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PACS:

I. INTRODUCTION

1 Geometry: elongation, conjuction, opposition,
quadrature, ecliptic, equatorial sphere,

2 Time:

3 Distance:

a- Copernicus method of measuring distance
b- Kepler method of measuring distance
c- Parallax method for near and far objects

d- Transit of terrestrial planets

II. THE ASTRONOMICAL CONTEXT

1 Coordinate systems:

a- declination (6) and right ascention («)

b- solid angle: an interior angle that contains
all trajectories that emanate from an object
(source).

2 Brightness and apparent magnitude: five magni-
tudes corresponds to a factor of 100 in brightness.

3 m; —my = 2.5log ;—j Brightness and flux depend
on frequency of radiation and are usually measured
using filters in different frequency bands (U, V, B,
I, etc.) The sum of fluxes in different filters is called
the bolometric flux and the resulting apparent mag-
nitude is the bolometric magnitude.

4 Absolute magnitude is the magnitude measured at
a distance of 10 pc. Distance modulus is equal to
5log D — 5.

4 Doppler measurements: wavelength of radiation
changes with direction and magnitude of motion.

Red shift is

z=— (2)

proper motion is the rate of change of the angular

position of star, up = % = %.

distance measurement methods

III. RADIATION

The specific intensity I, (r) at any point in space r is
chosen such that the energy de of the photon rays
that cross an area dA normal to the propagation
direction in time df in a solid angle d2 is

de = I, dvdtd AdQ) (3)

ar, _

I, is constant along any ray, i. e. =

Flux: dF, = I, cos8dS2, where 8 is the angle be-
tween the normal to area dA and the propagat-
ing rays. This means that for an isotropic I,(6),
F,=0.

Energy density : u, = %J,,, where J, = fI,,dQ.
For isotropic intensities, u, = 47”I,,.

Radiation pressure: P — %u, because the photon
momentum per unit time per unit area is pressure.
Substituting for the energy of photon as £ = pec
gives the above expression for radiation pressure.
Substituting instead, £ = %pv for particles, give
the matter density P — %u.

Flux from a sphere of uniform brightness: flux at a
distance r from a source of brightness B and radius
Ris F = «B(R/r)%. If the source luminosity is
know, then the stellar radius can be obtained from

— L
R = 4r2B"

Blackbody: a blackbody is an ideal emitter of radi-
ation that it absorbs. All blackbodies at the same
temperature 7" have similar radiation spectrum,

2h1? 1
2 ex — (4)
p(hv/KT) -1

There are two limits:

a- hv >> kT R
Then, B,(T) ~ 2’;'2’ exp (—hv/kT). This is
the Wien’s tail.




b- hv << kT
Then, B,(T) ~ i%sz. This is the Rayleigh-
Jeans limit. This limit says that the black-
body radiation increases quadratically with
frequency.  This is called the ultraviolet
cathasrophe.

7 The BB radiation By(T) peaks at ApqeT ~ 0.29,
where A is in cm. This is the Wien’s displacement
law.

8 Stefan-Boltzmann law: the total energy density in
an isotropic radiation BB field is = aT*, where
a = 7.56464 x 107 !% erg cm ™2 K~*. The emergent
flux from the surface of the BB is F, = %u = oT*?.

9 Hertzsprung - Russell (HR) diagram: HR diagrams
relate the stellar luminosity (apparent magnitude)
as a function of color index (temperature).

10 OBAFGKM classification: used to categorize the
stellar temperatures (color indices) ranging from
the coldest (M) stars to hottest (O) stars, 2500 <
T < 50,000.

11 Refracting telescopes: make use of lenses and
Snell’s law, ny sin #; = ny sin 6,

12 Reflecting telescopes: make use of mirrors and law
of reflection, 6; = 6,.

IV. CLASSICAL DYNAMICS

1 Gravitational potential of a spherical shell: If the
point is outside the shell, then V(r) = —%.

If the point is inside the shell, V(r) = —¢mM —

a
constant, where a is the radius of the shell.

2 Two-body problem: In the center of mass of two
particles with masses m; and my, the relative mo-
tion of the particles is exactly similar to the motion
of a fictitious particle of mass p = _*4™2- at a dis-

1+mz . :
tance r = |ry —r1| from the center of mass which in
the absent of external forces moves with a constant

velocity.

