
14. Introduction to nuclear spin and electron spin 
 
Fuller treatment can be found in a standard statistical mechanics reference. I use 
Davidson Statistical Mechanics, which is now very old, but still excellent. Also, Bernath, 
Sections 7.2 and 9.4. 
 
Definitions 
Nuclear spin I = integral: Bosons; they obey Bose-Einstein statistics 
Nuclear spin I = half-integral: Fermions; they obey Fermi-Dirac statistics 
 
The total wave function  must be either symmetric or 
antisymmetric with respect to the interchange of the 
coordinates of the two identical (in type and molecular 
location) nuclei, for bosons (integral nuclear spin, I) or 
fermions (half-integral nuclear spin), respectively. This is a 
consequence of the Pauli exclusion principle, which states 
that two fermions may not simultaneously occupy the same 
quantum state. Bosons may, leading to some interesting 
physical consequences (neutron stars, Bose-Einstein 
condensates – BECs). Half-integral spin values were 
discovered, accidentally, in 1922 by Stern and Gerlach during magnetic deflection 
studies of a beam of (nuclear spin ½) silver atoms. 
 
Bosons: PAB = + 
Fermions: PAB = -, 
 
Where PAB is the permutation operator and  is the wave function, which is the product 
of an electronic, a vibrational, a rotational, and a nuclear spin wave function: 
 
 .elect vib rot spin       

 
elect is symmetric with respect to the permutation for the electronic ground state of H2 

(the more usual case); vib is symmetric (always), and rot are symmetric with respect to 
permutation of A and B for even J and asymmetric for odd J. 
 
For H2, where the nuclei (protons) A and B have spins of I = 1/2 (and are thus fermions), 
the two possible spin wave functions for each proton may be called  and , where  (A) 
is the state where proton A has angular momentum +1/2 (in units of  ) along the axis of 
quantization (the internuclear axis), and  (A) has angular momentum -1/2 along the axis. 
Possible nuclear spin wave functions for the molecule are: 
 

(A)(B) 
(A)(B) 
[(A)(B) + (A)(B)]/2 
[(A)(B) - (A)(B)]/2 

Nucleus Spin 
(I) 

H ½ 
D (=2H) 1 
14N 1 
12C 0 
16O 0 
35Cl 3/2 
37Cl 3/2 



 
The first three are symmetric with respect to permutation of A and B and the last one 
asymmetric with respect to permutation of A and B. To make PAB = -, required for 
fermions, asymmetric nuclear spin wave functions (1-fold degenerate) may only go with 
symmetric rotational wave functions (even J). Conversely, symmetric nuclear spin wave 
functions (3-fold degenerate) may only go with asymmetric rotational wave functions 
(odd J). 
 
The states of higher spin degeneracy are called ortho states, and those of lower spin 
degeneracy are called para states. Thus for H2, the nuclear spin degeneracies are: 
 

gN = 1 for even J (para) 
gN = 3 for odd J (ortho). 

 
For homonuclear diatomics in general, both bosons and fermions, the ortho/para ratio is 
(I+1)/I. When PABelect = +elect (the more usual case), this is the ratio of even J to odd J 
spin degeneracies for bosons and of odd J to even J spin degeneracies for fermions. Thus 
14N2 (I = 1) has gN = 2, J even and gN = 1, J odd. 
 
When PABelect = -elect, (I+1)/I is the ratio of odd J to even J spin degeneracies for 
bosons and of even J to odd J spin degeneracies for fermions. Thus 16O2 (I = 0), which 
has a 3

g
  ground state, has only odd rotational states (16O17O and 16O18O have both). 

 
Thus, there are ortho and para forms of H2 and of H2O, and of other molecules as well. 
This affects the rotational parts of the spectrum very significantly. The nuclear spin 
degeneracies must be included in the Boltzmann factors and partition functions: 
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Polyatomics have a straightforward continuation of these permutation principles (e.g., 
for CO2, H2O, O3, NH3), but we will not develop them here. 
 
In general, ortho and para states of molecules behave as independent species, 
unconnected to one another by electromagnetically-allowed transitions. If an equilibrium 
mixture changes temperature, equilibrium may only be re-established by other, chemical, 
means, where dissociation and reformation is permitted. 
 
Molecules in general: Hyperfine structure, due to nuclear spins  1/2 give (small) 
additional corrections to the energy levels. This includes “dipolar” contributions due to 
the interaction of the nuclear spin magnetic moments with internal magnetic fields. 
Hyperfine structure also includes contributions from nuclear quadrupole moments: 
Nuclear spins  1 have nuclear quadrupole moments, Q, giving rise to somewhat larger 
(but still small) energy corrections through : .Q E  
 
Nuclear spins always add to the total angular momentum. 



