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 4. Classical Dynamics

4.1  Newtonian Gravity

Two point masses M1 and M2 positioned at r1 and r2 attract one another.

M1 feels a force from M2.

F 1 2=   
− GM1 M 2 

r 3 
1 2

r 1 2

where r 12 = r 1 - r 2 is the vector from point 2 to point 1 and r12 = |r 12|.  The units

of G are cm3 s-2 g-1.  M2  feels a force from M1

  F 2 1=   
− GM1 M 2 

r 3 
1 2

r 2 1=   
GM1 M 2 

r 3 
1 2

r 1 2  =   −     F 1 2
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Fig. 4-1

Gravitational forces are equal and opposite in accord with Newton’s third law.
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4.1.1 Newton’s laws

1.  A body remains at rest  or in uniform motion unless acted on by a force

2.  Force is equal to the time rate of change of momentum.

3.  Action and reaction are equal in magnitudes and directly opposite in direction.

4.1.2  Gravitational potential

Gravitational forces can be represented by the gradient of a potential.

If F12 is the force on particle M1 at r1 due to M2 at r2 

F12 = -∇ 1 V (r 1 )

where

V � r 1 �   =   
− GM1 M 2 

r 1 −   r 2 

is the gravitational potential on a mass M1  at r1  due to the presence of M2 at r2 and

L 1   =   � 
� 
� � 
M 
M x 1 

  ,   
M 
M y 1 

  ,   
M 
M z 1 

� 

� 
� �   .

If there are N masses Mi  at  points r i , the potential for a test mass m at any point r   
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V � r �   =   − m 
N 

3 
i = 1 

GMi 

r −   r i 

where the sum excludes any mass at r .  The force is -∇ V(r ).

 4.1.3  Gravitational attraction of a spherical shell

z

r
P

x

a

δx

O
θ

Consider a thin spherical shell of mass M and radius  a.  P is a particle of

mass m at a distance r from the center O of the shell and outside it.  Divide the shell

into rings x, x + δx by planes perpendicular to OP.

Area of ring is 2πa  sin θ × aδθ =  2πa δ x   

where x = a cos θ , δ x =a sin θ δθ

Surface area of the shell is 4πa2.  

So mass of ring is
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2 π a δ x 
M 

4 π a 2   =   
M δ x 

2 a 

Every point of the ring is equidistant by z from P so gravitational potential at P due

to the ring is

dV = 
− Gm

z 
    

M δ x 
2 a 

  . 

Total for the shell is 

V   =   − 
a 

I 
− a 

GmM
2 az

δ x .

Now z2 = a2 + r2  - 2rx

         2zdz = - 2rdx

      

  V   =   
r − a 

I 
r + a 

GmM
2 ar

d z 

=   
GmM
2 ar � r − a � −   � r + a � =   − 

GmM
r 

  .

 

Force on the particle is the same as that exerted by a particle of mass equal to that of

the spherical shell placed at the center of the shell.

If P is inside the shell,
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  V   =   
a − r 

I 
a + r 

GmM
2 ar

d z 

=   − 
GmM

a 

which is a constant.  So the force 
− dV
dr  vanishes—the shell exerts no force on

particles inside it.  

Ostlie and Carroll (pp. 36-38) give a similar discussion but use the force

rather than the potential.  

4.1.4  Solid sphere

Suppose the sphere is a solid with a mass distribution that is a function of r

(or a constant).  Add up the potentials of all the spherical shells—result is the

same—gravitational potential on a particle outside a solid sphere is the same as that

exerted by a particle having the mass of the sphere situated at its center.

Suppose particle is inside the solid sphere of mass M and radius R at a

radius r.  Shells with radii greater than r exert no force.  Inside we have a solid

sphere of mass M(r)=Mr3/R3 so gravitational force on the particle is 

F(r) = GmM � r � 
r 2 

=   G 

  

m 

r 2 
  M r 3 

R 3 
  =   GmMr

R 3 
  .
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4.1.5  Two solid spherical bodies

Force on each particle of sphere A is the same as produced by a particle of

mass mB at the center of sphereB.  Add for all the particles.  Gravitational force of A

or B is the same as if the masses were particles at the centers of the two spheres.