3 Total angular momentum L = ur x &. In the center
of mass, the total angular momentum is L = ur?4.

4 Total energy E = K.E.+ P.E. = ;ui? + T Mv2, —

%. When angular motion is involved, the total

energy minus the constant energy of the center of
mass is E = L1p[#? + r?6%] — %

5 Constants of motion: Energy and angular momen-
tum.

6 Orbits:

a- 7 = 1,[1 + €cos6]~1, where

2
b- €2 —1= %I)’T/”)— and the semi-latus rec-
tum r, = a(1 — €?), where a is the semi-major
axis.

c- for € = 0, circular motion results.

d- for 0 < € < 1, meaning F < 0, the motion is
bound and elliptical.

e- fore = 1, E = 0, and the motion is bound and
parabolic.

GMyu
2a °

f- for bound motions, £ = —
7 Kepler’s laws:

a— planets move in elliptical orbits with the cen-
ter of mass (Sun) at one focus.

b- a line from the Sun (focus) sweeps equal areas

in equal times, ‘fi—f = %(L/,u)
2 . . .
e 12 = éLMa?’. If a is measured in AU and 7 is
in years, then 72 = a®. Then, M is measured
in M@ .

8 The escape velocity is the minimum velocity needed
to remove a particle of mass pu from the gravita-
tional attraction of the larger body of mass M.

Setting the KE = PE, v, = w/@, where 7 is

the distance to mass M.

9 Moment of inertia of a spinning sphere is I =
%MRZ. So, in consideration of orbital motion of the
Earth and other rotating bodies about their centers
of mass, one should also take account of the angu-
lar momentum due to inertia, i. e. L = Iw. For
instance, for the Jupiter-Sun system, the orbital pe-
riod is P = 11.86 years (that of Jupiter). Also, the
spin period of the Sun Py = 26 days and that for
Jupiter is Py = 10 hours. Then, the numbers show

L. 45 Le 45
® __ 6.7x10 Ly _ 6.7x10
us that ;=25 = Tsixiow and T7 = Toxiow- Lhe

orbital angular momentum wins by several orders
of magnitude.

10 Binary systems:

a— Visual binaries: both bodies are detected or-
biting about one another.

b— Astrometric binaries: only one body is ob-
served and its motion is oscillatory due to the
presence of the companion star.

c— Spectroscopic binaries: periodic oscillations of
the spectrum, but visually unresolved.

d— Eclipsing binaries: two bodies eclipse one an-
other producing periodic changes in apparent
brightness.

e— Binary systems rotate with angular velocity Q
about common center of mass and have radial
velocities K; = v;sin4, where i is the angle
of inclination, the angle between the line of



sight and the normal to the orbital plane. For
eclipsing binaries, it is safe to assume z = 90°,
as otherwise we would not see a full eclipse.
o — Ka _ra
m2 K, T1
_ (mysind)?®

= (mi1+m3)?"

h— my sin® i = T (K; + K3)?K,

i mo sin3i = ﬁ(Kl =+ Kz)zKl

g— mass function, f(m)

11 Tides: when the total potential energy due to the
gravitational attraction of the two bodies orbiting
about one another is considered, the potential per
unit mass,

Gm1 sz

®(r) = a R

1+ %cosﬂ
i] _ 1G(mlyms)
R? 2 R3

2 p2 2 m2
R 4+a® —2(——————
) (m1+mz

(3 cos?6 — 1)

ma
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D | =

—
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my + my

, where a is the radius of the larger body and R is
the distance between m; and ms. For Earth - moon
system, the equipotential surfaces (force equal to

zero) are such that h = %(z—f)(%”)?’R@ cos? 6,
where my = Mg and h = a — Rg is the height
above the ocean surface. The tidal height comes
to h = 0.5 m and from the influence of the sun

h = 0.25 m.

12 Roche Stability: The Roche limit is reached when
the differential forces (gravity and centripetal) are
balanced by the gravitational attraction of the
small body. Any body of density p that comes
within a critical radius, Roche radius, Rroche =
(9m2)1/3 where my is the mass of the larger body,

\drp
1s torn apart.

