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4. Classical Dynamics

4.1 Newtonian Gravity

Two point massedl; and M, positioned atr, andr, attract one another.

M, feels a force fronM,,

wherer,, =r, -1, is the vector from point 2 to point 1 ang, = |,,|. The units

of Gare cnis?gt. M, feels a force fronM,

-GM,M, _ GM,M,

I:21: 3 M= 3 M, = - I:12
P P

Origin 2

Fig. 4-1

Gravitational forces are equal and opposite in accord with Newton’s third law.
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4.1.1 Newton’s laws

1. A body remains at rest or in uniform motion unless acted on by a force
2. Force is equal to the time rate of change of momentum.

3. Action and reaction are equal in magnitudes and directly opposite in direction.

4.1.2 Gravitational potential

Gravitational forces can be represented by the gradient of a potential.

If F,, is the force on particlel, atr, due toM, atr,

Fio=-01V(r1)

where

~GM, M,

V<r1> = —|rl_ r2|

is the gravitational potential on a maés atr, due to the presence M, atr, and

0 0 d
ox, 'dy, ' dz;

vV, =

If there areN massed/, at pointg, , the potential for a test masgat any point
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where the sum excludes any mass athe force isEV(r).

4.1.3 Gravitational attraction of a spherical shell

Consider a thin spherical shell of madsand radiusa. P is a particle of
massm at a distance from the cente® of the shell and outside it. Divide the shell
into ringsx, x + o by planes perpendicular @P.

Area of ring is Zm sin® xadd = 2rma d x

wherex =acosf ,0x=asin@

Surface area of the shell isaf.

So mass of ring is
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M Mox
2180X > =
AT 2a

Every point of the ring is equidistant layfrom P so gravitational potential & due

to thering is
- Mox
Qv = Gm
z 2a
Total for the shell is
& GmM
\Y —_ja az X .
Now Z =a? +r2 - 2rx
2dz= - 2rdx
_ P GmMm
Vel ar @
GmM GmM
= oar [(r-a)- (r+a)]= - . )

Force on the particle is the same as that exerted by a particle of mass equal to that of
the spherical shell placed at the center of the shell.

If Pis inside the shell,
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_ T GmM

2ar dz

atr

B GmM
a

-dVv
which is a constant. So the foregj— vanishes—the shell exerts no force on
particles inside it.
Ostlie and Carroll (pp. 36-38) give a similar discussion but use the force

rather than the potential.
4.1.4 Solid sphere

Suppose the sphere is a solid with a mass distribution that is a function of
(or a constant). Add up the potentials of all the spherical shells—result is the
same—qravitational potential on a particle outside a solid sphere is the same as that
exerted by a particle having the mass of the sphere situated at its center.

Suppose particle is inside the solid sphere of mvgsd radiuR at a
radiusr. Shells with radii greater thanexert no force. Inside we have a solid

sphere of massl(r)=Mr3R® so gravitational force on the particle is

GmM(r)_ gm Mr’ _ GmMr
2

F(r) =
r r’ R R
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4.1.5 Two solid spherical bodies
Force on each patrticle of sphékés the same as produced by a particle of
massmg at the center of spheBe Add for all the particles. Gravitational force/of

or B is the same as if the masses were particles at the centers of the two spheres.

4.2 The Two-body Problem

Equations of motion of two bodiesrgf andr,” with constant masses

Add the two equations

M,r,” +M,r,” =0

(linear momentum is conserved).

The center of mass is at the posit®mwhere

erll +M2r2/
(My+M,)

R =
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ThenR = 0,R = constant v_ — in the absence of an external force, center of

mass moves with uniform velocity.

Introduce coordinates r; =r," -R
r2 = r2, = R
R=R, + V! (t is the time)

relative to the center of mass

Iy
Ml
ry
0
Fig. 4-2
Then
-GM M,
M,r, = r,—r
11 |rl_r2|3(1 2)
; -GM, M,
M,r, = 3l ~ rl)
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This independence of origin and velocity is called Galilean invariance. So choose

origin as the position of the center of mass—i.e. ke 0. (Thenr,=r," and

r,=r,".) Now calculate the total angular momentum about origin.

L=Mr;xr, + My, x,

For any central force

where for gravitatiorA =

Then

?j—lg = My (Fy XFo+ 1y xPy) + My (F, Xf,+ 1, xi,)
= (FyXMFy) + (ry XxM,f,)
= = A[ry x (Fy= rp)+r, X(ry= r)]

= —A[ryxXr,+ry,xr,;] =0 .