4.2  The Two-body Problem

Equations of motion of two bodies at r1´ and r2´ with constant masses

M 1 

..

r 1 N   =   
− GM 1 M 2 

r 1 N −   r 2 N 
  3 � r 1 N −   r 2 N � 

M 2 

..

r 2 N   =   
− GM1  M 2 

r 1 N −   r 2 N 
  3 � r 2 N −   r 1 N �   .

Add the two equations 

M 1 

..

r 1 N   +   M 2 

..

r 2 N   =   0 

(linear momentum is conserved).

The center of mass is at the position R where

R   =   
M 1 r 1 N   + M 2 r 2 N     

� M 1 + M 2 �   
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Then 
..

R  = 0, 
. 

R  = constant = vcm  — in the absence of an external force, center of

mass moves with uniform velocity.

Introduce coordinates r 1 = r1´  - R

r 2 = r2´  - R

R = R0  + vcmt      (t  is the time)  

relative to the center of mass

M 1

M 2

r1

2CM

r 1 r
2

R

0

r

´ 
´ 

Fig. 4-2

Then

M 1 

..

r 1   =   
− GM1 M 2 

r 1   −   r 2 
  3 � r 1 − r 2 � 

M 2 

..

r 2     =   
− GM1 M 2 

r 1   −   r 2 
  3 � r 2   −   r 1 �   .
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This independence of origin and velocity is called Galilean invariance.  So choose

origin as the position of the center of mass—i.e. take R = 0. (Then r 1=r 1´  and

r2=r2´.)  Now calculate the total angular momentum about origin.

L   =  M1 r 1 H   r ̇ 1   +     M 2 r 2   H   r ̇ 2   .

For any central force

M 1 r ̈ 1 =   − λ � r 1   − r 2 �

 M2 r ̈ 2 = − λ  � r 2   − r 1 �

where for gravitation λ   =   
GM1 M 2 

r 1 − r 2 
3     .

Then

d L 
dt

  =   M 1 � r ̇ 1  x r ̇ 1 +   r 1  x  r ̈ 1 �   +   M 2 � r ̇ 2  x r ̇ 2 +   r 2   x   r ̈ 2 � 

=   � r ̇ 1  x M 1 r ̈ 1 �   +   � r 2  x M 2 r ̈ 2 � 

=   − λ r 1   x   � r 1 −   r 2 � + r 2   x � r 2 −   r 1 � 

=   − λ r 1  x  r 2 + r 2   x  r 1   =   0   .

L   =  constant vector,  perpendicular to the plane of the motion and the 

            motion is in a plane perpendicular to L . 

We can also prove that the total energy E = T + V  is constant where T is the kinetic

energy and V the potential energy.  Write the equations as
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M 1 r ̈ 1 =   −   L 1 V ,    M 2 r ̈ 2 =   −   L 2 V ,    

where V is the potential 

V   =   
− GM1 M 2 

r 1 − r 2 

  .

Now using  df
dt

  =   df
dx

  dx
dt

  +   df
dy

  dy
dt

  +   df
dz

  dz
dt

  for any function f

we write

 
dV
dt

=   L 1 V A   r ̇ 1    +   L 2 V A   r ̇ 2  .

Multiply equations of motion by  r ̇ 1 and  r ̇ 2  to give 

M 1 

..

r 1 A  r
.  

1     =   − L 1 V A    r.  1 

M 2 

..

r 2 A    r
.  

2   =   − L 2 V A    r.  2      .

Thus adding the two equations,



4-10

d 
dt

  
1 
2 

M 1 r ̇ 
2 
1   + 

1 
2 

M 2 r ̇ 
2 
2   +  V    = 

d 
dt

T   +  V =   0   

i.e. E tot= T + V = constant.  

To describe a two-body system we need six functions of time r1(t) and r2(t)

and twelve constants (say initial positions and momenta) must appear in the

solutions.

We now have determined 3 for R, 3 for vcm, 3 for L  and 1 for E (these

also apply to a many-body system).  The two remaining are valid for two-body

systems only.

4.2.1  Two-body orbits

   

r   

1
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r
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2

Fig. 4-3
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R =   
M 

1 
r 

1 
  +   M 

2 
r 

2 

M 
  ,   M =   M 

1 
+ M 

2 

Introduce   r   =   � r 1 
  −   r 

2 � 

  Then  r
1 
=   

M 
2 
r 

M 
  ,     r 

2 
  =   

− M 
1 

M 
  r  ,   r 

1 
  −   r 

2 
  =  r .

