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ABSTRACT

In this paper, we investigate the instabilities of astrophysical jets in a new and more generalized way than in
previous studies. We solve the dispersion equations for a thermally confined slab jet in a complex (k, @)
domain. We find a number of singularities related to certain wave modes in this system. We show that the
internal jet flow in the system is characterized by two internal sound waves, propagating against and with the
flow, respectively. These two body waves grow in amplitude. The one propagating against the flow is con-
densed, which is crucial to disruption of jets. The other, propagating with the flow, is rarefied and less impor-
tant in jet disruption. In addition, there are a number of surface waves existing in the interface between the jet
flow and the ambient medium. Two of them are identified to couple to their relevant acoustic body waves.
They also grow in amplitude. Our study in this paper suggests that the growing internal body waves and
abundant growing surface waves can potentially explain the wealth of observed phenomena in astrophysical
jets, such as quasi-periodic wiggles, jet disruption, limb-brightened features, and surface filaments. It also is a
great help in understanding the plentiful features observed in numerical simulations. The predictions made in

this paper will be directly compared with two-dimensional nonlinear numerical simulations in Paper II.
Subject headings: galaxies: jets — hydrodynamics — instabilities — methods: numerical — shock waves

1. INTRODUCTION

There is growing evidence from high-resolution observa-
tions that radio emitting jets in active galaxies interact in a
substantial way with their environments. Bent jets and radio
tails associated with head-tail radio sources in clusters of gal-
axies appear to be particularly striking examples of strong
interactions between outflowing radio plasma and the inter-
galactic medium. The radio jets emanating from the galaxy
cores in wide-angle tailed (WAT) sources are initially very
straight, well collimated, and probably supersonic, but they
disrupt (i.e., decollimate) and bend abruptly in the outer galaxy
halos (Norman, Burns, & Sulkanen 1988; Burns, Norman, &
Clarke 1986). Recently, extensive radio observations with the
Very Large Array (VLA) (e.g., O’'Donoghue, Owen, & Eilek
1990) have shown substantial evidence that jets in WATSs
appear to wiggle and flare as the jets disrupt (e.g., radio sources
13214674 in Abell 1559 and 0110+ 152 in Abell 160.) This
morphology suggests that certain unstable wave modes grow
in the jet flows. One possible mechanism for the disruption of
astrophysical jets utilizes the Kelvin-Helmholtz (hereafter
K-H) instability. This paper reports the results of a generalized
study of instabilities in astrophysical jets as a means to better
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understand the nature of the structure in and disruption of
collimated outflows.

The K-H instability is a well-known phenomenon in fluid
mechanics and astrophysics. Since the original proposal of the
fluid beam hypotheis (Scheuer 1974; Blandford & Rees 1974)
for the production of jets in energetic radio galaxies, a K-H
instability analysis has been performed by many authors in
either a linear perturbation regime (e.g., Blandford & Pringle
1976; Ferrari et al. 1978, 1981, 1982; Hardee 1979, 1982, 1983,
1984, 1986, 1987; Hardee & Norman 1988; Ray 1981; Cohn
1983; Payne & Cohn 1985) or a nonlinear numerical simula-
tion regime (Norman, Winkler, & Smarr 1984; Norman &
Hardee 1988).

The linearized dispersion relation equations in both slab and
cylindrical geometries were first derived by Gill (1965).
Numerical solutions of the equations using a fixed real fre-
quency (w) and/or a fixed real wavenumber (k) were used to
study the so-called spatial and/or temporal instability mode
structures of a thermally confined jet, respectively. For a cylin-
drically symmetric, thermally confined jet, perturbations to the
jet are described in terms of harmonic components associated
with different Fourier modes which are an axisymmetric pin-
ching mode, a nonaxisymmetric helical mode, and higher order
harmonic (or fluting) modes (Hardee 1979; Ferrari et al. 1981).
Each mode consists of a fundamental mode and reflection
modes (Hardee 1979; Ferrari et al. 1981). For a two-
dimensional symmetric jet, only two types of modes exist; they
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are an axisymmetric pinching mode and an antisymmetric
sinusoidal mode (see Fig. 9 below) (Gill 1965; Hardee &
Norman 1988). Again, each mode consists of a fundamental
and reflection modes.

The predictions made by linear theory have recently been
compared with numerical simulations in a nonlinear regime
(Norman & Hardee 1988). In general, results from the simula-
tions agree with the predictions of linear theory. The two-
dimensional simulations of slab-symmetric jets show that a
perturbation imposed by sinusoidal wiggling is unstable; the
collimated jet is disrupted and a turbulent lobe is formed.
Norman & Hardee (1988) have concentrated on the compari-
son of the growth rates predicted by the linear theory and the
disruption behavior in a nonlinear regime using different
driving frequencies. They found that the jet disrupted in about
seven e-folding lengths as predicted by the linear theory
(Hardee & Norman 1988).