L = constant vector, perpendicular to the plane of the motion and the

motion is in a plane perpendiculakto

We can also prove that the total enekgy T + V is constant where is the kinetic

energy and V the potential energy. Write the equations as



M,f,= — V,V, M,i,= = V,V,

where V is the potential

~GM,M,
Py

df _ df dx , df dy , df dz ¢ o0y functiort

Now using— = — —= + —
dt dx dt dy dt dz dt
we write
OCII—\,[/: V.V i, + V,V-i,.

Multiply equations of motion by ,and r, to give

M,r,-f, = =V,V- [,

M,r,- f, = =V,V- [,

Thus adding the two equations,

4-9
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d 1. ., 1 . d
o ierf +EM2r§ +V | =x[T+V]=0

i.e.E =T+ V = constant.

To describe a two-body system we need six functions ofitjteandr (t)
and twelve constants (say initial positions and momenta) must appear in the
solutions.

We now have determined 3 fB, 3 for v._, 3 forL and 1 forE (these

cm’
also apply to a many-body system). The two remaining are valid for two-body

systems only.

4.2.1 Two-body orbits

Fig. 4-3



Introduce r

Mr, + M_r
llM 22,M2M1+M2
<r1_r2>
M._r -M
MZ,rZ: er,rl—rzzr
: GM M, r
M, r = - L2
r
: GM M_r
M,r,= S

1 2
L1 GM M, r _ iGMler
M, re N

4-11
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This can be written as masscceleration = gravitational force in the form

0= - G/JSM ,
r

where thaeduced masg is given by

+ , n= =

1,1
LM, M,
The equation describes the motion of a fictitious particle of mmassder

the gravitational attraction of a particle of madés- M+ M., separated by. The

force can be written as the gradient with respeciioa potential

GM,M,  -GuM
r r

The total angular momentum of the system about the center of mass is

L=r, x M, +r, x Mg, .

With
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Check:
?j—l; = ur xr + urxf

=0+ x (_GHM]r:O.

r3

The center of mass moves in a straight line and makes no contribution to the angular
momentumR xv .= 0).
The angular momentum of the two-body system is identical to that of a

single particle of mags moving with the relative velocities of the two bodies.

The kinetic energy of the two bodies is
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The kinetic energy of the two-body system is the kinetic energy of relative motion
of a particle of masg plus the kinetic energy of the total magsnoving with the
velocity of the center of mass. The potential energy is

GM M, - GuM

V = - = ,
r r

so the total energy of the system is the total energy of the particle ofmrassng

in the field of a particle of mad4 plus the kinetic energy of massmoving with
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the center of mass
1 2.1 > GuM

E._ = —ur + —Mv -
2‘1 2 cm

tot

E + _MvCm )

E is the energy of relative motion.
In Cartesian coordinates, = (0,0,L) ,r = (x,y,0),f = (X,y,0),

the angular momentum equation becomes

L = u(xy — yx)

and the energy equation is

Better in polar coordinates
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trajectory

Fig. 4-4

or cylindrical coordinates (6, z) with z perpendicular to the plane.

In timet,
r) - r(t+ao)

; r(t+aot) —r()
a

_ (o o6

(5%

So components of the Vector (f T, 0)
Then

rxr =(O, 0, rzé)

r-r=r’+r’9°

SoL=p?6,
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where 6 = angular velocity

_1(-2 2-2) GuM
E—§Hr+r6 - ;

Angular momentum equation can be interpreted geometrically.

t +dt

Fig. 4-5
In the interval, t + dt, the orbit sweeps out an aaand

1
dA—Er xrdé

SO
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gA _ 1 rde 1,4
a - 2" % at - 27

d—A - L constant
da  — 2u '

This is Kepler's second law. The radius vector to a planet sweeps out equal areas in
equal intervals of time.

