

In more standard notation, for a step in parameter space

2

%:

solution has covariance C = (S;1 + KTS;lK)_l, and

2 2
S;l/z (a,, — aO)H2 + HS;”2 {K, (a, —a)-[Y-F(a)] . and, upon convergence, the

2

%:

S-"(a- ao)Hz +[s; 7y - F(a)]Hz .

Other methods: Onion-peeling, global fitting — for limb.