Our new work is a generalization of the analysis of insta-
bilities in a thermally confined jet. Based on this analysis, we
are able to better understand the wave phenomena developing
in jets. The eigenvalue system of a thermally confined slab jet
contains many more normal modes than those described in
previous studies where a fixed real frequency and/or a fixed
real wavenumber was assumed. Gill (1965) pointed out that
there is a resonance such that sound waves impinging on the
boundaries at certain angles release large amounts of energy.
Thus, the K-H instability is no longer restricted to surface
waves because the energy is carried by the internal sound
waves from one side of the jet to the other such that the two
sides of the jet communicate by the sound waves through the
internal medium. The reflection effect has been considered in
recent studies (Ferrari et al. 1981, 1982; Cohn 1983; Payne &
Cohn 1985; Hardee & Norman 1988), but the relation between
growing modes and internal waves such as sound waves was
ignored in the previous studies because of the incomplete
analysis of the roots of the dispersion relation. In addition to
fixed real w (spatial) and/or fixed real k (temporal) solutions
considered in previous studies, there are complex root solu-
tions to the dispersion relation.

In the present work, we provide a method for extraction of
all roots from the dipsersion equations for a slab jet. The solu-
tions are presented on a complex, inverse velocity plane. We
find that there are eight singularities in the plane. The positions
of the singularities are determined by the internal Mach
number (M;, = uy/a;,) and the density ratio (7 = p;,/p.,), and
are independent of the harmonic modes. These singularities are
associated with different types of waves. In general, there are
two types of waves determined by the jet boundary conditions.
First, waves propagating through the body of a fluid (or only
existing in the interior of the medium) are called body waves,
such as acoustic waves. The effect of boundaries upon such
waves (e.g., reflection and refraction) is secondary since the
existence of the waves is not determined by the presence of the
boundaries. For instance, body waves will propagate in an
infinite medium. The role of the boundaries becomes impor-
tant when the jet is thermally confined. The effect of reflection
of internal body waves on such boundaries leads to the
growing modes which will eventually cause disruption of the
jet. The second class of waves depends strongly upon the exis-
tence of boundaries. The waves and ripples on the surface of
water are familiar examples. Since the existence of these waves
depends upon the presence of a discontinuous surface, they are
usually called surface waves. Both types of waves likely play
roles in determining the morphology of radio jets.
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The effects of these two types of waves on jet instability and
disruption remains ambiguous despite the significant past
analyses. Therefore, we need to address the following ques-
tions:

1. How many body and surface waves exist in a thermally
confined jet?

2. Which waves play the most important role in the insta-
bility and/or disruption of the jet?

3. Is it possible to identify the different type of waves in
numerical simulations?

In this paper we will theoretically study the relation between
the waves and growing modes. We will compare the predic-
tions from the linear theory with numerical simulations to
identify the different types of waves in a companion paper
(Zhao et al. 1992, hereafter Paper II).

The outline of this paper is as follows. In § 2, we extract the
complex solutions of the linearized dispersion equations and
present analytic forms for the eight singularities. In § 3, we
numerically present the complex solutions (kg, k;, @, and @)
in the inverse velocity plane and compare with solutions
derived for fixed real frequency. In § 4, considering boundary
conditions, we show that two of the eight singularities are
associated with acoustic body waves. The remaining six are
shown to be surface waves that depend on the boundaries. In
§ 5, we show that these body and surface waves are unstable
and suggest that the fast growing one will substantially disrupt
the collimation of the jet. In § 6, we discuss and summarize the
results.

2. THE COMPLETE ROOTS FROM THE DISPERSION
EQUATIONS FOR A SLAB JET

2.1. Motivation

Linear perturbation theory seeks to predict the development
in time and space of an arbitrarily small disturbance of a physi-
cal system. This leads to linearization of the fluid equations
and to the resolution of the arbitrary disturbance into indepen-
dent wave components of Fourier normal modes. Under
certain boundary conditions, the initial value problem
becomes an eigenvalue problem which leads to solving the
dispersion relation of the form

F(w, k)=0. 0y

This relation may be regarded as determining either the
complex frequency w for any real wavenumber k, or k for any
real value of w, or as determining the complete functional
relationship between the complex variables « and k that has
been emphasized by a number of authors (e.g., Drazin & Reid
1985; Gaster 1965). Clearly, either the temporally growing
modes (with fixed real wavenumber k) or spatially growing
modes (with fixed real frequency w) are only a part of the
solutions of the eigensystem. For example, the spatial modes
behave like exp [i(kz — wt)] = exp [ —k;z + i(kgz — wt)] and
so they grow or decay with z, unless k; = 0 (system oscillates in
z with wavelength 2n/kg). These spatial modes resemble a
forced oscillation with a source frequency w; so, one might
think that the criterion of instability of the flow is simply that
—k; > 0 for some real value of w, but unfortunately the cri-
terion is not always as simple as that. In fact, in this paper we
study the linear development of an arbitrary perturbation
rather than a forced oscillation. A general perturbation func-
tion of a small disturbance can be understood as a composition
of Fourier components with complex wave number k and
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complex frequency w (Gaster 1965). The traditional spatial-
growing mode technique used in astrophysical jets has a limit
in understanding the relationship between the individual
growing modes and waves. Certainly, analysis of the complete
relation of the complex variables w and k is necessary in under-
standing the linear development of a general perturbation in
an astrophysical jet.

