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Abstract
We briefly highlight recent developments in the complementary fields of cold Rydberg gases
and ultra-cold plasmas and provide a short overview of the articles in this special issue.

1. Introduction

The topic of Rydberg states has a long and distinguished
history in atomic, molecular and optical physics [1]. The
enormous transition dipoles between Rydberg states, allowing
strong coupling between single atoms and photons, have
been particularly fruitful in the development of cavity QED
[2, 3]. Similarly, the dramatic scaling of the spatial extent of
the Rydberg wavefunctions and orbital periods with principal
quantum number has enabled precise control and direct
imaging of the orbital motion of an electronic wave packet
[4].

The advent of laser cooling and trapping techniques has
opened a new domain for Rydberg atom research making
it possible to realize a regime where the interaction energy
between Rydberg atoms greatly exceeds their kinetic energy.
This inversion of energy scales combined with precise
experimental control of Rydberg states has advanced a diverse
range of applications as well as fundamental science.

Barely one decade on from the pioneering experimental
[5–7] and theoretical [8, 9] work on cold Rydberg systems, the
field is developing at a rapid pace and continues to expand
into new areas. Many of the early theoretical ideas such
as fast quantum gates [8] or long range molecules [10, 11]
have now been realized experimentally [12–15] and new ideas,
expanding into the realm of quantum many-body physics, as
well as nonlinear and quantum optics, have emerged.

This special issue provides snapshots of such ongoing
developments. The contributions to this collection have been
grouped into five subject areas. The first part describes

the control and probing of Rydberg atoms in external
fields, followed by investigations of ultra-long range Rydberg
molecules. The third and fourth parts present experimental
and theoretical studies of many-body physics in cold Rydberg
gases and ultracold plasmas. The final part presents work
on quantum information with Rydberg atoms, including
applications to quantum optics.

Below we give a brief overview of recent developments in
the context of the contributions to this special issue. For more
detailed and comprehensive information we refer the reader to
recent review articles on Rydberg atoms in external fields [16],
Rydberg atom interactions [17, 18], quantum information [19]
and ultracold plasmas [20, 21].

2. Rydberg atoms in external fields

Due to the simplicity of their electronic structure, most
studies of cold Rydberg gases focus on alkali metals, where
the effective one-electron character allows high-precision
structure calculations. In the paper by Millen et al [22],
two-electron Sr atoms are laser cooled and interrogated
spectroscopically. Two-electron atoms where more than
one electron is excited are prone to auto-ionization. In
the experiment both spontaneous ionization, which occurs in
dense Rydberg gases due to Penning ionization [23] resulting
from Rydberg–Rydberg collision, and autoionization, which
occurs via electron–electron correlation in double excitations
in a Rydberg atom, were observed. A single-electron quantum
defect model is employed to accurately calculate the transition
dipole moments and compare with observation. Discrepancies
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in comparison with the singlet and triplet lines in the measured
Stark Rydberg maps allude to the role played by electron–
electron interaction. It is shown that autoionization can be
employed to state-selectively study the dynamics of such two-
electron Rydberg gases.

Dephasing of Rydberg wave packets is a subject that
has found renewed interest in particular in relation to noise-
induced decoherence in cold open quantum systems [24, 25].
In the work by Wyker et al [26], Rydberg atoms in nearly
circular high angular momentum states (l ∼ n) and high
principal quantum number n ∼ 300 were studied subject to
stochastic electric noise and collisions. Atoms are initially
prepared in zero field into high n p states, to increase the
oscillator strength, and then driven into high-l states in weak
electric fields. Quantum revivals of the wave packets on the
time scale of hundreds of Kepler periods are observed and
are suppressed in amplitude by the application of electric
field noise. Collisions with the ambient gas at moderate
densities are not found to be a major source of decoherence.
The collisional broadening can be calculated using the Fermi
pseudopotential s-wave electron–Rydberg scattering method.

In the paper by Donnan et al [27], the stability of deeply
bound Rydberg hydrogen states in parallel constant magnetic
and time-increasing electric fields is investigated. These
calculations are useful for understanding the dynamics of atom
formation in antihydrogen traps. Whereas, in alkali–metal
atoms, selective-field ionization due to time-increasing electric
field can occur at low angular momentum states at the classical
ionization threshold (because of the large quantum defects of
such states), in hydrogen atoms, the pure Coulomb potential
allows stable states to form above the classical ionization
threshold. In a combined electric and magnetic field, the
classical hydrogen atom is chaotic and so the adiabaticity
of level crossings becomes an issue. Both classical and
quantum methods are used to calculate the survival probability
of the H(n = 30 and 60) state in magnetic field of a 4 tesla
field and varying electric fields. The calculations confirm
the appearance of large field peaks indicative of classical
orbits which survive ionization above the ionization threshold.
Delayed ionization has implications for the recombination of
weakly bound states in anti-hydrogen traps.