13 Roche Lobes: these are created when the equipo-
tential surfaces intersect at the saddle points (con-
stant potential = zero force). Roche Lobes as figure
8 intersect at L;, the first Lagrange point, where
the forces vanish. Roche lobes define the limit of a
star’s size. If a star becomes larger than its Roche
lobe, it dumps mass through the saddle point on
the companion star.

14 Virial Theorem: <V >= —2 < T > for a gravita-
tional system.

V. STARS AND STELLAR STRUCTURE

1 OBAFGKMRNS classification: hottest stars —
coldest stars.

2 Pop I stars are the youngest stars and hence have
the highest heavy element (beyond helium) abun-
dances, Z ~ 0.02.

JRacosf] (5)

3 Pop II stars are the oldest stars and are made
mostly of light elements, as they are the survivors
of the original generation of stars, Z ~ 0.002.

4 Nuclear Sysnthesis: 12C has a mass of 12 AMU. 1
AMU = 1.66 x 10~27 kg.

a— p-p cycle: creates alpha particles (*He nu-
cleus). This occurs in low mass stars, M <
1.5Mg.

b— CNO cycle: creates heavy elements with C as
a catalyst. This occurs in high mass stars,
M > 1.5Mg.

5 Hydrostatic equilibrium: the differential in pres-
sure is balanced with the stellar weight.

dP  Gp(r)M(r)
1P _ Gt ()

T

6 for constant density, P(r) = P.(1 — (%)?), where

: _ 3GM?
the central pressure is P, = g7 5r.
7 mass equation : 4L = 4xr?p(r).

8 Equation of state: P = P(p, T).

9 Polytropic equation of state: P = Kp!'t1/” where
n is the polytrope index. For the main-sequence
stars, such as the Sun, n = 3. For white dwarfs,
n=3/2.

10 The ideal gas law: P = nkT, where n is the number
density of particles in a gas and k is the Boltzman
constant.

11 P « pT « p°/3 for main-sequence stars. Then,

T o M1/3,

12 For stability, KE (thermal energy) = PE, i. e.
MET ~ €2 or R o« M?/3,

13 mean molecular weight for a neutral gas: u, =

> N;Aj . .
]T’ where N; are the number of particles j
i

with mass ratio (relative to H) of 4;.

14 mean molecular weight for a fully ionized gas: y; =

E], N;A;
> Ni(1+25)’

where Z; the nuclear charge.
15 Adiabatic index: ¥ = 1+ 1/n, where n is the poly-
trope index.

16 for a thermal gas, P « p, meaning that n = oo,
referring to an infinite number of degrees of freedom
for particle motion.

17 transport of heat:

a— radiation: heat is carried by photon absorp-
tion or emission



b— conduction: heat is generated due to collision
between gas particles.

c— conduction: heat is transferred by the actual
motion of gas particles.

18 Degenerate matter: fermions exert pressure due to
Pauli Exclusion Principle:

a— Fermi pressure: for non-relativistic electrons
— 1(3)2/3n* 5/3
Pr = 35(3) Ne .

T me

b- for relativistic electrons:

Pr = %(%)1/3hcn3/a.

18 White Dwarfs: the electron degenerate pressure
supports the gravitational (hydrostatic) pressure

a— non-relativistic s WD:
_1/,342/3 R 5/3

Pr = 35(2)* p—_ e /

b— relativistic WD: Pr = %(%)1/3%&/3

my e

c— since the hydrostatic pressure is P « p?RZ?,
then for non-relatistic WD, we find that

d- R~ “8—5/6’ and

e— M ~ ,u,e_s/z. Then,

f- MR® ~ u;5 = constant. Also, p ~ M2,

19 Chandrasekhar mass: M., = 1.457TMg.

20 Virial Theorem for stellar structure: F;,; =

%U, where U is the total gravitational poten-

tial energy. For v > 4/3, the total energy < 0 and
the star is bound. For v < 4/3, the total energy
> 0 and the star is unbound.