2.2. Structure of the Roots

Instead of cylindrical geometry, we use a slab geometry to
study the instabilities in astrophysical jets in this paper. There
are two reasons for using this approach. First, the physics of
jets in both geometries are very similar. As mentioned in the
previous section, the difference of the mode structure between
slab and cylindrical jets is that the later one contains more
high-order fluting modes which are important only at high
frequency and/or larger wavenumber. We are not interested in
these types of modes here. Also, at the long-wavelength limit,
the dispersion equations for a cylindrical jet are analogous to
ones in slab geometry. Second, we plan to directly compare
the predictions from the linear analysis here with two-dimen-
sional numerical simulations which are also in slab symmetry
(Paper II).

The dispersion equations of symmetric and antisymmetric
modes for a thermally confined slab jet can be expressed as
(Hardee & Norman 1988)

ﬂex

in

Bex
ﬁm

where ¢ = k/@ = b~!, is a dimensionless, complex inverse
velocity scaled by jet velocity uy; R is the radius of the jet
(half width of the slab jet); # is the ratio of internal jet den-
sity to external density; k and & are dimensionless wave-
number and frequency scaled by R and R/u,, respectively;
B = {0 [ME(1 — ¢)* — ¢*1}"/* and B, = [&* (M2, — ¢*)]'"
are dimensionless transaction wavenumbers scaled by R, for
the internal and external medium, respectively. The internal
and external Mach numbers, M;, and M.,, are determined by
the jet velocity and the internal and external sound velocity,
respectively.

Equation (2a) corresponds to the axisymmetric pinching
mode and equation (2b) corresponds to the antisymmetric
sinusoidal mode (see Fig. 9.) We note that it is only necessary
to consider the wave propagation in the same direction as jet
velocity u,, namely, 6 = 0 (6 is the angle between wave and jet
velocity vectors) as the wave propagation at an angle § # 0 can
be obtained by replacing the jet velocity u, by u, cos 8 (Miles
& Fejer 1963; Gill 1965).

tan (B,,) = —in = (1 — ), (22)

cot (Bin) = +in 7= (1 — ¢)* ; (2b)

Substituting )
; EXP (iBia) — exp (ifin)
wn o) = = B v e B Y
cot (B.) = +1 2P (iB) + exp (ifin) (3b)

exp (lﬂin) — €Xp (lgin)

into equation (2), one can rewrite the dispersion equation as
i

E in = MM — E ;

_ Lt — ¢’ /M2 —

+ =

In(D,), (4a)

2/\/M2 — ¢)2 __¢2
1—n(l — p)2 /M2 — 2/ /ME(1 — ¢)* — ¢?

; (4Db)
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where “ + ” corresponds to symmetric mode and “ — ” corre-
sponds to antisymmetric mode; each mode consists of a series
of fundamental and reflection modes represented by an integer
number m; m = 0 corresponds to a fundamental mode (Hardee
& Norman 1988); and m = 1, 2, ... corresponds to different
orders of reflection modes.

Actually, the minus sign in D_ contributes 7/2 to the real
part in equation (4); therefore, we can rewrite equation (4) as

- i

ﬁin'__zmn_zln(D)a (Sa)

_ L — 9P/ M2 — 9P/ /ML — §) — ¢2
L—n(l = ¢)*/MZ — ¢*/\/ M1 — ¢)* —

where zm =m + ; then, zm =0, 1, 2, ... correspond to the
symmetric modes, and zm = 1/2, 3/2, 5/2, ... correspond to the
antisymmetric modes. It follows that the dimensionless fre-
quency @ can be directly expressed as a function of the
complex, inverse velocity ¢:

- 1 i
b = —————Mﬁ,(l o [zm T — 2 In (D):| , (6)

and the dimensionless wavenumber & is

k= ¢pé . )
Expressed in this form, & and k become functions of ¢ with a
few notable singularities, and we can find the complete root
structure in the complex ¢ plane. This technique differs con-
siderably from what has been done in the past. We are able to

solve for the singularities in the system and therefore to cover a
broad regime in the complex (k, @) domain.

; (5b)

2.3. Singularities on the Complex ¢-Plane
There are eight singularities on the complex, inverse velocity
plane. In § 2.4 we will show that the singularities correspond to
various types of waves in the eigenvalue system. From equa-
tion (6) and/or equation (7), two of the singularities are given
by

Mi(1 —¢)* —¢*=0, ®)
and they are
M;
+ _ in
i VAR

in —

And the other six are given by solving D = 0 and/or D = oo,
namely,

Mi(1— ¢)* — > —n*(1 — §*ML —¢*)=0. (9
Two of the six have simple forms and are given by
95 =1%n071;

and the other four are more complicated. We present analytic
forms only in two limited cases: (1) extremely subsonic,
M,, — 0 and (2) supersonic where the condition

M2 >n+1+3n"3M23 (10)

is satisfied. Note that this corresponds to M;, > 1.772 with
n = 0.1. For the supersonic case, the remaining four singu-
larities are real and can be expressed as

(L o\ Lo o 4 (-],
¢3—<2+2>i2\ﬂ1 0) "I_y+ 5 |’

+ _ l_é 1 /'_t_ L=n].
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where

d=/Qy+ M, —1)n;

— L cos | L cos~1 (2H1Mi !
y =73 cos| 3 cos I8 -1 e

f=Mi—n—1.