3. Ultra-long range Rydberg molecules

Owing to their enormous polarizability Rydberg atoms can
facilitate the formation of exotic molecules. One such
molecule, comprised of a ground state atom, bound at large
distances (thousands of Bohr radii) within the electronic
wavefunction of another Rydberg atom, forms via frequent
electron–atom collisions [10, 14, 28–36], while the strong
long-range interaction between two Rydberg atoms can
give rise to Rydberg macrodimers with even larger bond
lengths [11, 15, 37–41].

Understanding the mechanisms leading to the decay of
these Rydberg molecules is important for future experiments
and possible applications [42]. This question is addressed
in the paper by Butscher et al [43] for Rb(5 s–n s) ultra-long
range molecules. The lifetime is shown to be systematically

shorter than the lifetime of bare atomic Rydberg states and
depend on the temperature and density of the gas as well as
on the particular vibrational state. The experimental findings
are explained within a simple binary collision model and by
including an additional decay mechanism [36] arising from
the inward penetration of bound atomic pairs due to imperfect
quantum reflection, which would otherwise stabilize excited
molecular states.

An even more exotic variant of such long-range molecules
is possible when the ground state atom is replaced by a polar
molecule. The interaction between the Rydberg atom and
the polar molecule can no longer be represented in the Fermi
short-range pseudopotential, as the electron–dipole scattering
does not have a scattering length and is a very long-range
1/r2 interaction. In the paper by Rittenhouse et al [44], the
technique developed in [45] for a degenerate Rydberg manifold
is refined further to include nearby (n + 3) s Rydberg states in
rubidium atoms. It is shown that the non-adiabatic interactions
between the s and the zero-quantum defect degenerate Rydberg
manifold can be ‘tuned’ with the size of the polar molecule
permanent dipole moment. The admixture of s character into
the degenerate high-angular momentum states opens up the
possibility of formation of such controllable molecules with
standard two-photon photoassociation techniques.

The paper by Samboy and Côté [46] investigates long-
range bound macrodimers resulting from the strong interaction
between two distant rubidium Rydberg atoms. Using
symmetry-adapted atomic Rydberg basis states, the asymptotic
molecular Hamiltonian is diagonalized [41], and long-range
potential wells, with a depth of several GHz and large
equilibrium distances between 104 and 105 Bohr radii, are
found. The paper derives simple scaling relations between
the potential properties and the atoms principal quantum
number, and presents detailed calculations on a possible
scheme to produce such molecules in an optical lattice by
photoassociation.

The effect of an electric field onto the long-range
interactions between Rydberg atoms is the subject of the
experimental/theoretical study presented in the paper by
Cabral et al [47]. Born–Oppenheimer potential energy curves
for Rb and Cs Rydberg atoms at large distances were calculated
in a constant electric field. A nontrivial dependence on
the atomic species is pointed out, which precludes simple
extrapolation and necessitates explicit calculations for each
species. The rate constant for the production of Rydberg
atoms is calculated using a density matrix formalism and good
agreement with the experimental observations is found.

4. Many-body physics using Rydberg atoms

In 2004, two independent experiments provided clear evidence
of the profound effects of strong van der Waals interactions in
cold Rydberg gases by measuring a dramatic suppression of
Rydberg excitation due to interaction-induced level shifts in
cold rubidium gases [48, 49]. Soon after this first observation
of the Rydberg blockade numerous experimental and
theoretical works appeared investigating the underlying many-
body excitation dynamics and the resulting strong correlations
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between Rydberg states. Several experimental schemes
[50–55] have characterized the Rydberg blockade in frozen
gases for different types of interactions, angular momentum
states and atomic species [56–64, 66, 67], and different
theoretical approaches have been developed to describe and
understand the experimental observations [48, 68–78, 110].
More recently, theoretical work has established a fruitful
analogy between laser-driven Rydberg gases and long-range
interacting spin systems, elucidating the many-body excitation
dynamics in terms of spin relaxation or thermalization
processes [79–81] or in terms of adiabatic parameter changes
within the ground state phase diagram of the corresponding
many-body spin Hamiltonian [82–85]. The latter notion,
for instance, has led to the prediction of long-range
ordered, crystalline Rydberg atom structures [82–84], whose
properties and stability are currently investigated by several
groups [86–89].