Equations of motion of 1 and 2 are

M 
1 

..

r 
1 
=   −   

GM
1 
M 

2 
  r 

r 3 

M 
2 

..

r 
2 
=   +   

GM
1 
M 

2 
  r 

r 3 
   .

Now consider the equation for the relative motion of the two particles

..

r   =   
..

r 
1 
−   

..

r 
2 

=     −   � 
� 
� � � 

1 
M 

1 

  +   1 
M 

2 

� 

� 
� � � 

GM
1 
M 

2 
  r 

r 3 
  =   −   1 

µ 
GM

1 
M 

2 
  r 

r 3 
  .
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This can be written as mass × acceleration = gravitational force in the form

µ r ̈   =   −   G µ M 

r 3 
r 

where the reduced mass µ  is given by

      1 
µ 

  =   1 
M 

1 

  +     1 
M 

2 

   ,      µ   =   
M 

1 
M 

2 
  

M 
1 
+   M 

2 

  =   
M 

1 
M 

2 
  

M 
  . 

The equation describes the motion of a fictitious particle of mass µ under

the gravitational attraction of a particle of mass M = M1+ M2, separated by r .  The

force can be written as the gradient with respect to r  of a potential

V � r �   =   −   
GM1 M 2   

r 
  =   

− G µ M 

r 
  . 

The total angular momentum of the system about the center of mass is 

L   =   r 1   H   M 1 r 
.  

1   +   r 2   H   M 2 r 
.  

2   .

With  
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 r 1 =   
M 2 r 
M 

  ,   r 2   =   −   
M 1 r 
M 

L   =   
M 1 M 2 

M 
  r H � � 

. 

r 1   − 
. 

r 2 
�
�

=   µ r   H   r .  . 

Check:
d L 
dt

  =   µ r ̇ H r ̇   +   µ r H r ̈ 

=   0   +   r   H   � 
� 
� � � 
− G µ M 

r 3 

� 

� 
� � � r =   0  .

The center of mass moves in a straight line and makes no contribution to the angular

momentum (R × vcm = 0).

The angular momentum of the two-body system is identical to that of a

single particle of mass µ moving with the relative velocities of the two bodies.

The kinetic energy of the two bodies is
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T   =   
1 
2 

  M 1 

. 

r 1 N 
2   +   

1 
2 

  M 2 

. 

r 2 N 
2 

= 
1 
2 

  M 1 
� 
� 

. 

r 1   +   
. 

R � � 
2 

+   
1 
2 

  M 2 
� 
� 

. 

r 2   +   
. 

R � � 
2 

= 
1 
2 

  M 1   
� 

� 
� � 
  M 2 

M 
� 

� 
� � 

2 . 

r 2 +   
1 
2 

  M 2   
� 

� 
� � 
  M 1 

M 
� 

� 
� � 

2 . 

r 2 

+   
. 

R 
� 

� 
� � � 
� �   M 1   M 2 

M 
  

. 

r   −   
  M 2   M 1 

M 
  

. 

r 
�

�
���
��

+   
1 
2 

  � M 1   +   M 2  � 
. 

R 2 

�  T =   
1 
2 

  
M 1 M 2 

M 
  

. 

r 2   +   
1 
2 

  M v cm
2 

= 
1 
2 

  µ 
. 

r 2   +   
1 
2 

  M v cm
2  .

The kinetic energy of the two-body system is the kinetic energy of relative motion

of a particle of mass µ plus the kinetic energy of the total mass M moving with the

velocity of the center of mass.  The potential energy is 

V   =   −   
GM1 M 2   

r 
  =   

− G µ M 

r 
  , 

so the total energy of the system is the total energy of the particle of mass µ moving

in the field of a particle of mass M plus the kinetic energy of mass M moving with
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the center of mass

E 
tot

  =   1 
2 

µ 
. 

r 
2 

  +   1 
2 

M v 
cm

2   -   
G µΜ

r 
  

=   E   +   1 
2 

M v 
cm

2 . 

E is the energy of relative motion.  

In Cartesian coordinates, L   =   ( 0 ,   0 , L )   ,   r   =   ( x , y , 0 ) ,   r ̇   =   ( x ˙ , y ˙ , 0 )  ,

the angular momentum equation becomes

L   =   µ ( x y ˙   −   y x ˙ ) 

and the energy equation is 

E   =   
1 
2 

µ   � x ˙ 2   +   y ˙ 2 �   −   
G µ M 

� x 2   +   y 2 � 
1 

2 

  .