We also performed numerical calculations of the singularities
over the transonic region extending from internal jet Mach
number 0-5. The eight singularities are plotted in Figure 1 as a
function of M;, with fixed n = 0.1, where each singularity has a
real part, ¢, and an imaginary part, ¢;. In the supersonic
region, we see that ¢35 and ¢ are very close to ¢; and ¢;,
respectively. As the jet becomes transonic, ¢f form a complex
conjugate pair. The point of bifurcation is given by equation
(10); for n = 0.1, it is at M;, = 1.772. When M, becomes small,
the four singularities can be expressed in simple forms as

¢F =14i1//n;
¢F = M1+
When M, becomes large, the four singularities become
. _ {1 +1/(M2 — 1) ;
=\ oa =+ o, -1
+ _{1 — (M5, - 1)
P T O = T + M- 1)

2.4. Reflection and Transmission Coefficients
To investigate the nature of the singularities on a slab jet let
us introduce the complex reflection and transmission coeffi-
cients (R and T) for a wave incident on the jet boundary (e.g.,

Il

F1G. 1.—The singularities of thermally confined jet with slab geometry are
plotted as function of internal Mach number with density ratio n = 0.1.
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Payne & Cohn 1985):

Z,—Z7Z

R=Zex Zin 11
Zex+Zin ( )
2Z
T=—"—, 12
Zex+Zin ( )
T=1+R,

where Z is the normal acoustic impedance at the boundary
(defined as the ratio of the pressure to the normal velocity). The
subscripts “in” and “ex” represent the internal and external
medium, respectively. It can be shown that (e.g., Hardee &
Norman 1988)

—p-1 = (ﬂ‘ex — ﬁin)(ﬁinﬁex - EZ)
R b (ﬁex + B’in)(ﬁinﬁex + EZ) '

The reflection and transmission coefficients are related to a
wave incident upon the interface between the internal and
external media of a jet, and the singularities in the dispersion
relation emerge from the waves interacting with the bound-
aries. Miles (1957) pointed out that there is a resonance when
the denominator of equations (11) and (12) vanishes. It is inter-
esting to investigate the relationship between the singularities
and the resonances. First, the two singularities, ¢;, occur at
R = —1 and T = 0. Physically, this corresponds to the waves
trapped inside the jet by the external medium (Payne & Cohn
1985). In § 4, we will show that they correspond to internal
acoustic body waves. Second, the other six of the eight singu-
larities occur at R =0 and T = 1, where the incident wave
transmits all the energy to the external medium. The singu-
larities arise from the waves that propagate only along the
interface of the jet. These types of waves are appropriately
referred to surface waves in § 4. Among the six singularities, ¢
and ¢3 couple to ¢; and ¢, respectively. Finally, the reson-
ances occur when the denominator of equations (11) and (12)
vanishes, and R and T go to infinity. Thus, the reflected and
transmitted waves have amplitudes much greater than the
amplitudes of the incident wave. Many efforts had been made
to find this type of the resonance in a thermally confined jet
(e.g., Payne & Cohn 1985; Hardee & Norman 1988) and the
previous results were not explicit. In fact, the resonances occur
at the same phase velocities where we find the singularities of
the surface waves, provided the transaction wave numbers of
external and internal media, ., and f;,, have different signs.
We note that this type of resonance may occur under a particu-
lar initial perturbation condition such that the internal and
external waves interact at the jet interface. In the rest of this
paper, we are mainly concerned with the instabilities that
emerge from the body and surface waves.

13)

3. NUMERICAL SOLUTIONS OF THE DISPERSION EQUATIONS

3.1. Eigenroot Structures on the ¢-Plane

In § 2, we located the eight singularities in supersonic and
subsonic regions. The transonic region is very complicated. In
what follows, we present the eigenroots only in the supersonic
region. In this region, all singularities are real. As an example,
we concentrate on the case with M;, = 3 and = 0.1. In Figure
2, we plot the eight singularities on the ¢-plane. The most
interesting region on the ¢-plane is the region around the five
singularities enclosed by the square indicated in Figure 2. The
instabilities that emerge from the acoustic waves are located in
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F1G. 2—The positions (filled circles) of the eight singularities on the
complex inverse velocity (¢) plane are plotted with M;, =3 and n = 0.1.
Circles ¢ and ¢ are overlapped with circles ¢35 and ¢, respectively.

this region. Also, there is one surface wave, ¢; included in the
region. The instabilities that emerge from the other three
surface waves are similar to those from ¢;. We will mainly
focus on the instabilities related to the enclosed five singu-
larities.