In [90] of this special issue, van Bijnen et al present
a detailed study of such Rydberg crystals and analyse their
creation from a frozen gas of cold atoms via excitation by
chirped laser pulses. For the particular case of cold and
ultracold rubidium gases, the authors discuss the experimental
feasibility and limitations of such a scheme and outline a
corresponding experiment, set up by the group at Eindhoven
University. Assuming a perfectly adiabatic preparation, a
broad range of crystalline structures in one, two and three
dimensions is presented. In one dimension, the dynamics for
various trap geometries, such as optical lattices, dense Bose–
Einstein condensates and thermal cloud in a optical dipole trap
or magneto-optical trap, is considered. This work identifies
optimal excitation schemes for each of these situations, which
will be important for future experiments.

The paper by Tezak et al [91] investigates the many-body
energy spectrum of repulsively interacting Rydberg atoms in
a one-dimensional lattice [92]. The generally complicated
energy spectrum is approached from two limiting sides: (i) the
low-intensity limit where the spectral properties are dominated
by the strong Rydberg–Rydberg atom interactions, and leads
to a sequences of crystal states, and (ii) the strong driving limit,
which can be perturbatively described in terms of fermionic
excitations with small energy corrections due to the van
der Waals interactions. The in-depth theoretical discussion,
stretching between these two limiting cases, illustrates the rich
the behaviour of laser-driven Rydberg lattices and provides
valuable insights for further work to characterize the response
of cold Rydberg gases to different excitation schemes [93].

The formation of an optical lattice of alkaline earth,
e.g. Sr, Rydberg atoms [94, 95], is described in the paper
by Mukherjee et al [96]. The proposed approach exploits
the second-valence electron available in alkaline–earth atoms,
whose strong polarizability is shown to enable strong optical
Rydberg atom traps, providing an alternative mechanism to
ponderomotive level shifts used in alkaline atoms [97–100].
This work identifies magic wavelengths, in an accessible
frequency range, that permit strong simultaneous lattice
confinement of ground state atoms and Rydberg atoms in the
same trapping potential. In contrast to nS Rydberg states of
alkaline atoms [101–103], the presented calculations reveal

attractive van der Waals interactions between Sr(1S0) atoms,
which are shown to yield a many-body energy spectrum that
dramatically differs from the repulsive case described above
and may permit the creation of highly entangled many-body
GHZ (Greenberger–Horne–Zeilinger) states via chirped-pulse
excitation.

Besides strong van der Waals interactions, Rydberg
atoms also exhibit strong dipole–dipole couplings between
states with adjacent angular momenta. This coupling
becomes important in Rydberg gases with mixed excitations
[5, 65, 104, 105] or in the presence of Förster resonances
[6, 66, 127]. Experiments and theoretical investigations on
excitation transfer in cold Rydberg gases [106–111] show that
strong dipole–dipole interactions lead to resonant migration
of Rydberg excitations through the ensemble on very fast
timescales much shorter than transport times for motional
diffusion. The coherence properties of dipolar excitation
transfer in cold Rydberg systems have been investigated
for two small localized clouds of atoms [65, 112–114]
and, theoretically, in atomic chains, proposing a cold-atom
realization of quantum random walks and exciton transport
models [115, 116].

Exciton transport is studied in the paper by Möbius
et al [117] where the dynamics of a nP Rydberg excitation
via dipole–dipole coupling to surrounding nS states is
investigated in a flexible Rydberg atom chain [118–120]. It
is pointed out that the strong dipole–dipole interaction not
only facilitates fast transport of the p excitation but also
leads to motion of the Rydberg atoms, which is shown
to strongly entangle the motional degrees of freedom and
the internal many-body state of the Rydberg atom chain.
For proper initialization of the system, it is demonstrated
that entanglement can be locally transported alongside the
p excitation, illustrating the intricate interplay between
excitonic and translational motion. The results demonstrate
excellent agreement between a full quantum calculation for
small systems (of the internal and translational dynamics) and
a mixed quantum-classical treatment [121], which facilitates
the description of much larger systems and possibly more
complex scenarios of exciton transport.

The paper by Scholak et al [122] investigates excitation
transport via dipolar coupling through a random arrangement
of particles [123, 124], with particular emphasis on the
competing influence of coherence and de-phasing onto the
transport efficiency of such a quantum network. Defining
different measures to characterize the transport efficiency, the
authors identify optimal spatial configurations. Interestingly,
these optimal configurations maximize the transport efficiency
for purely coherent dynamics, in marked contrast to the
majority of networks, for which transport is typically enhanced
by environmental noise.