    

  

Better in polar coordinates
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δ θ δ r

rδ θ 

trajectory

Fig. 4-4

or cylindrical coordinates (r, θ, z) with z perpendicular to the plane.

In time t, 

r (t) →  r (t + δt)

r ̇   =   
r � t + δ t �   −   r ( t ) 

δ t 

=   � 
� 
� � 
δ r 
δ t   ,   

r δ θ 
δ t   ,   0 

�

�
��

So components of the vector 
. 

r  =   � � 
. 

r   ,   r   
. 

θ ,    0 ��

Then

r x   
. 

r     = � �   0 ,   0 ,   r 2 θ ˙ ��
. 

r A   
. 

r   = 
.  

r  2 +   r 2   θ ˙ 2 

So L = µr2  θ ˙  , 
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where   θ ˙  = angular velocity

E =   
1 
2 

µ 
� 
� 
� � . 
r 

2 

  +   r 
2 

  θ ˙ 2 
� 
� 
� � 
  −   

G µ M 
r 

  .

Angular momentum equation can be interpreted geometrically.

    

d θ
r(t 

+ dt)

r(t)

t + dt

t

dA
    
  

Fig. 4-5

In the interval t, t + dt, the orbit sweeps out an area dA and 

dA = 
1 
2 

r x rdθ

so
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dA 
d t 

=   
1 
2 

r   x 
rdθ 
d t 

  =   
1 
2 

r 2 θ ˙ 

              �   
dA 
dt

  =   
L 
2 µ   =  constant .

 

This is Kepler’s second law.  The radius vector to a planet sweeps out equal areas in

equal intervals of time.

We can proceed further to obtain an equation in a single variable r .  We

have

d θ 
dt

  =   
L 

µ r 2      ( conservation of angular momentum) 

� 
� 
� � 
d r 
dt

� 
� 
� � 

2 

=   
2 E 
µ   +   

2 GM
r 

  −   � 
� 
� � 
1 
µ 
� 
� 
� � 

2  L 2 

r 2       ( conservation of energy) . 

 

Write this as

E = 1 
2 

µ � 
� 
� � 
dr
dt

� 
� 
� � 

2 

  −   µ GM
r 

+ µ 
2 

  � 
� 
� � 
L 
µ 
� 
� 
� � 

2 1 

r 2 
  .

The last term is the centrifugal repulsion. It is the opposite of the cenripetal force.  It

is an inertial force that arises to take account of the angular motion.  We are in

effect using a rotating frame with respect to which the particle has no angular

motion and we need consider only radial motion.  Consider a particle moving with

constant angular velocity ω in a circle and ask  what  is the effective force.   We

showed in Chapter 1 that the force is mv2/r = mrω2 = mr   θ ˙ 2.  For a mass µ, the
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corresponding potential is 
− 1   

    2     
  µ  r 2   θ ˙ 2 = −   µ 

2 
� 
� 
� � 
L 
µ 
� 
� 
� � 

2 1 

r 2 
 .

4.2.2  Runge-Lenz Vector (optional)

For a central force proportional to 1/r2 , there is an additional conserved

vector called the Runge-Lenz vector (though it was written down in 1799 by

Laplace).  The Runge-Lenz vector is 

A= p x L  - µ2GM  
r 
r 

Then

d 
dt � 

p  x L � =   p 
.  

  x   L =   µ r ̈   x   L   =   − 
µ GM

r 3   r   x   L 

= − 
µ 2 GM

r 3   r   x     (   r   x   r 
.  

) . 

Use vector identity

a   H   � b   H   c �   =   b � a   A   c �   −  c � a   A   b �

r   H (   r H   r 
.  

)   =   r ( r A   r 
.  

)   −   r 
.  

  r 2 

=     r 3 

: 

; 

< 

= = = = 

= = = = r   
r   A  r

.  
  r 3   −   

 r
.  

  r 

B 

C 

D 

E E E E 

E E E E   . 
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But r   A   r .    = 
1 
2 

  
d 
dt � 

 r   A   r �   =   
1 
2 

  
d 
dt

  �   r 2 �   =   r r .    

and

r H (   r H   r .    ) =   r 3 

: 
; 

< 

= = = 

= = = = 
1 

r 2   r 
.  
  r   −   

r 
.  

r 
  

B
C

D

EEE

EEEE .