VI. COSMOLOGY

1 Hubble relation: v = HD.

2 Cosmic background radiation: isotropic blackbody
radiation at a temperature of 7' = 2.73K. The red
shift z = 1 — :—0 ~ 1500 relates the temperature
then to now

£Z1n‘.hen = dnow (z + 1) (7)

3 Newtonian Dynamics (2 << 1):

4 Lemaitre equation: A sphere of radius R expanding
with velocity R = HgR, where Hg is the Hubble
constant now. Let R(t) = R,a(t) subject to a(t,) =
1, then

a? = ?Gpa,2 — kc? (8)

where k is a constant of dimension (length)~2. The
density p = p,/a®. The starting point is the New-
ton’s equation.

3H?

5 Define a critzical density p.(t) = g7z such that
p = pc+ %. The starting point is the Lemaitre

equation and the realization that H —= % = %

6 The density parameter = pﬁ and the deceleration

parameter is ¢ = — 33 = %Q
7 Three different scenarios:

a— k > 0: (closed universe), where p > p., 2 > 1
and q < 0.5.

b- K < 0: (open universe), where p < p, 2 < 1,
and q > 0.5.

c— k = 0: (flat universe), p = p;, @ = 1, and
qg = 0.5.

8 For a flat universe (k = 0 and Q = 1):

a— matter dominated Einstein - deSitter Uni-
verse:

pa’® = poag (9)
and

a(t) = (67Gp,)'/3¢%/3 (10)

b— radiation dominated Einstein - deSitter Uni-
verse:

pa* = pya’ (11)
and

a(t) = (327Gp, /3)}/*1/? (12)

9 Cosmological constant: Einstein added at term to
the Lemaitre equation to counteract gravity.

8 A
a? = ?ﬂ’Gpa2 —k? + Eaa (13)

By choosing A = 47Gp, one can make H = 0 and
halt the expansion.

10 Recombination: when the temperatures were low
enough to about 7' = 2.7(z = 1500 + 1) ~ 4000
K, the Universe ran out of photons to ionize and
recombination era began.

VII. INTERSTELLAR MEDIUM (ISM)

1 Emission nebulae: diffuse patches of emission sur-
rounding hot O and B-type stars. HII regions
are emission nebulae with electron densities n, ~
5 x 10° cm™2 and masses M > 30 M.



2 Planetary nebulae: produced from the ejection of
outer stellar atmospheres and material is ionized.
Called planetary because they look like planets.

3 Radiation balance: total number of ionization
events = total number of recombination events

4 Total number of ionization events = intensity (lu-
minosity) of photons divided by the photon energy
in each wavelength.

5 Total of recombination events — probability for
recombining two particles (rate coefficient a(T))
times the densities of two recombining particles, say
electrons and protons, over a volume of radius r;,
called the Stromgren radius. The larger the den-
sities of the recombining particles, the larger the
number of recombination events.

Q= %ﬂ'rfnlnza(T) (14)

where n; and ny are the densities. For hydrogen
and helium, the first ionization energies are, respec-
tively, 13.6 and 24.6 eV, or 3.3 x 10'® and 6.0 x 105
Hz.

6 Interstellar dust and gas reduce the transmission of
light and hence the magnitudes and fluxes:

my —my, = A}\ (15)

where A, is called the extinction. Recall that in
Chapter III, we learned that intensity remains con-
stant along a defined path, i. e. % = 0. If there
is absorption or scattering of light by dust parti-
cles, the intensity must diminish. If we define this

diminishing to be exponential,

dI,
—= = —kyI 16
. ralx (16)
Then,
I = 1n(0) exp (—12) (17)

where 7, = fos ngop(A)ds is the optical depth
and o(A) is the cross section in cm? for scattering
and/or absorption. Then,

A — A = -2.51 g —
m m .0lo
° 1}\(0)

= —2.5logexp (—7y) = 1.0867y (18)

Therefore, Ay = 1.0867,. By measuring m) for a
star of the same spectral type near us, such that for
this star, Ay = 0, we can derive Ay by knowing the
distance to the star and the measured flux ratio.

7 Phases: hot phase (10® K), warm phase (10° K),
and cold phase (100 K). The molecular clouds exist
in the coldest reaches of the cold phase of ISM. The
typical temperatures for molecular cloud is about
20 K. The best example of a hot gas is the solar
corona (the diffuse ionized gas stretching from the
Sun).