The investigations by Möbius et al and Scholak et al
are of relevance to other exciton systems, such as molecular
aggregates, including biological light-harvesting complexes
or organic solar cells [125]. As pointed out in both works,
the close analogy between Rydberg aggregates and these
more complex systems suggests that cold Rydberg atoms
could provide an experimentally well accessible laboratory to
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elucidate the basic mechanisms of energy transport by offering
high-level control of the network topology, dipolar coupling
strengths as well as external sources of noise and decoherence.

5. Ultracold plasmas

At very a high density of Rydberg atoms, their strong dipole–
dipole interaction can also cause autoionization of Rydberg
atom pairs [126–128] and initiate an avalanche-like conversion
of a cold Rydberg gas into an ultracold plasma [129–131]—
signifying their deep connection as two different metastable
states of one and the same system [132]. Since the first direct
production of an ultracold neutral plasma via photoionization
of laser-cooled atoms [7] these systems have proved to provide
an appealing and well controllable platform to investigate a
diverse range of plasma physics phenomena, including, e.g.,
plasma expansion into vacuum [133–137], recombination of
Rydberg atoms [138–142], plasma instabilities [143, 144] and
collective waves [145–148].

Collective ion acoustic modes are studied in the paper
McQuillen et al [149] via fluorescence imaging of an
ultracold strontium plasma. The authors demonstrate a novel
approach to inscribe small-wavelength periodic modulations
onto the initial plasma density, which at the lowest achieved
wavelengths will enable detailed experimental studies of
electron correlation effects on the character of collective ion
oscillations. The described high-resolution density-sculpting
technique could also permit more stringent tests of existing
expansion models for ultracold plasmas and open a range of
intriguing perspectives, including, e.g., investigations of the
formation and dynamics of shock waves in ultracold neutral
plasmas.

Owing to their low temperature, ultracold plasmas occupy
an exotic parameter regime of plasma physics in which the
interaction between ions can greatly exceed their thermal
energy. As a striking consequence of the resulting correlations,
experiments observed strong ion heating [150] characterized
by pronounced temporal temperature oscillations [151, 152].
The paper Lyon and Bergeson [153] reports a detailed study
of electron screening effects on the corresponding temperature
evolution during the early stages of the plasma evolution. The
presented fluorescence measurements of an ultracold calcium
plasma reveal a significant influence of electron screening on
the observed correlation-induced ion heating, which is found
to be larger than observed previously.

Recently, a new type of ultracold plasma has emerged,
produced via Rydberg excitation of cold molecules in
a supersonic molecular beam [154, 155]. Due to
their substantially larger density and the possibility of
ultracold chemical reactions involving highly excited Rydberg
molecules, these plasmas are expected to behave differently
from the atomic plasmas discussed above, and have,
consequently, raised a number of interesting questions. In
[156] Saquet et al describe such an experiment, in which
an ultracold plasma is created from a seeded supersonic
beam of nitric oxide molecules. The presented time-of-
flight measurements reveal an expansion behaviour that is
well described within a hydrodynamic plasma model, while

suggesting an electron temperature that is substantially lower
than that found in ultracold atomic plasmas. As a first
step towards understanding this surprising result, the paper
presents kinetic model calculations to track the collision-
driven time evolution of the Rydberg molecule population
in the plasma. This work also points out a number of
important questions, such as strong coupling effects and the
role of low-temperature chemical reactions, that will need to
be addressed towards a comprehensive understanding of the
complex plasma dynamics.

6. Quantum information

A comprehensive review of quantum information using
Rydberg atoms has recently appeared [19]. Consequently,
here we will only focus on recent developments relevant to the
papers in this special issue. One can distinguish between four
main areas where Rydberg atoms exhibit useful properties for
quantum information applications. The first is in cavity QED
where the large dipole moment associated with microwave
transitions between Rydberg states enables the strong coupling
regime between single photons and single atoms to be achieved
[2, 3]. This area is distinct from the main topic of this special
issue in that experiments to date focus on one atom at one time
in the interaction region and do not involve direct atom–atom
interactions.