We can proceed further to obtain an equation in a single varabWe

have
dé L .
— = — (conservation of angular momentum)
dt [,ll'2
dr = 2 + 26M (1 ZL—Z (conservation of energy)
(dt - U r U r_2 ay
Write this as

2 2
= Luf ) - B (LY L
r

The last term is the centrifugal repulsion. It is the opposite of the cenripetal force. It
is aninertial forcethat arises to take account of the angular motion. We are in
effect using a rotating frame with respect to which the particle has no angular
motion and we need consider only radial motion. Consider a particle moving with
constant angular velocit in a circle and ask what is the effective force. We

showed in Chapter 1 that the forcenis?r = mref = mr ©2. For a masg, the
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2

-1 . 2
corresponding potentialisT Ur?e?=- H (L) 1 .
2 \H) ¢

4.2.2 Runge-Lenz Vector (optional)

For a central force proportional tori/, there is an additional conserved
vector called the Runge-Lenz vector (though it was written down in 1799 by
Laplace). The Runge-Lenz vector is

A:pr-uzGM%

Then

. . GM
%(pr):p XL =pur xL = —urs rxL

2
GM .
:—urB rx (rxr).

Use vector identity

ax (bxc)=bf(a-c)-c(a-b)

rx(rxr)=r@  -f)-r1 r




4-20

Co1d,_1d o,
Butr - f _fa“ r =3 dt<r)_”

rx(rxr'):rs{%f r— — }

a4 i 4
Now 5 (unit vector) ~at ( = - =

and

—_ | =

r > Fr+rir.
So
fx (f x r)= —rsif F=rlr
x (rxr)= g f = :
d +U’GM , df d (r
a(p X L) = T r3 E = HZGME(?)
2
u-GMr
p x L - = constant= A, say
ThenA -L =0.

A is a fixed vector in the plane of the orbit.

4.2.3 Orbits

To find the trajectory as a function of time, we have to integrate the pair of

conservation equations on page 4-18 with respect to time. But we can find the

shape of the orbit (which is r as a functiorpf
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o _dr, df
dé dt ' dt

u Z[ZE 2GM LV 11"
:tr + —( —

H r H) r
or
L/u)dr
de = (L7n) > 12
,[2E  2GM (L) 1
re|l— + - |=| =
H r H)or?
Integrate
; r L/u)d
;
[do=06-86,= [ (L7x) —
0 A2, (L
H r H) r?
whereg, is a constant of integration.
Define a scale length by
_ (Lt
"= "GmM = GMu®

and a second constanby
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2(E/p)(L/u)?
(GM)*

e =1+

= 1+ 2EL%*/(GM)* 1 .
For a bound orbite < 1 ancE is negative. Then the integral can be written

r

r,dr —6-6
frz{sz — (L= )y B

Introduce a new variableby

(1-r,/r )? =€ cog u

or

gcosu=x(1-rglr).

Then, adopting the + sign,

and
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We obtain

u

[ du=6- 6,

(0]

ie.u=6-6, , cosu=cosP-6)
Hence
gcos@-6,) =1-rir,

or

1 1
T r—o[li gcos(6 - 6,)] .

We choose + anépositive.

1 1
T r—o{1+ gcos (6 - 6,)}

where
o= LYGMu2 |, € =1+ ELY(GM)23

is the orbit equation. It is the equation of a conic secti@nis called the

eccentricity. There are three possibilities.
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&=0 is a circla=r o

£<1 Ife<1,ris always finite—the particles remain bound with

WhererID andr, are the nearest and furthest parts of the trajectory from a focus,

called respectively the perigee and the apogee. Then

o =T,

a

E= —(—
r +I’p

a

£ =0, the motion is a circle and the two foci coalesce at the centef=aiads the
radius. In describing the solar systelrg,and r, are called, respectively, the
perihelion and the aphelion.

Let us express the orbit in Cartesian coordinates.

X =r cos 0-6,)

y=rsin @-6,) .

Then the orbit equation is
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which is
2 2
(x+£a] +y_ _1
a b2
here o b o
W a = , =
1_82 <1_ 2>l/2
Then

= a(l-¢g), ry=a(l +¢) .
ais thesemi-majoraxis, b is thesemi-minoraxis,r  is thesemi-latugectum.

b
The axial ratio is; = (1212

ais the average Sun-planet distance which for Earth defines 1AU.

