
2. Blackbody Radiation, Boltzmann Statistics, Temperature, and 
Equilibrium 
 
Penner, Chapters 1 and 2 has great details. A good statistical mechanics book (like 
Davidson, Chapters 7-12) is a good source for further information especially on 
statistical aspects. 
 
Blackbody radiation, temperature, and thermodynamic equilibrium give a tightly coupled 
description of systems (atmospheres, volumes, surfaces) that obey Boltzmann statistics. 
They are important because of the compact descriptions of systems that they give when 
Boltzmann statistics apply, either approximately or nearly exactly. Fortunately, this is 
most of the time in the Earth’s stratosphere and troposphere, and in other planetary 
atmospheres as long as the density is sufficient that collisions among atmospheric 
molecules, rather than photochemical and photophysical properties, determine the energy 
populations of the ensemble of molecules. 
 
Consider a set of energy states an atom or molecule may occupy: 
 
There are a number of discrete energy states and, above the 
dissociation limit, where the molecule is no longer bound, a 
continuum described by the density of states ρ(E). Ignoring the 
continuum until later, the Boltzmann factor for a given state, i, at 
energy Ei, is

/ ,iE kTe where k is Boltzmann’s constant and T is the 
temperature. We will also need the concept of degeneracy of states. This is nothing more 
than the realization that there are, in many or most cases, more than one 
distinct quantum state at each energy. For example, in the probably 
familiar case of the p-orbitals of an atom, there are three distinct states, 
where the lobes of the orbitals (each of which can house two electrons) 
are oriented along either the x- y- or z-axis. These orbitals are 
degenerate in energy. In the soon-to-be-familiar case of the rotational 
states of a diatomic molecule, a state with rotational angular momentum J has a 
degeneracy of 2J+1. This degeneracy may be broken by an electric or magnetic field, if 
the molecule has either an electric or magnetic dipole moment, to separate the states in 
energy. gi = the number of energy levels with energy  Ei: 
 
 
gi=5 
gi=3 
gi=1 
 
 
 
 
 
For the present, we simply need to realize that degeneracy means having more than one 
state at a particular energy. We may then describe Boltzmann statistics: 

The degeneracy may be broken, e.g., by m
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We will omit the continuum term from further discussions, as we will not normally need 
it, since the dissociation energies are so high that continuum states do not normally 
contribute to the populations of planetary atmospheres in near-equilibrium conditions. 
The partition function provides the normalization factor so that populations may now be 
given as: 
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The normalization by Q also makes the arbitrary choice of the zero of energy cancel out 
of the population statistics. (See why? Try showing it as an exercise.) 
 
Now we may state some definitions a bit more firmly: 

 A system at equilibrium is one where the populations of energy levels are 
described by Boltzmann statistics; 

 A system at equilibrium may be described by a temperature and, conversely; 
 Temperature is a characteristic of an equilibrium system. No equilibrium, no 

defined temperature; 
 At equilibrium, the radiation is in equilibrium with the molecules, at the same 

temperature. It is described by the blackbody radiation law, which we shall meet 
shortly. 

 
One often meets the expression local thermodynamic equilibrium (LTE), particularly in 
astrophysics and atmospheric science. This is simply a way of expressing that local 
behavior (say at a certain altitude in the atmosphere) is reasonably well described as 
being in equilibrium and characterized by a temperature, whereas on larger scales (as we 
know already from discussions of atmospheric structure) this cannot be the case, since the 
temperature varies. 
 
An atmosphere may be stable even though it is not in equilibrium, depending on the 
boundary conditions of gravity and heating. Most are not in equilibrium (no planetary 
atmospheres are): Since the Earth’s troposphere is heated from the bottom, and warmer 
air is more buoyant, there is a natural mixing as a counter effect to the thermodynamic 
temperature lapse (tropos is Greek for “to turn”). The stratosphere, on the other hand, is 
heated from the top, as we will see later.  It is more stratified, and stable. LTE is not 
necessary for a system even locally to have a constant energy distribution. In regions that 



are not in LTE it is possible to be in a radiative steady-state, analogous to the chemical 
kinetic steady-state situation. As a very rough rule, LTE in a region of an atmosphere is 
established when there are ≥ 10 collisions per photochemical or reaction event. In the 
Earth’s atmosphere, non-LTE conditions are normally encountered in the mesosphere and 
above, with mesospheric CO2 as a common example. 
 
Situations where a system is described by more than one temperature are frequently 
encountered. For example, in an astrophysical plasma, one may hear of a “radiation 
temperature” and a different “kinetic temperature.” In this case the separate phases 
(radiation and matter) are reasonably well described by temperatures, but are not strongly 
coupled together through absorption and emission to establish equilibrium. Analogously, 
in laboratory spectroscopy, one frequently hears of separate rotational and vibrational 
temperatures produced by certain sample preparation techniques (e.g., supersonic 
expansions in molecular beams). 
 