  I = 3/2                                I = ½ 
 
 
 

   Cl                                       H 
 
I like Townes and Schawlow for discussion of these effects: Chapter 8 for magnetic 
hyperfine and Chapter 6 for nuclear electric quadrupole. 
 
15. Electronic orbital angular momentum, electronic spin angular 
momentum, electronic transitions 
 
See Bernath, Chapter 9, Townes and Schawlow Chapter 7. 
 
For a diatomic molecule, the electronic state is given by 2 1 ,S  e.g., 2, 3, 1, etc.  is 
the quantized orbital angular momentum projected onto the intermolecular axis.  = 0  
 state,  = 1   state,  = 2   state, etc. No half-integral orbital angular 
momentum values are allowed. L is the total electron orbital angular momentum. S is the 
electron spin angular momentum (half-integral spin angular momentum values are 
allowed; the electron has spin ½). 2S + 1 is the multiplicity. There may be additional 
complexities (due to additional symmetries), e.g., the O2 ground state is 3 ,g

  where g 

stands for gerade (German for even, as opposed to ungerade). A gerade state is even with 
respect to inversion. A state may only (and must be) g or u only if it is a state of a 
homonuclear diatomic molecule. The superscript “-” refers to reflection in a plane 
containing both nuclei. This symmetry only applies to molecules in Σ states, because they 
are non-degenerate. 
 
How do angular momenta couple? In diatomic molecules, they couple according to 
Hund’s cases. Angular momenta must be positive quantities. Angular momenta A and B 
(A  B) couple to give resulting totals A - |B| to A + |B|, in integer steps (e.g., 1 + 1/2 = 1/2 
or 3/2). Here are the two most common Hund’s cases (there are others): 
 
Hund’s case (a) 
 
                                                                      J                O              Λ + Σ =  

                                                                                                          + O = J 

                                                                    Λ       Σ 
                                                                                                             e.g., 2Π1/2, 

2Π3/2 states 
                                                                          
Σ is the axial projection of the spin angular momentum (exists only for Λ > 0). 
 
 
 
 
 



Hund’s case (b)                                                           S 
 
                                                                   J                                   Λ + O = N 
                                                                                                        N + S = J 
                                                                          N           O 
                                                                         Λ 
 
N.B., there is no perfect coupling except when symmetry requires it; otherwise only total 
angular momentum is an exact quantum number. Also, for a given molecule in a given 
electronic state, the closest Hund’s case may change as rotational state changes as angular 
momenta uncouple and recouple as strengths of interactions change. 
 
Where are angular momentum coupling and perturbations in the spectra due to them 
important? In free radicals: OH, O2 (!), NO, HO2, ClO, …. In OH (B = 18.87 cm-1), the 
spin-orbit interaction is so strong that the first transitions are at 61 cm-1 rather than at 38 
cm-1 (except for fine structure “maser” transitions, as seen in astrophysical OH masers). 
Also, the OH spectrum looks totally unlike that of an evenly-spaced diatomic spectrum. 
 
Ultraviolet/visible (electronic) spectroscopy 
 
For electronic transitions 

2 2| | | | /(2 1),u l v v e Jq R S J       and 2 2| | | | /(2 1),l u v v e Jq R S J       where JS   is a 

rotational line strength term (Bernath)  Hönl-London factor. ≡ ≡ ≡ ≡ 
                                                                                                                           v J    

JS   is like earlier rotational terms, but now involving , .    

 
Remember 2 2

1 0| | ( 1) /(2 1)J J J J     and 
2 2

1 0| | ( 1) /(2 3)J J J J     for simple rotational spectra. 

1J   is the Hönl-London factor in this simple case                                         v J    
 

v vq    is the Franck-Condon Factor or vibrational overlap: 2| |v v d
    (show vertical 

transition here) 

Re is the electronic transition dipole moment: .e el e elR d      See Bernath chapters 9 

and 10 for copious details. 
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Sum rule: 2 1J

J

S J


   



“Sums of the line strengths of all transitions to or from a given rotational level are 
proportional to the statistical weight of that level.” Herzberg, Spectra of Diatomic 
Molecules, pp. 208-209. 
 
Finally, what we mostly do with electronic spectra is to use cross sections ( ),  in cm2, 
often with temperature dependence and occasionally with pressure dependence, to 
calculate spectra. 
 