The negative imaginary part of the k, namely —k,, is the
spatial growth rate and, similarly, w, is the temporal growth
rate where the normal mode has the form f= A exp {i(kgz
— wgt)} exp (—k;z + w;t). We have solved for the dimen-
sionless frequency and wavenumber in equations (6) and (7) for
zm = 0, 1/2, 1, 3/2. The solutions of &, @;, kg, and —k; in the
square region are presented as three-dimensional views on the
complex ¢-plane (Figs. 3, 4, 5, and 6 corresponding to zm = 0,
1/2, 1, and 3/2, respectively). Generally, structure of the funda-
mental symmetric mode (zm = 0) is different from the funda-
mental antisymmetric (zm = %) and all of the reflection modes
(zm > 0). The fundamental antisymmetric mode has structure
similar to the reflection modes. The fastest temporally or spa-
tially growing modes are associated with the five singularities.
For zm = 0, the root structure associated with spatial and
temporal growth rates (k; and @;) is symmetric about the real
axis of ¢ (Figs. 3a and 3b). Perturbed waves decay temporally
but grow spatially in the region around the five singularities
except for the region between the singularities ¢; and ¢
where the wave modes grow temporally but decay spatially.
For the antisymmetric fundamental mode (zm = 1) and the
higher order reflection modes (zm > 1), the root structure of
spatial and temporal growth is similar but the spatial and/or
temporal growth rate increases as the value of zm increases.
Note that all nonzero zm modes behave differently from the
zm = 0 mode. The symmetry about the real axis on the
complex ¢-plane is broken for the nonzero zm modes (Figs. 4,
5, and 6). Similar to the zm = 0 mode, most spatially growing
roots correspond to temporal decay and temporally growing
roots correspond to spatial decay.

3.2. Roots with Fixed Real w

Most previous work on jet instabilities has focused on the
roots with a fixed real frequency or fixed real wavenumber (e.g.,
the'work in a slab geometry done by Hardee & Norman 1988).
Obviously, roots with a fixed real frequency or wavenumber
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are only a limited case of our more general solutions. Let us
compare our present results with those of Hardee & Norman
(1988). The frequency @ and wavenumber k can be expressed as

& = g + id; ; (14a)
k = kg + ik, . (14b)

Spatial growth investigated by Hardee & Norman (1988) cor-
responds to the roots with @/(¢g, ¢;) = 0. We have used the
complex root finder ZANLYT in IMSL to calculate the roots
with fixed real &. We plot the spatial growth rate (—k;) versus
@ for the two fundamental modes (zm = 0 and ) and the first
two reflection modes (zm = 1 and 3/2) in Figure 7. To compare
with solutions derived in the previous section, we also show the
relevant tracks of the roots on the complex ¢-plane in Figure 8.
We have compared these restricted solutions with the ones
derived in the generalized way described in § 3.1, and they are
consistent with each other.

Several additional comments are worth making here for
Figure 8. We note that for each zm mode, the frequency
increases toward the singularities ¢; and ¢3 along the curves
labeled by zm = 0, 1/2, 1, and 3/2 in Figure 8. Along the curve
labeled zm = 0 towards the singularities ¢; and ¢5, the phase
velocity of zm = 0 modes decreases from u, to 3u, which cor-
responds to the acoustic waves propagating against the jet flow
in an observer’s frame; and the phase velocity of nonzero zm
mode increases from zero to %u,. It indicates that all the
growing modes derived by assuming the fixed real frequency in
the previous studies (e.g., Hardee & Norman 1988) are associ-
ated with one singularity composed of an acoustic body wave
and the relevant surface wave, propagating against the flow.
This indicates that the acoustic wave, propagating against the
flow is the most important one in the system. These growing
modes associated with this wave have been intensively studied
in previous work. However, the other waves were unfor-
tunately ignored.

4. WAVES IN A THERMALLY CONFINED SLAB JET

In § 2, we found eight singularities associated with the slab
jet with thermally confined boundaries. The singularities orig-
inating from incident waves in a supersonic jet have been
briefly discussed in the previous sections. In the following, we
will discuss the nature of the waves associated with the singu-
larities.

These singularities represent (case a) body waves, such as
sound waves, which propagate in the interior of uniform
media. The existence of such waves is independent of bound-
aries, although the boundaries introduce reflection and refrac-
tion of the waves (Gill 1965; Payne & Cohn 1985). In addition
to body waves, the singularities represent (case b) surface
waves. In contrast to body waves, the boundary and/or the
surface of discontinuity is necessary to the propagation of these
waves. Energy trapping by the boundaries leads to the surface
waves. The existence of discontinuous boundaries is a neces-
sary condition to the propagation of such waves. Figure 9
illustrates the symmetric (case a) and antisymmetric (case b)
surface wave patterns which occur in a thermally confined slab
jet. In addition, there are short-wavelength, high-frequency
surface ripples.