Blackbody radiation 
 
What is a blackbody (BB)? 

 BB absorptance = 1 (optical thickness =  ), reflectance = 0. 
 BB completely characterized by a temperature T. 
 BB is an ideal situation, but is important for emission and absorption 

spectroscopy, as we will see. 
 BB emission of radiation given by Planck’s law (below). 
 BB emission is Lambertian ( cos , where  is the angle normal to the surface, 

again, an approximation for real situations). Lambertian also means that reflection 
is diffuse (when there is reflection, i.e., for a surface that is not a BB). 

 A buffalo or a moose is a pretty good blackbody. 

Planck’s law: Blackbody radiancy 
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 (erg s-1 cm-2). 

R d   is sometimes called .W d   σ is the 

wavenumber, (cm-1), h is the Planck constant 
(6.6260695710-27 erg s)1, c the speed of light 
(2.997924581010 cm s-1), and k the Boltzmann 
constant (1.380648810-16 erg oK-1). This is 
blackbody emission from a surface, not the same 
as the BB radiation density, described in Goody & 
Yung. Note the cgs units, instead of Joules and 
meters. 
 
The first radiation constant 2

1 2c hc = 

3.7417715310-5 erg cm-2 s-1. The second 
radiation constant 2 /c hc k = 1.4387770 oK/cm-1. 

                                                 
1 I use COSPAR2010 values of the fundamental constants. 

Figure 2.1 Emission per unit area is greater 
at every wavelength/frequency when the 
temperature is higher. 



Often, excitation levels are given in oK rather than in cm-1, for convenience in relating 
atomic and molecular physics to a particular temperature regime. The radiancy is thus: 
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Homework (Assigned January 31, due February 9): Determine BB sterradiancy (erg s-

1 cm-2 sr-1) by invoking Lambertian emission and integrating over solid angle. 
 
In photons ( E h hc   ), 
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Rayleigh-Jeans limit: 
 
For ( ),h kT hc kT R    linear with temperature: 
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  This is in common use in radiofrequency and microwave 

work, especially in radioastronomy. This law was first discovered empirically, and then 
led to the predicted ultraviolet catastrophe. That is, emission versus wavenumber and 
total emission become infinite! It was known to be wrong (c.f. Davidson) but it was 
classically required. Quantum mechanics was required for the derivation of Planck’s law. 
 
Aside: Antenna temperature  
Radioastronomers and aeronomers give power sources in this unit and talk about 
detectors, noise, and systems in this way – more soon. 
 
More details 
 
A blackbody is the most a surface at temperature T can emit. It can emit less: 
Emissivity: 1.   
Reflection coefficient: 1.R   
Kirchoff’s law: 1.R    
 
Stefan-Boltzmann constant: 
Integrating BB over  gives 5.67037310-5 erg cm-2 s-1 oK-4 = 5.67037310-8 W m-2 oK-4. 
 
Wien’s law: 
 
The maximum power per wavenumber occurs at max (cm-1) = 1.961008T (oK) (COSPAR 
2006) 
The maximum # of photons per wavenumber occurs at  (nmax) (cm-1) = 1.1076256T (oK) 
(COSPAR 2006) 
 
The maximum power per m occurs at  = 2897.7721 / T (oK) 
The maximum # of photons per m occurs at  = 3669.6986 / T (oK) (COSPAR 2006) 



Bi-Directional Reflectance Distribution Function (BRDF) 
 
 
Normal reflectance:                   1   2 
 
                                                                                                                           d 
 
BRDF (1, 2, ) can be more general ( is the azimuthal 
angle). This can be important in radiative scattering from surfaces. 
 
Lambertian BRDF: 2cos .R   There is also a general polarization dependence (of which 

more later). 
 
Some elements, for future use 
 
Spherical geometry   cones   étendue 
 
Spherical surface: 24 r  

Element of solid angle: , 4
sphere
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                                                                                                                             
For  = 90o (i.e., a plane),  = 2  steradians (sr). 
For  small (and in radians),    2. 

 
Étendue: 
 Put a (small) hole, of area a, in the tip of the cone above. Then É = a . This is a 
“constant” of an optical system. It cannot be increased (although it can be decreased, by 
vignetting, or blocking part of the signal). 
 
 large  “fast” optical system;  small  “slow” optical system. 
                                                                                                                   1 
f-number or f-stop = 1/ 2 tan  (this shows an f/2 system)                               2           4 
 
It is important to realize that atmospheric (and astronomical and, 
indeed, laboratory spectroscopic) measurements are made with 
instruments having properties described by their étendues. It is often 
a convenient approximation (one we shall employ frequently) to describe spectroscopic 
problems as plane-parallel. The angular situation is always lurking underneath. 
 