Now 
d 
dt  (unit vector) = 

d 
dt

  � 
� 
� � 
r 
r 
�
�
��  =   −   

1 

r 2   r 
.  
  r +  r.  / r .

So

r H   ( r   H   
• 

r )   =   − r 3 d 
dt

r ̂   ,         r ̂   =   r / r . 

d 
dt � 

p   H   L �   =   
+ µ 2 GM

r 3   r 3   
d r ̂ 
dt

  =     µ 2 GM
d 
dt

p   H   L   −   
µ 2 GMr 

r 
  =   constant =   A ,  say

� 
� 
� � 
r 
r 
�
�
�� 

Then A · L  = 0.

A is a fixed vector in the plane of the orbit.  

4.2.3  Orbits

To find the trajectory as a function of time, we have to integrate the pair of

conservation equations on page 4-18 with respect to time.  But we can find the

shape of the orbit (which is r as a function of θ)
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d r 
d θ     = 

d r 
dt 

/   
d θ 
dt 

=   
µ 
L 

r 2 2 E 
µ   +   

2 GM
r 

  −   � 
� 
� � 
L 
µ 
� 
� 
� � 

2 

  
1 

r 2 

1 / 2 

or

d θ   =   � L / µ � dr

r 2 2 E 
µ   +   

2 GM
r 

  −   � 
� 
� � 
L 
µ 
� 
� 
� � 

2 

  
1 

r 2 

1 / 2   
 .

Integrate

θ 

I 
θ 0 

d θ   =   θ − θ 0   =   
r 

I   � L / µ � dr

r 2 2 E 
µ   +   

2 GM
r 

  −   � 
� 
� � 
L 
µ 
� 
� 
� � 

2 

  
1 

r 2 

1 / 2   

where θ0 is a constant of integration.

Define a scale length by

r o   =   � 
L / µ � 

2 

GM
  =   

L 2 

GMµ 2   

and a second constant ε by 
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ε 2   =   1   +   
2 � E / µ � � L / µ � 

2 

� GM � 
2 

=   1   +   2 EL2 / � GM � 
2 µ 3   .

For a bound orbit, ε < 1 and E is negative. Then the integral can be written

r 

I r o dr

r 2 7 ε 2   −   � 1   −   r o / r � 
2 ? 

1 / 2   =   θ   −   θ 0  .

Introduce a new variable u by

(1-ro/r )
2 = ε2 cos2 u

or

ε cos u =±(1 - ro/r ) .

Then, adopting the + sign, 

ε sin du = −   
r 

o 
d r 

r 2 

and
r 

o 
d r 

r 2 
7 ε 2 − � 1 − r 

o 
/ r � 

2 
? 

1 / 2 
  =   du.
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We obtain

u 

I 
o 

 du =   θ   −   θ 0 

  

  
i.e.  u = θ - θo   ,   cos u = cos (θ - θ0 )

Hence 

ε  cos ( θ − θ o )   =   1 − r / r o 

or

1 
r 

  =   
1 
r o 

1 "   ε  cos � θ   −   θ 0 �   .

We choose + and ε positive.

1 
r 

  =   
1 
r o 
7 1 +   ε  cos � θ   −   θ 0 � ?     

where 

ro = L3/GMµ2  ,  ε2 = 1 + 2EL2/(GM)2µ3

is the orbit equation.  It is the equation of a conic section.  ε is called the

eccentricity.  There are three possibilities.
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ε=0  is a circle r=r o

ε < 1   If ε < 1, r is always finite—the particles remain bound with 

r p =   
r o 

1   +   ε   # r # 
r o 

1   −   ε   =   r a     

where rp and ra are the nearest and furthest parts of the trajectory from a focus,

called respectively the perigee and the apogee.  Then

ε   =   
r a    −   r p   

r a    +   r p 

  .

ε = 0, the motion is a circle and the two foci coalesce at the center and ro = a is the

radius.  In describing the solar system, rp and ra are called, respectively, the

perihelion and the aphelion. 

Let us express the orbit in Cartesian coordinates.

x = r cos (θ−θ0)

y = r sin (θ−θ0) .

