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Abstract

CO isotopes are able to probe the different components in protostellar clouds. These components,
core, envelope and outflow have distinct physical conditions and sometimes more than one component
contributes to the observed line profile. In this study we determine how CO isotope abundances are
altered by the physical conditions in the different components. We use a 3D molecular line transport
code to simulate the emission of four CO isotopomers, 12CO J = 2 → 1, 13CO J = 2 → 1, C18O
J = 2 → 1 and C17O J = 2 → 1 from the Class 0/1 object L483, which contains a cold quiescent
core, an infalling envelope and a clear outflow. Our models replicate JCMT (James Clerk Maxwell
Telescope) line observations with the inclusion of freeze-out, a density profile and infall. Our model
profiles of 12CO and 13CO have a large linewidth due to a high velocity jet. These profiles replicate
the process of more abundant material being susceptible to a jet. C18O and C17O do not display
such a large linewidth as they trace denser quiescent material deep in the cloud.

1 Introduction

Molecules, particularly CO, are used as tracers of H2 and thus of gas density in cold dark clouds. CO
is highly abundant with a low critical density and typically exhibits strong optical depth effects in cold
dark molecular clouds. The four most common CO isotopes differ in abundance by as much as three
orders of magnitude. Thus they become optically thick at different column densities. Taken together,
observations of CO isotopes can trace the gas density in all the main components of cold, dark clouds: the
intermediate optical depth envelope, the high optical depth core, and the optically thin bipolar outflows.
However, we know from observational and theoretical studies that the abundance of CO depends on
conditions in the clouds such as, shock heating (van Dishoeck et al., 1995; Nisini et al., 2007), U.V.
excitation (Goldsmith, Li & Krčo, 2007), freeze-out (Lee, Bergin & Evans, 2004) and varies from place
to place. Therefore we cannot use CO as an H2 tracer without understanding its chemical variation.
To better understand CO variations in cold dark clouds, we observed and modeled one particular cloud,
Lynds 483. We chose L483 as a prototype for a study of CO abundances because it is a well studied
nearby (∼ 200 pc) molecular cloud. It contains an IRAS source 18148-0440 that is in transition between a
Class 0 and Class 1 object (Tafalla et al., 2000). It exhibits an infalling envelope (Park et al., 1999, 2000;
Tafalla et al., 2000) and a slow bipolar molecular outflow (Fuller et al., 1995; Buckle et al., 1999) yet the
core and envelope are still cold and dense (Ladd et al., 1991; Fuller & Myers, 1992; Fuller & Wootten,
2000). Thus many of the physical properties and kinematic features that are present in either less or
more evolved clouds are all present in L483. Our aim is to combine these components into a single model
for L483 to strongly constrain the structure and dynamics of the system and hence then to infer the CO
abundance throughout the cloud.
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Figure 1: An example line profile of each of the four isotopes used in this study where the offsets with
respect to IRAS 18140-0440 are indicated in the top right corner of each panel. The 12CO y-axis is in
units of Tr and 13CO, C18O and C17O are in units of Tmb

Table 1: Species and line observed plus the number and pattern of the pointings. The cross patterns
were all Nyquist sampled with separations of 10”. The 12CO positions are marked on Fig. 5.

Molecule Line Frequency JCMT Number of pointings
(GHz) receiver and pattern

12CO 2 → 1 230.54 A2 6 individual
13CO 2 → 1 220.40 A3 5 cross
C17O 2 → 1 224.71 A3 9 extended cross
C18O 2 → 1 219.56 A3 5 cross

We obtained emission line profile data from L483 for transitions of the four most common CO isotopes
(section 2). In addition, we used an archival dust continuum emission map of L483 as an unbiased mass
tracer to be compared with the CO data. We used a radiative transfer model to analyse the data and to
produce synthetic spectra to be compared in detail with individual observations (section 3). Estimates
for density, temperature and a physical model of L483 were constrained with help from the observational
literature. The abundances of the CO isotopes were then varied in the model to give a good match with
the observed line profiles. This yields the abundance variation throughout L483 as well as self-consistent
temperatures, densities and velocities and abundance ratios.

2 Observations and analysis

We obtained high frequency molecular line data of three CO isotopomers in frequency switching
mode. These are 13CO J = 2 → 1, C18O J = 2 → 1 and C17O J = 2 → 1 in order of decreasing
relative abundance. The bulk of the observations were carried out at the JCMT, Mauna Kea, Hawaii on
the nights of 2003 May 3-5. Additional data were collected in flexible observing mode. The data were
reduced in the standard manner using the specx software package. Further analysis was undertaken
with the class package of IRAM. For the majority of the observations, the system temperature was
between 300 and 450 K. The maps for all the three isotopes are centered on the position of the IRAS
source, the pointing centre of which happens to be just on the blue-shifted side of the outflow. C17O
data was obtained over 40′′ along the outflow axis and smaller data sets were obtained for C18O and
13CO.