Body waves and surface waves in the slab jet can be distin-
guished by examining the role of the boundaries. In practice,
this can be accomplished by investigating two typical jet
boundaries. First, we consider a perfectly rigid boundary
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0.001 L L s L
0.001 0.01 0.1 1 10 100

wRAY,

Fic. 7—The roots with fixed real frequency w are calculated for the sym-
metric and antisymmetric fundamental (zm = 0, 1/2), and reflection (zm = 1,
3/2) modes by using a complex roots finder described in text. We plot spatial
growth rate vs. frequency based on the roots with fixed real o perturbation.

which is equivalent to setting the density ratio n = 0 (i.e.,, the
density of the medium outside jet becomes very large). For this
case, the term In (D) vanishes in equation (6). The boundary
gives rise to only reflection and refraction. Surface waves do
not exist. The eight singularities are reduced to two, ¢; and
¢1, associated with acoustic waves propagating against and
with the flow, respectively. The phase velocities of the two
acoustic waves are +a;, (i.e., internal sound speed) in the flow
rest frame. Each wave consists of fundamental (zm = 0 or )
and internal reflection (zm > 1) modes. In this case all the
modes are not growing since the interaction with the rigid
boundaries only changes the propagation directions of the
wave and does not change the wave energy. Second, we con-
sider the case where the density ratio n becomes large (i.e., a jet
is unbounded.) In addition to the body waves, we are able to
find three other surface waves in this case. One of them is
associated with velocity shear, namely, ¢ = 1 (v,, = u,). The

-1 | I 1 1
-3 -2 -1

Fi1G. 8—We plot the tracks, corresponding to the roots with fixed real w
plotted in Fig. 7, on the ¢-plane. wy increases along the curves labeled zm = 0,
1/2, 1 and 3/2, respectively, toward the points ¢; and ¢3.

Vol. 387

9

b)

T

F1G. 9.—(a) Surface wave with symmetric geometry propagates along a
thermally confined slab jet. (b) Surface wave with antisymmetric geometry
propagates along a thermally confined jet.

remaining two are associated with density discontinuities and
_ 1/2
Uph - i(”) Qin-

In general, the density ratio #n is finite and, therefore, the
term In (D) in equation (6) is not zero. Thus, in addition to the
two body waves existing in the above two cases, there are six
surface waves that correspond to the six singularities found in
the term In (D). In Table 1, we show the properties of the eight
waves found in the thermally confined slab jet as the internal
jet Mach number M,, goes to zero. The first two.have been
discussed in the previous paragraph. They are acoustic body
waves independent of boundary. Here we investigate the
nature of the six additional waves. As tabulated in Table 1, we
know that the six waves are associated with velocity shear, u,,
and density ratio, 7. In other words, the six waves depend on
the boundary discontinuities, and therefore, can be identified
as surface waves. Thus, K-H instabilities arise at the interface
with either velocity shearing and/or density discontinuity
between jet and ambient gas (Drazin & Reid 1981). In the
supersonic region, each body wave is coupled to a relevant
surface wave (see Fig. 1) and may cause an acoustic resonance
(in§ 2).

5. THE TOTAL GROWTH RATES

In the previous section we discussed the different types of jet
boundaries. In a perfectly rigid jet boundary, there are only
two acoustic body waves, and the two waves are not growing.
Once the jet is thermally confined, the waves become unstable.
In § 3, we showed the spatial growth rate (—k;) and the tempo-
ral growth rate (®;) in the ¢-plane. In the complex (k, @)

TABLE 1
PROPERTIES OF THE WAVES IN A THERMALLY CONFINED SLAB JET (M, - 0)
¢ Vo Wave Type
df =M, /M, +1)........ v+ a, acoustic body
dE=1x£n"12 . 2@ + 1)ty surface

¢ =1xin™'? ...
o =L +m7 M,

(1 Fin 21+~ %)~ 'v; surface
+(1 + n)%a;, surface
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domain, the spatial and temporal growth rates are no longer
independent. Thus, the total growth rate is a function of k
and &.

Let us discuss the total growth rate based on a single mode.
In the complex (k, @) domain, a single normal mode can be
written as

f= A exp {i(kz — wt)}
= A exp {i(kg? — @gt)} exp (—k;Z + @,0);  (15)

where % = z/R and f = tuy/R are dimensionless spatial and
temporal coordinates. The first term on the right side of equa-
tion (15) is simple oscillation. The second term represents the
instability behavior of the normal mode. The total spatial
growth can be investigated by using the dimensionless phase
velocity ¥, = g/kg, and holding the phase constant along a
characteristic line with a slope of ¥, (i.¢., setting the 3t = (%)
to see whether it is growing or not. To measure the total spatial
growth rate of the mode, we rewrite the second term on the
right side of equation (15) as exp [(—k; + &, kg/@g)Z]. There-
fore, the total spatial growth rate is given by

R, = —k, + @ kg/dog; (16)

The first term is just the spatial growth without the contribu-
tion from the temporal growth. In the complex (k, @) domain,
the temporal growth contributes to the total spatial growth
because in the observer’s frame the growing energy indicated
by the temporal growth &; is carried downstream by the
waves, and this leads to the second term on right side of equa-
tion (16). Thus, a total dimensionless e-folding length is defined
by I =(—k; + ka/wR) ! Similarly, a total dimensionless
temporal growth rate is given as

R, = —kydogfkg + @, ; 17

and the total e-folding time is 7, = (—k; @g/kg + @;)~*. The
stability of the mode is determined by the sign of the growth
rate. From equations (16) and (17), we know that the signs of
spatial and temporal growth are identical and are determined
by (—kyiog + kgdy). I (—kyéog + kg;) >0, the mode
is exponentially growing. If it equals zero, the mode does not
grow. If it is less than zero, the mode exponentially decays.