Then the orbit equation is 

1 

� x 2 +  y2 � 
1 / 2   =   

1 
r o 

  
: 
; 
< 

= = 

= = 
1   +   

ε x 

� x 2 +  y2 � 
1 / 2 

B
C
D

EE

EE
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which is 

� 
� 
� � 
x + ε a 

a 
� 

� 
� � 

2 

+ 
y 2 

b 2   =   1 

where a =   
r o 

1 − ε 2   ,  b =   
r o 

� 1 − ε 2 � 
1 / 2   .

Then

     rp = a(1-ε) ,   ra = a(1 + ε)  .

a is the semi-major axis, b is the semi-minor axis, ro is the semi-latus rectum.  

The axial ratio is 
b 
a  = (1-ε2)1/2

a is the average Sun-planet distance which for Earth defines 1AU.

We choose θo =O.  In the figure, O is origin of coordinates.
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      / 
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b can be obtained from the coordinates of the point x = O , y = r0

� a ε � 
2 

a 2 
  +   

r 2 

o 

b 2 
    =   1   ,     

r 2 

o 

b 2 
    =   1   −   ε 2 

and

b 2 

a 
  =  r

o 
 .

The origin O of coordinates is the focus at the center of mass (close to the Sun).  If

the origin is taken at the center (the midpoint of the two foci) equation is

x 2 

a 2   +   
y 2 

b 2   = 1 

The standard definition (and how you can draw it) is the locus of the point P

such that r + r´= constant where r and r´ are the distances from points O and O´.

P

r´  

O ´ O
2aε 

r

θ

fig. 4-7
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r´2= r2 + (2aε)2 + 4aεr cos θ

Orbit equation: 

r = a(1-ε)2/(1 + ε cos θ)

∴ εr cos θ = a(1-ε2)- r

r´2= r2 + 4a2ε2 + 4a2(1-ε2)-4ar

= (r-2a)2

∴  r + r´= 2a.  

ε < 1 implies E < 0, the total energy of a bound system is negative.  

The orbit is periodic and closed.

The period is obtained from dt/dθ = ( dθ/ dt)−1, 

d θ 
dt

  =   � 
L / µ � 
r 2 

using  
1 
r 

  =   1 
r 

o 

  1   +   ε  cos � θ �  .

Hence 
t 

I d t =   
r 2 

o 

� L / µ � 
  I d θ 

1   +   ε   cos� θ � 
2 

 .

In going around the orbit, θ → θ + 2π
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                                         t  → t +τ

where τ  is the period so 

  
r 2 

o 

� L / µ � 
  

2 π 

I 
0 

d θ 

1   +   ε  cos θ 
2   =   τ . 

Use the substitution t = tan (θ/2)

d θ   =   
2 dt

1   +  t2   ,   cos θ   =   
1   −  t2 

1   +  t2    .

Then

τ =   
r 2 

o 

� L / µ � 
  A   

2 π 

� 1   −   ε 2 � 
3 / 2 

or    τ = 
2 π a 3 / 2 

� GM � 
1 / 2   .

The points at which the velocities are at right angles to the radius vector are called

apses.  The apse nearer to the Sun is the perihelion and the point further away is the

aphelion (Fig. 4-6). 

An alternative proof:  integrate 
dA
dt  over the period P  where A is the area of

the orbit.  Kepler’s second law is

dA
dt

  =   L 
2 µ 

  =  constant .   ( cf. 4 − 18) 

So A =   
LP
2 µ  is the area of the ellipse and P2 = 4µ2 A2/L2
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But A  = πab

and 
b 2 

a 
  =  ro =  L2   /  GMµ 2  .

Then   P2   =   
4 µ 2 A 2 

L 2   =   
4 µ 2 

L 2 π 2  a2  a 
L 2 

GMµ 2 

P 2   =   
4 π 2 

GM
   a3 . 

To obtain a simple formula for E, note that at perihelion rp and aphelion ra,

r ̇   =   0 ,   so r ̇   is perpendicular to   r   and

L = µvr = µvp  a (1-ε) = µva a (1+ε)

                               
v p 

v a 

  =   � 
1 + ε � 
� 1 − ε � 

                                  E   =   
µ v p 

2 

2 
  −   

GMµ 
r p 

  =   
µ v a 

2 

2 
    −   

GMµ 
r a 

  .