Hatchell, Fuller & Ladd (1999) presented line profiles of the most common isotope 12CO J = 2 → 1
also obtained with the JCMT telescope. Their reduced dataset was very kindly supplied by J. Hatchell.
Table 1 is a list of the molecular transitions and frequencies of the observations, the JCMT receiver
used and the number and pattern (if any) of the pointings used to obtain spectra. The beam size was
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approximately 21” at the frequency of these lines. The position of the observed profiles are also centered
on the IRAS source but they observe a string of positions across both lobes of the molecular outflow.
The 12CO J = 2 → 1 was obtained in position switching mode and some slight contamination
could result from the off position used. However our results do not critically depend on this
issue because any reduction of the self-absorption feature would only improve the model
fit.

Finally, in addition to the molecular line data, archival SCUBA data of L483 was retrieved and
reduced in the standard manner using the surf package in the starlink suite of software. This data
was originally published in Shirley et al. (2000) in the form of emission maps at 450 µm and 850 µm.

2.1 Overview of the line profiles

In Fig. 1 we present an example line profile from each of the four isotopes in order to illustrate how the
different lines trace different parts of the cloud. All the lines are from the (2 → 1) transition and the full
set of line profiles are presented alongside the modelling results later in the paper.

The line profile of the most abundant isotope, 12CO, exhibits very heavy self-absorption causing a
complex line profile. The largest peak in the line profile is due to the molecular outflow. The outflow
feature is strong despite occupying a small volume in the cloud. This is because of the different excitation
and self-absorption properties in different components of the cloud plus some doppler shifting of the
velocity feature away from the heavily absorbing gas close to the rest velocity of the cloud. This 12CO
line is an excellent tracer of material directly influenced by the outflow.

The 13CO profile also exhibits self-absorption due to its high optical depth. The self absorption
feature is caused by overlying, low excitation temperature gas in the outer envelope that surrounds the
protostellar core (Myers et al., 1996; Tafalla et al., 2002). We see a red and blue peak either side of the
absorption with the blue wing stronger. This is usually taken to indicate infall motions are present.
Thus this line is a good tracer of the infalling and stationary parts of the outer envelope of the core. In
addition, 13CO is sufficiently abundant that it can also marginally trace the outflow in the line wings.

C18O has an intermediate optical depth and is therefore used to trace primarily regions deep in
the envelope. The observed profile shows a single peak with a maximum temperature at 3K. It is
abundant enough for optical depth effects to be noticeable in the shape of the line profile and a slight
blue asymmetry to the profile is seen.

C17O has a low optical depth and probes the deepest into the cloud. However its abundance is
correspondingly small which makes its detection harder. C17O possesses a well defined hyperfine structure
which is clearly seen although some mild blending is apparent. Hyperfine satellite lines are seen on either
side of the strongest peak, with the right hand side component just discernible above the noise. The
mild blending is due to some dynamical activity inside the envelope.

The freeze-out of molecules from the gas phase onto grain surfaces appears to be common in starless
cores (Gibb & Little, 1998; Redman et al., 2002; Bacmann et al., 2002). It is expected to occur at
temperatures less than 20K (Sandford & Allamandola, 1993) and densities greater than ∼ 104 cm−3. In
order to measure the degree of CO freeze-out in the envelope of L483, we used the SCUBA dust emission
data to determine the column density of H2 as implied by a dust-gas ratio of 100. Shirley et al. (2000)
used their 450 µm and 850 µm emission maps to produce radial column density plots by azimuthally
averaging the emission data and applying a dust continuum radiative transfer model. However, to allow
for a more exact comparison with our individual line profiles which lie mainly in an east-west axis across
the cloud, we reanalysed the emission data and calculated column densities along a strip with the same
beam width as our line data.