We chooseéd, =O. In the figureQO is origin of coordinates.

apogee y
A
x=a(l-¢),y=0,6=0
‘O d ag !O /> xrp:rO/(1+£)
/ T K
a a
x=-a(l +¢) | perigee

a [0}

— Fig. 4-6
y=0 & x=0, 6= y=r |
0 =m
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b can be obtained from the coordinates of the pomO , y =1,

2 r2 r2
@) . g o g p
a’ b? b?
and
2
L
a

The originO of coordinates is the focus at the center of mass (close to the Sun). If
the origin is taken at the center (the midpoint of the two foci) equation is

2 2

X y

- 4+ I :1

a’ b’

The standard definition (and how you can draw it) is the locus of theoint

such that + r"= constant whereandr” are the distances from poirfd&sandO’.

fig. 4-7
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r'2=r2 + (2e)2 + 4aer cosO
Orbit equation:
r =a(1-€)%(1 + £ cosH)
O er cosf=a(1-6%)-r
r'2=r2 + 4a2¢2 + 4a2(1-£2)-4ar
= (r-2a)?

Or+r'=2a

£<1 impliesk < 0, the total energy of a bound system is negative.
The orbit is periodic and closed.

The period is obtained froat/dd = (d6/ dt) ™,

0 _ (L/y)
dt r?
1 1
using = = — [1+ €ecos(B)].
t 2
Hencef dt= re f de
(L/g) ° [1+ecos(@)]

In going around the orbi@ - 6 + 27
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t - t+7
whereT is the period so
2
re do _ .
2 - .
(L7H) 0 [1 + scose]
Use the substitution= tan @/2)
2dt 1 -t
= 1+ 0 , COSH = e
Then
oo 2m
= (L/U) <1_ 2>3/2
2na3/2
or T1=———75
(GM>1/2

The points at which the velocities are at right angles to the radius vector are called
apses The apse nearer to the Sun is the perihelion and the point further away is the
aphelion (Fig. 4-6).
. _ dA . .
An alternative proof: integrate~ over the perio® whereA is the area of

the orbit. Kepler's second law is

dA _ L = constant. (cf. 418)

dt 2U

LP
SoA = 2y s the area of the ellipse aRd = 4.2 A?/L2
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ButA =mb

2

and% =r,= L* | GM? .

2 2

4u°A* 4
Then P* = H2 = uzrzzaza—2
L L GMu
417
2 _ 3
P GM a

To obtain a simple formula fd€, note that at periheliovq) and apheliom,

r = 0, sofr is perpendicular ta and

L= pvr = (vp (1) = pva a (L+e)

w,”  GMuy _ W,  GMu
2

r 2 [
Replacev, byv, (1+¢)/(1-€) and use£ 1o 2¢
PIassh Y . a1l

_ [GM(1-¢)
Va = a(l+e)
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_ UGM(1-g)  LGM

2a(l+¢) a(l+e)

GMu
2a

AsE - 0,a -,

From p. 4-22
2 _ <1—82> 2,3
L® = —2E] (GM)"u
= (1-€°)GMu*a
L =p{(1-£)GMa}'"”
GM,M

Soa =- TZ depends only on energy, depends only on angular

momentum ands depends on energy and angular momentum.

Kepler's Laws: for bound orbits,

1. the planets move in ellipses with the center of mass (the Sun) at one focus.

2. A line from the Sun sweeps out equal areas in equal times
dA

1
o - 2L
dA
(A is the area here, not the magnitude of the Runge Lenz vec(lj?f)does

not depend om so the law applies also to unbound orbits wéth 1.

3. The square of the period of revolution is proportional to the cube of the semi-

major axis
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If we ignore the mass of the planet compared to the mass of theISud, , then,

if Tis measured in years, call it the per®ydinda is measured in AU,

P2=as3.

More generally, for a total mass M measureiijn

_ a(Au)’
P (yearsj = M (M ]
Mean angular velocityw = 27T so

w? =GM/a

To determine velocity at use conservation of energy

GuM - GuM
eo L2 OHM _ —Gu

Then
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The closer to the focus, the faster the planet moves.
The relative motion is an ellipse. The actual bodies move in ellipses of the

same shape but different sizes and all have the same angular velocity. Thus

M, M,
NE = oy

M, M, T
=" T

The Sun moves in a small orbit around the center of mass and the planet in a large
orbit around the center of mass, always positioned so that they are on opposite sides

of the center of mass. (It is this motion that is used to detect extrasolar planets.)