Replace vp by va  (1+ε)/(1-ε) and use 
1 
r a 

  −   
1 
r p 

  =   −   
2 ε 

a � 1 − ε 2 � 
  

                                            v a   = 
GM � 1 − ε � 

a � 1 + ε � 
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E =   
µ GM � 1 − ε � 

2 a � 1 + ε � 
  −   

µ GM
a � 1 + ε � 

= −   
GMµ 

2 a 
   .  

As E → 0, a →∞ .

From p. 4-22

  

L 2   =   � 1 − ε 2  � 
� − 2 E � 

� GM � 
2 µ 3 

  =   � 1 − ε 2  � GMµ 2 a 

   L =   µ 7 � 1 − ε 2 � GMa ? 
1 / 2 

  .

So a  = −   
GM1 M 2 

2 E 
 depends only on energy, ro depends only on angular

momentum and ε depends on energy and angular momentum. 

Kepler’s Laws:   for bound orbits,

1.  the planets move in ellipses with the center of mass (the Sun) at one focus.

2. A line from the Sun sweeps out equal areas in equal times
dA
dt

  =   
1 
2 

( L / µ )   .

(A is the area here, not the magnitude of the Runge Lenz vector).  
dA
dt  does

not depend on ε so the law applies also to unbound orbits with ε ≥ 1.  

3. The square of the period of revolution is proportional to the cube of the semi-

major axis
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τ 2   =   
4 π 2 

GM
a 3   .

If we ignore the mass of the planet compared to the mass of the Sun, M = Mu ,  then,

if τ is measured in years, call it the period P, and a is measured in AU,

P2 = a3 .

More generally, for a total mass M measured in Mu 

P ( years) 2   =   
a � AU � 

3 

M � M u � 
  .

Mean angular velocity ω = 2π/τ so

ω2 = GM/a
  .

To determine velocity at r, use conservation of energy

E =   
1 
2 

  µ r ̇ 2   −   
G µ M 

r 
  =   

− G µ M 
2 a 

   . 

Then

   r ˙ 2 =   2 GM � 
� 
� �   

1 
r 

  −   1 
2 a 

� 
� 
� �  .
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The closer to the focus, the faster the planet moves.

The relative motion is an ellipse.  The actual bodies move in ellipses of the

same shape but different sizes and all have the same angular velocity.  Thus

r 1   =     
M 2 

M 
  r ,   

. 
r 

1 
    =     

M 2 

M 
  
. 
r 

r 2   =   −   
M 1 r 
M 

  ,   
. 
r 

2 
    = −     

M 1 

. 
r 

M 
  .   

The Sun moves in a small orbit around the center of mass and the planet in a large

orbit around the center of mass, always positioned so that they are on opposite sides

of the center of mass.  (It is this motion that is used to detect extrasolar planets.)

S

P

P

S

Fig. 4.8
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Both orbits are ellipses.

Suppose we ignore the other planets and consider only Jupiter.  The average

Jupiter-Sun distance is 5.2 AU.  The mass ratio of Jupiter to the Sun is 0.95 × 10-3.

The radius of the Sun’s orbit is

M 
J 
a 

M 
  =   0 . 95  H   10− 3   H   5 . 2   H   1 . 5   H   108  km 

=   7 . 4   H   105  km . 

The radius of the Sun is comparable at Ru = 6.696 × 105 km. 

ε > 1   ε = 1 + 2EL2/(GM)2 µ3          E> 0  and orbit is unbound

- a  hyperbola.  

Write 
1 
r 

  =   
1 
r o 

1   +   ε  cos ( θ − θ o )  into Cartesian coordinates

1 

 � x 2 + y 2 � 
1 / 2 

  
  =   

1 
r o 

� 

� 
� � � 1   +   

ε x 

� x 2 + y 2 � 
1 / 2 

�

�
���

�     � 
x   − ε a � 

2   

a 2   −   
y 2 

b 2   =   1 

where  a =   
r o 

ε 2 − 1 
  ,  b = 

r o 

� ε 2 − 1 � 
1 / 2 

b 
a 

  =   � ε 2 − 1 � 
1 / 2 

 .
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With origin at the midpoint, the equation for the hyperbola is

x 2 

a 2   −   
y 2 

b 2   =   1   .