Homework (Assigned January 31, due February 9): Construct an example where one 
observes an extended source (e.g., a cloud) with an instrument having a given étendue. 
Show that the étendue is the same for the cloud observing you. 
 
The Horiba Jobin Yvon Company has an excellent website giving a tutorial on the optics 
of spectroscopy: http://www.horiba.com/us/en/scientific/products/optics-tutorial/ 
 
 
3. Gaussians, noise, signal-to-noise ratio (S/N) 
 
Horowitz and Hill, Chapter 7 has valuable 
discussions of noise types and sources. 
 
A Gaussian line, 
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where be is the half-width at 1/e intensity 
(hw1/e), to be compared later to the half-width 
at half maximum (HWHM) and the full-width at 
half maximum (FWHM). I prefer using hw1/e to describe Gaussians and HWHM for 
Lorentzian lineshapes (of which more later). 
 

Gaussians widths add in quadrature (when convolving): 2 2
1 2totalb b b   (Easy to show 

with the convolution theorem – try it!) 
 
Signal-to-noise-ratio, S/N 
 
Signal: The signal of a system increases linearly with power. Antenna temperature, TA: 
The signal (at a particular wavenumber, , or frequency, ) is equivalent to the antenna 
being enclosed in a blackbody of temperature T. TA of a line is usually defined for the line 
center. 
 
Noise: We usually have (approximately) band-limited white Gaussian noise: 
 Equal power per Hz (or cm-1: a frequency unit) 
 Gaussian distribution () of amplitudes 
 



                            Measure at a given frequency: 
 
 
 
Gaussian description of noise: 

For noise, 0 0, / 2n eb b    

bn = root-mean-square (RMS) 
noise = our noise for S/N purposes 
Probability of amplitude 
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Noise integrates up as t  
(because Gaussians add in 
quadrature), while signal 
integrates up as t  S/N increases 

as t . 
 
Types of noise: 
 
1. Noise components from the instruments (detector noise, readout noise, electronic 

noise) will generally be independent of the spectral intensity. They are generally (to a 
reasonable degree of fidelity) described as Gaussian white noise. In radio physics and 
astronomy noise, squares of noise sources are often described as temperatures, which 
add linearly to give a noise system temperature: Remember that, in the Rayleigh-
Jeans limit, power is linearly proportional to temperature. Since noise increases 

as power , again because sources add in quadrature, noise temperature sources add 

linearly. 
 
2. A component to the whole system noise that is due to photon statistics, that is, to the 

fact that we are counting a discrete number of photons, N, is also proportional to N  

(proportional to t for linear integration). The S/N is thus proportional to 

/ .N N N  Where the spectrum is larger (say, at the peak of an emission line), 
the noise will be larger than at the trough, but the S/N signal will be lower. The 
margin of error (1 standard deviation, although almost never stated) usually given in 

political polls is 1/ ,N where N is the number of persons polled. This can result in 
less popular candidates having possibly negative approval ratings or likely voters! 
See where the problem arises? 

 
Aside: The second noise source is described by Poisson statistics: Poisson statistics 
describes discrete events. From the Wikipedia: 
 
In probability theory and statistics, the Poisson distribution is a discrete probability 
distribution that expresses the probability of a number of events occurring in a fixed 



period of time if these events occur with a known average rate and independently of the 
time since the last event. The Poisson distribution can also be used for the number of 
events in other specified intervals such as distance, area or volume … The fluctuations 
about the mean value of events are denoted as Poisson noise or (particularly in 
electronics) as shot noise. 
 
Aside: A good noise generation program is often very useful. noise.f90 is available at the 
class website. You may want to generate a noise spectrum with this program and test it to 
see how Gaussian the amplitude distribution is. 
 
Back to system temperature (Tsys) and noise temperature (TN). At low , 
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Tsys and TN are defined for 1 second integration time ( Tt-1/2). 
 
Class problem: The cosmic microwave background (CMB) is   a BB @ 2.75 K; 
Measure it at 10 cm wavelength (= 0.1 cm-1 = 3GHz). 
1. Are we @ h kT  ? (and therefore in the Rayleigh-Jeans limit?) 
2. Determine the Tsys versus integration time to make a 1% measurement. 
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    h kT   but maybe not .kT  Let’s proceed anyway, as an example. 
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Homework (Assigned February 2, due February 14): Using a 100-meter radio 
telescope, calculating the beam in radians as the diffraction limit (1.22/d where  is the 
wavelength and d the telescope diameter), what Tsys is needed to detect Jupiter to 10% @ 
10 cm wavelength in 5 hours? Ignore the CMB. 
 
At what angular resolution does Jupiter match the CMB? If I include the CMB, can I 
make the measurement with this telescope? 
 