In addition to the sign of the growth rate, the magnitude of
the total growth rate (R,,) must be defined. Figure 10 shows
the growth behavior of a single mode at a fixed phase. Clearly,
the magnitude of the total growth is determined by the com-
bination of the e-folding length (l ) and e-folding time (%)

1

|Rtoz|=ﬁ-

In general, the total growth rate can be expressed in the form:
(18a)

And the second term on the right side of equation (15) can
be rewritten as a form of exp [ReoZ* + t2)1/2] Using the
relations ky = g ¢g — @; ¢y and k; = @g ¢; + @; g, We can
express the total growth rate as

_d’l(d’n + wl)
Joi+ k2

where ¢, is the imaginary part of ¢. Equation (18b) shows that

Ry = (18b)
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FI1G. 10.—A single mode grows exponentially in amplitude along the char-
acteristic line with a slope v, in a (, t) plane.

the unstable modes with total growth greater than zero are
located on the ¢; < 0 portion of the ¢-plane. Along the real
axis of the ¢-plane, the mode does not grow. On the ¢; > 0
portion of the plane, the modes exponentially decay.

In Figure 11, we present calculations of the total growth rate
in the ¢-plane for zm = 0, 1/2, 1, and 3/2. Here we show those
modes with kg > 0. The zm = 0 mode has different structure
from nonzero zm modes. It is interesting that the growing
symmetric fundamental modes (zm = 0) are located only
around the singularities of the acoustic wave propagating
against the flow. Note the other singularities in zm = 0 mode
are associated with the evanescent modes which can usually be
neglected.

The structures in the total growth rate curves are similar
among the nonzero zm modes except that the amplitude
increases as zm increases. The fast-growing modes locate
around the acoustic singularities, propagating both against
and along the flow. It is clear that the acoustic body waves in
the thermally confined jet must grow. The surface waves coup-
ling to the acoustic body waves also grow. These waves
increase in amplitude and eventually disrupt the jet. We note
that between the two singularities there is a gap where no
growing modes are found. This suggests that the two body
waves can be distinguished in the space and time domain. The
acoustic wave propagating against the flow travels slowly with
an average velocity u, — a;,. The acoustic wave propagating
along the flow travels quickly with an average velocity u,

+ ain-

In general, a perturbation imposed upon an initially steady
jet flow excites all of the modes. The transient modes located
on the ¢; > 0 portion of the ¢-plane decay exponentially after
the initial excitation. The growing modes are associated with
the acoustic body waves as well as the relevant surface waves.
It has been pointed out by Payne & Cohn (1985) that a con-
fined jet acts as an acoustic wave guide. The sound waves
impinging on the interface between the jet and the surrounding
medium interfere with reflected waves. The interactions lead to
large changes in wave energy which comes from the difference
in bulk kinetic energy across the jet boundary (Gill 1965). Gain
or loss of the energy carried by the sound waves in the inter-
actions with the interface is determined by the sign of the wave
velocities in the jet’s frame. The waves propagating against the
jet will gain energy through the cascade scattering, and the
amplitudes of the wave modes will grow; while the waves pro-
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pagating with the jet will lose internal energy to the ambient
gas through the cascade scattering and the negative amplitudes
of the wave modes will also grow. In other words, the internal
acoustic body wave propagating against the jet is a condensed
wave and the internal acoustic body wave propagating with
the jet is a rarefied wave. We have verified this inference with
numerical simulations in Paper II.

Thus, the effects of reflection are crucial to the growing inter-
nal body waves and surface waves. To each reflection mode,
there is a cutoff wavenumber k, = zmn/(M2, — 1)*/? (Hardee &
Norman 1988) which corresponds to a cutoff wavelength. At
the wavelengths exceeding the relevant cutoff, the reflection
modes become evanescent. In the other words, the effects of
reflection appear only at the shorter wavelengths. In addition,
at a short wavelength, say less than the velocity shear scale
length, the energy spectrum of a general perturbation is sub-
stantially suppressed. Thus, the significant reflection modes are
effectively the first few orders (zm = 1 and 3/2). Therefore, the
first-order reflection modes in both symmetric and anti-
symmetric cases are suggested to govern the general growth
rate of the system.

In our numerical simulations, we have shown that the
growing wave modes propagate in phase velocities centered at
uy — a;, Or Uy + a;, (see Paper 11, § 4.2). This agrees well with
the linear analysis, where both symmetric and antisymmetric
reflection modes have been predicted. We note that quantitat-
ive application of the growth of the waves predicted in the
linear analysis to astrophysical observations has been achieved
via a combination of numerical simulations and other nonlin-
ear theory (i.e., characteristic theory of fluid dynamics; see
Paper II). It should be noted that individual modes whose total
growth rates are plotted in Figure 11 cannot be directly seen in
either numerical simulations or astrophysical observations
because of superposition of the many wave modes and other
effects. However, the numerical simulations indicate that the
first few orders of modes effectively dominate the system, and
the average of the growth rates in Figure 11 agrees quite well
with the numerical simulations.