   

O´    

a

   

b

   

(
            

ε − 
            

1
   

)
   

a 

   

r    

0

111
111
111
111
111

000
000
000
000
000111
111
111
111
111

000
000
000
000
000

   

cos(θ−θ  ) = -1/ε   

O

   

O

Fig. 4-9

A hyperbolic orbit

ε = 1    E = 0 , total energy is zero.  Orbit is a parabola

y2 = ro
2 - 2rox

For a given distance r, E = 0 defines the escape velocity 
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1 
2 

µ v 2 

esc
=   G µ M 

r 
    ,     v 

esc
  =   2 GM

r 
 .

If v≥vesc , the particle escapes the gravitational field of M.  

y

x

r o

Parabola -  single pass orbit

0

/2r o

                                                      

                                                       Fig. 4-10

If a particle of mass M1  is moving in the gravitational field of a mass M2, the

particle escapes to infinity if at any r v≥vesc where the escape velocity vesc,

corresponds to E=0.  If v≤vesc, the particle is in a Keplerian orbit or is destined to

crash into the origin. 
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4.2.4  Mass of Sun

The sidereal period of a planet, τ, (denoted earlier by P),  is related to the

semi-major axis  

τ 2   =   
� 

� 
� � � 
4 π 2 

GM

� 

� 
� � � a 3 

where 

M = Mu + MPlanet

Measurements of τ
Planet τ a GM (1026 cm3 s-1) ε
Mercury 87.969 0.387099 1.32714 0.206

Venus 224.701 0.723332 1.32713 0.007

Earth 365.256 1.000000 1.32713 0.017

Mars 686.980 1.523691 1.32712 0.093

Jupiter 4332.589 5.202803 1.32839 0.048

Saturn 10759.22 9.53884 1.32750 0.056

Uranus 30685.4 19.1819 1.32715 0.047

Neptune 60189 30.0578 1.32723 0.009

Pluto 90465 39.44 1.32727 0.249
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Given τ and a, we can obtain Mp + Mu .

From low mass planets

G Mu  = 1.32713 x 1026 cm3 s-2.

Now

G = 6.674215 × 10-8  cm3 s-2 g-1  .

Then Mu  = 1.988435 × 1033g.

We can also derive mass of Jupiter.

G(Mu  + MJ) = 1.32839 1026 cm3 s-1

G(Mu  + ME) = 1.32713 1026 cm3 s-1

∴  G(MJ  - ME) = 1.26 1023 cm3 s-1

M J −   M E 

M u 
  = 0.000949  .

MJ  ~ 0.000949 Mu  

    = 1.89 x 1030  g

Better estimates can be made from the orbits of planetary satellites and spacecraft.  

4.2.5  Interplanetary travel
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Spacecrafts travel in orbits around the Sun.  Suppose a spacecraft is directed

to Mercury.  We wish to place it in an orbit around the Sun that is tangent to the

Earth at aphelion and tangent to Mercury at perihelion.  

   

Orbit of Earth

   

Orbit of Mercury

   

Least energy orbit

   

perihelion

   

aphelion

   

Sun

        

                                          

                                       Fig. 4-11

That orbit has the smallest a and therefore takes the least energy.  Assume orbits of

Earth and Mercury are circular.  Major axis is the sum of the aphelion and

perihelion distances
2a =  0.387 + 1.000 = 1.387 AU

a = 0.694 AU = 1.04 × 1011 m.

The initial orbital speed at aphelion comes from the conservation of energy
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v 2 
a =   GMu 

� 

�  
� � 

2 
r a 

  −   
1 
a 
�

�
��

(We are ignoring the gravitational fields of the Earth and Mercury)  Then with r =

1.496× 1011 m,

 
M 

u 
  =   1 . 988  H   103 0 kg

v 
a 
=   22 km s− 1  .

Each is orbiting the Sun at 30 km s-1 , so we launch at 8 km s-1 in a direction

opposite to the direction of the Earth’s motion.

4.2.6  Moment of inertia of a spinning sphere

The angular momentum of a particle of mass m orbiting about a center with

angular velocity ω is 

L =  mr2 

. 
θ   =  mr2 ω   =  Iω 

and its rotational kinetic energy is

T =   
1 
2 

mr2 

. 
θ 2   = 

1 
2 

 Iω 2  .

The angular momentum of a spherical body rotating about an axis with

angular velocity ω is similarly Iω and the kinetic energy is 
1 
2 

 Iω 2 
 where I is called

the moment of inertia.  For a uniform sphere of mass M and radius R, 