Fig. 4.8
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Both orbits are ellipses.
Suppose we ignore the other planets and consider only Jupiter. The average
Jupiter-Sun distance is 5.2 AU. The mass ratio of Jupiter to the Sun is 005

The radius of the Sun’s orbit is

Ma -3 te]
l\/Jl =095 x 107 x 52 x 1.5 x 10" km

= 7.4 x 10° km..

The radius of the Sun is comparabl&®at= 6.696x 105 km.

£>1 £=1+ELYGCM)? 1 E> 0 and orbit is unbound
- a hyperbola.

1 1
Write = = —— [1 + £C0s @ - 90)] into Cartesian coordinates

(o]

1 _Lf, o
(E+y?)™ ol (P y?)
xemf Y
a b2
rO rO
where a = , b=




With origin at the midpoint, the equation for the hyperbola is

2 2
X y _
—2——2—1.

a b

cos@-q) = -1k

Fig. 4-9

A hyperbolic orbit

£ E =0, total energy is zero. Orbit is a parabola

Y2 =102 - 26X

For a given distance E = 0 defines the escape velocity

4-34



N

If v>v___, the particle escapes the gravitational fielof

esc’

Ay

rol2

i'uvssc: GI:M ! Vesc: /\/ ZGI.M )

|

//

Parabola - single pass orbit

Fig. 4-10
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If a particle of mas#4, is moving in the gravitational field of a malsk,, the

particle escapes to infinity if at amyv>v .. where the escape velocity,y,

corresponds t&=0. If vsv,_, the particle is in a Keplerian orbit or is destined to

crash into the origin.



4.2.4 Mass of Sun

The sidereal period of a planet,(denoted earlier b),

semi-major axis

4-36

is related to the

7’ = [ﬂ ~
GM
where
M =M; + Mpianet
Measurements af
Planet T a GM (1026 cm3 s-1) £
Mercury 87.969 0.387099 1.32714 0.206
Venus 224,701 0.723332 1.32713 0.007
Earth 365.256 1.000000 1.32713 0.017
Mars 686.980 1.523691 1.32712 0.093
Jupiter 4332.589 5.202803 1.32839 0.048
Saturn 10759.22 9.53884 1.32750 0.056
Uranus 30685.4 19.1819 1.32715 0.047
Neptune 60189 30.0578 1.32723 0.009
Pluto 90465 39.44 1.32727 0.249
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GivenT anda, we can obtaim/lp +M, .

From low mass planets

G M, =1.32713 x 1% cms3 s2,

Now
G =6.674215< 108 cnmds2gl .

ThenM_ = 1.988435¢ 10°%.

We can also derive mass of Jupiter.

G(M, +M,) = 1.32839 18cm3 sl
G(M, +Mg) = 1.32713 18 cnd s
0 G(Mjy -Mg) =1.26 163 cm3 s?

M,- M,

Mo

M; ~ 0.000949M,

=0.000949 .

=1.89x 160 g

Better estimates can be made from the orbits of planetary satellites and spacecratft.

4.2.5 Interplanetary travel
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Spacecrafts travel in orbits around the Sun. Suppose a spacecraft is directed
to Mercury. We wish to place it in an orbit around the Sun that is tangent to the

Earth at aphelion and tangent to Mercury at perihelion.

aphelion

e

Least energy orbit

Orbit of Mercury

perihelion

Orbit of Earth

Fig. 4-11

That orbit has the smalleatand therefore takes the least energy. Assume orbits of

Earth and Mercury are circular. Major axis is the sum of the aphelion and

perihelion distances
2a= 0.387 + 1.000 = 1.387 AU

a=0.694 AU = 1.04« 101 m.

The initial orbital speed at aphelion comes from the conservation of energy
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vi= GM (3 - 1]
el Iy a

(We are ignoring the gravitational fields of the Earth and Mercury) Therr with

1.496¢< 10" m,
M = 1.988x 10° kg

v,= 22kms" .

Each is orbiting the Sun at 30 krit s so we launch at 8 km'sin a direction

oppositeto the direction of the Earth’s motion.
4.2.6 Moment of inertia of a spinning sphere

The angular momentum of a particle of massrbiting about a center with

angular velocitywis

L=mrfe = mfw=lw

and its rotational kinetic energy is

_1 2.2_1 2
T= 2mre —2Iw.

The angular momentum of a spherical body rotating about an axis with
1
angular velocitywis similarly 1w and the kinetic energy*'f |’ wherel is called

the moment of inertia. For a uniform sphere of mdsand radiusR,