The other three areas all exploit the strong dipole–
dipole interactions between atoms, i.e. the dipole blockade
mechanism. First there are blockade effects where the
atoms are individually addressable [12, 13, 157–164], second
blockaded ensembles [9, 165–176] and third applications in
quantum optics where the blockade effect is exploited to
modify a light field [177–187]. Of the five special issue
papers in these categories, the first (Møelmer et al [188]) deals
with the implementation of Grover’s algorithm in a Rydberg
ensemble, and the other four [189–192] discuss light-matter
interactions in Rydberg ensembles.

6.1. Quantum algorithms in Rydberg ensembles

One attractive feature of the Rydberg blockade mechanism is
that a single Rydberg excitation can control the behaviour of
Nb atoms its vicinity, where Nb, the number of atoms in the
blockade sphere, can be up to of order 1000 [60]. This property
allows quantum information protocols to exploit multi-particle
entangled states [168, 170] and mesoscopic quantum gates
[171].

The paper Mølmer et al [188] takes this idea a stage
farther by proposing a protocol to implement Grover’s
search algorithm using the Rydberg blockade mechanism.
This approach exploits the multi-atom approach inherent to
Rydberg systems as opposed to the more standard two-qubit
circuit model, and thereby could offer considerable practical
advantages, particularly with regard to the scaling of errors.

6.2. Quantum and nonlinear optics using Rydberg ensembles

Rydberg ensembles or individual Rydberg superatoms offer
significant adavantages for single-photon nonlinear optics due
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to their large optical cross section. The cross section is
enhanced by the number of atoms per blockade sphere Nb

which as discussed above can be of order of 1000. In
addition, as a superatom is larger than an optical wavelength,
the optical emission properties can be highly directional
[193, 194]. For this reason, a Rydberg ensemble is a promising
candidate for a deterministic and directional single photon
source [193, 194]. The paper by Laycock et al [189] considers
a particular case of single-photon emission from a 2D lattice
of emitters prepared in many-body states using van der Waals
interactions between highly excited Rydberg states. The
protocol prepares single photons in highly exotic spatial modes
which in addition to their intrinsic interest could be of use in
quantum networks.

A second rapidly developing area is electromagnetically
induced transparency (EIT) [195] involving highly excited
Rydberg states [196]. Recently, it has been shown that the
combination of EIT and strong dipole–dipole interactions
between highly excited Rydberg atoms gives rise to giant
‘Kerr-like’ optical nonlinearity [178, 185], and the formation
of non-classical states of light [184]. The large single-photon
nonlinearities accessible in Rydberg systems enable strong
photon–photon interactions and the possibility of photonic
phase gates [177, 181, 183].

In this special issue there are three papers which cover
different aspects of EIT and coherent population trapping
(CPT) [197] involving highly excited Rydberg states. The
paper by Sevinçli et al [190] combines EIT and CPT [197]
and highlights the universal scaling of the excitation in three-
level Rydberg ensembles [182]. The paper by Pritchard
et al [191] investigates the transient nature of the optical
nonlinearity due to motional effects in the Rydberg gas. The
paper considers the case of Rydberg atoms with attractive
dipole–dipole interactions where the motional effects are more
pronounced than for repulsive interactions [178]. The paper by
Tanasittikosol et al [192] shows that a dramatic enhancement
of the optical nonlinearity can be achieved by dressing
the Rydberg state with a resonant microwave field. The
enhancement occurs due to an effective increase in the number
of atoms per blockade sphere. The ability of microwave fields
to modify the interactions between Rydberg atoms provides
a very powerful tool for applications in quantum information
and quantum optics.

7. Summary

As illustrated in this special issue, Rydberg atoms combine
several intriguing properties—extreme controllability by
external fields, strong long-range interactions and long
lifetimes—that make them a near-perfect system with which to
explore and exploit few- and many-body quantum phenomena.
At the same time, they provide a paradigm for quantum-
classical correspondence and a route to strongly correlated
classical plasmas. The broad range of topics covered in
this special issue reflects the diversity of research that has
emerged from these perspectives, and further directions may
well be expected to arise considering the current pace of new
developments. While this collection of articles can only be a

compendium of current activities, we hope that it will provide
an inspiring reference for the community and serve as a useful
resource for scientists entering the field.
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[115] Côté Russell A, Eyler E E and Gould P L 2006 New J. Phys.

8 156
[116] Mülken O et al 2007 Phys. Rev. Lett. 99 090601
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[182] Ates C, Sevinçli S and Pohl T 2011 Phys. Rev. A

83 041802
[183] Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T

and Lukin M D 2011 arXiv1103.3700
[184] Petrosyan D, Otterbach J and Fleischhauer M 2011

arXiv1106.1360
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