It is clear now that internal sound waves grow in a thermally
confined jet. The two distinguishable growing waves propagate
with average velocities u, — a;, and u, + g, in the observer
rest frame. Investigating the two acoustic waves in numerical
simulations is crucial in understanding the disruption of jets.
The linear behavior of the distinguishable acoustic body and
relevant surface waves will be examined via numerical simula-
tions in Paper II.

6. DISCUSSION AND SUMMARY

6.1. Discussion

We have solved the dispersion relation of a thermally con-
fined slab jet in the complex (k, w) domain. Our analysis has
demonstrated an association of the physical waves with
unstable modes in the system. This work is also a useful com-
plement to the previous work in the comprehension of the
wave phenomena in jets. An understanding of the wave charac-
teristics is crucial for comparing linear theory with simulations
and observations. We note that the linear study of a thermally
confined slab jet provides the fundamental physics to under-
stand the features appearing in the numerical simulations and
astronomical observations, although it is not a perfect model
to fit a specific observed jet.

The instability and disruption of the jets have now been seen

in both radio observations and numerical simulations. In the
present work, we have established a number of important
points regarding the instability of body and surface waves in
the jet. The growing body waves should be dominant ip the
linear stage of evolution of jet instabilities. The two waves are
distinguishable by their average velocity u, — a;, and uy + a;,.
In fact, the body and the relevant surface waves propagating
against the flow have been observed as a fast growing wave
pattern in jet simulations (Norman et al. 1984). The speeds
given by Norman et al. are systematically smaller than u, — q;,
because their measurements were made in a partially nonlinear
stage. The waves in that stage become nonlinear and the jet
starts to disrupt. The growth of the waves slow down their
propagation speeds. The body and the relevant surface waves
propagating along the flow have been ignored because they are
rarefied in density (or internal energy) and propagate faster
(See Paper II). In other words, the body waves propagating
along the jet are relatively unimportant in jet disruptions.

Finally, we discussed the implication of this work to obser-
vations of astrophysical jets. At the VLA scale, a number of
radio jets have been found in clusters of galaxies which wiggle,
flare, and then disrupt forming diffuse lobes or tails (Perley,
Wills, & Scott 1979; O’Donoghue, Owen, & Eilek 1990). These
data may suggest that such jets are subject to K-H instabilities.
The waves initially perturbed in the jet exponentially grow and
propagate to the outer region until the “pipeline ” is disrupted.
Recently, high-resolution and high-dynamic range VLA obser-
vation of M87 show that the jet in this source is limb-
brightened over much of its length and bright filaments appear
to be located on the surface (Owen, Hardee, & Conwell 1989).
Our analysis of the stability of thermally confined jets reveals
the existence of unstable surface waves along the jet boundary.
The wave interaction along the boundary of a jet may provide
the environment for particle acceleration along the surface.
This might explain why the bright filaments in a jet like M87
are embedded in the surface of jet.

6.2. Summary

In an effort to understand the instabilities and disruptions of
astrophysical jets propagating in the galaxy ISM and cluster
ICM, we have investigated Kelvin-Helmholtz instabilities for a
thermally confined slab jet in a more generalized fashion than
in previous studies. We have solved the dispersion equations in
a complex (k, w) domain. Several interesting results are sum-
marized here.

First, we have found a number of singularities in the system.
Two of them are associated with two internal sound waves
propagating along two distinguishable characteristic lines with
slopes uy — a;, and u, + a;, in an observer rest frame. The
confined jet is just like an acoustic wave guide and the internal
sound waves impinge on the boundary from one side of jet to
the other. Gain or loss the energy carried by the internal sound
waves during the scattering with the interface is determined by
the sign of the wave velocities in the jet rest frame. The sound
wave propagating with the jet is a growing rarefied body wave
and the sound wave propagating against the jet is a condensed
body wave. In the linear stage, the internal jet flow in the
system is characterized by the two acoustic body waves with
superposition of certain reflection patterns. In addition to
internal body waves, we recognize a number of surface waves
in the system. Two of them are coupled to the relevant body
waves. The surface waves also grow in amplitude, developing
abundant dynamical vortices along the surface.
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Second, there is a critical condition, M2 ># + 1
+ n**M2P3, under which the jet becomes supersonic and the

eight singularities found in the system are real. Once the jet
becomes transonic, M7, <7 + 1 + n'>M}/>, two of the singu-
larities form a complex conjugate pair and the structure of the
roots becomes more complicated. With a broad spectrum
derived in this paper, we now have a better understanding of
the distribution of singularities in the system.

Finally, the analysis in this paper provides a self-consistent
model to interpret the wealth of phenomena observed in astro-
physical jets. The abundant growing surface waves found here
possibly correspond to limb-brightened features and surface
filaments discovered in astrophysical jets. We will show that
disruptions of supersonic jets can be caused by growing inter-

nal acoustic body waves, as well as the relevant surface waves,
propagating against flow in our Paper II. The quasi-periodic
wiggles and abrupt flares observed in jets are natural conse-
quences of the growth of surface and body waves.
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