In Fig. 2 we compare the column density of H2 implied by the dust emission with that gas column
density calculated from the best fit model. Our H2 column densities derived from dust emission peak at
1.5× 1023 cm−2 towards the center pointing. In contrast, the column density derived from the optically
thin C18O isotope reaches only 1.0 × 1022 cm−2 i.e. the CO is depleted by around 95%. The gas
column density profile is flat because the rate of freeze-out depends on the gas density and temperature
(Rawlings et al., 2004) and so the heaviest depletion should take place at the centre of the cloud.
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Figure 2: Plot of hydrogen column density implied by SCUBA dust emission and integrated CO emission.
The discrepancy between the two indicates a large degree of freeze-out of CO onto the surface of dust
grains. The lack of vertical error bars is discussed in the text

Figure 3: A schematic representation of the outflow, where the radius indicated is the total cloud radius.
The freeze-out radius is represented with a broken line. The lobe pointing towards us is the blue-shifted
side and lies at an angle ≈ 30◦. The different length arrows represent the speed of the jet/outflow. The
boundary layer is the molecular outflow as traced by our observations.
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3 Modelling

In principle, there is a wealth of information encoded in the line profiles from the four different isotopes.
In order to extract this information, the entire cloud needs to be modelled self-consistently. To do this
requires that the geometry and physical parameters of the system are characterized as fully as possible.
At each point in the model cloud the velocity, density, temperature, turbulent velocity and CO abundance
are required in order to solve the radiative transfer.

3.1 Velocity, density and temperature structure

Tafalla et al. (2000) argue that the evolutionary status of L483 is between a Class 0 and Class 1 object.
The inner regions of the object appear to be undergoing infall. Tafalla et al. (2000) observed H2CO(221

→ 111) line profiles to be self absorbed at ambient velocities with brighter blue peaks. Park et al. (1999)
observed self-absorbed asymmetric profiles using HCN hyperfine lines to confirm this inward motion.
We adopt an initial infall velocity estimate of 0.5 km s−1 and central density of greater than 105 cm−3

based on these results. A r−2 density profile is used to describe the envelope density distribution since
this is a simple approximation to a core containing a protostar (e.g. Shirley et al. (2000)).

L483 contains a molecular outflow. Buckle et al. (1999) presented longslit ro-vibrational spectroscopy
of H2 emission and discovered knotty structure along the jet. The speed of the jet was calculated to be 40
→ 45 km s−1. The H2 emission is strongest in the blue-shifted side of the outflow, which is positioned at
an angle 25◦ → 30◦ towards the observer. Fuller et al. (1995) mapped the outflow in 12CO (3 → 2) and
in 2.12 µm molecular hydrogen emission. Again a compact collimated bipolar structure was observed
along with a young driving source. VLA 6cm continuum observations were carried out by Beltrán et al.
(2001) who found a central source with a spectral index consistent with thermal free-free emission from
thermal radio jets.

Buckle et al. (1999) concluded that there is a factor of at least 10 in the difference in density between
the jet and the surrounding medium at their point of measurement. Since the head of the jet is well
outside the dense core we adopt an under-density of between 10-100 in the molecular outflow compared
with the central density of the core. Any CO emission seen in the low J observations presented here will
be from the edges of the interaction region between the jet and the envelope. In molecular outflows the
hottest, highest speed material is found closest to the jet axis (e.g. HH211). Two models for the origin
of molecular outflows are turbulent entrainment in a boundary layer behind a leading jet-driven bow
shock or a wide angle wind from the protostar. Following Hatchell et al. (1999), we favour the former
scenario though our analysis is not dependent on the model used.

Since there will be a velocity and temperature gradient in the outflowing CO we characterize the
boundary layer region with two components: a warm low density inner boundary layer and cooler denser
outer boundary layer with a linear fall-off between them. The jet is under-dense with a modest leading
shock velocity (40 − 45 km s−1 Buckle et al. 1999) so from momentum conservation the mixing of the
jet and the denser envelope will lead to a slow molecular outflow. This is seen clearly in Fig. 1 where the
emission peak due to the outflowing CO is at very modest velocity. Thus we adopt an initial velocity
estimate of only ∼ 5 km s−1. The temperature is adopted to be 10K in the envelope and between
35-100K in the boundary layer. Jørgensen et al. (2004) used a Monte Carlo modeling technique for the
envelope of L483. They found a turbulent width between 0.5 − 1.0 km s−1 gave a good fit to the line
profile and so we also begin with these values.

3.2 Geometry of the core and outflow

Fig. 3 illustrates the geometry of the dynamical model we use here for the core and outflow. This
geometric model is similar to that described in Rawlings et al. (2004). The outflow shape is approximated
geometrically using a tanh function to mimic the recollimation of the outflow a short distance from the
central source. This gives the base of the outflow an hourglass-like morphology. The molecular outflow
is confined to a layer close to the surrounding core and itself encloses a hot low density jet (not traced
with this molecule in these transitions). The velocity of the outflow increases towards the outflow axis,
as illustrated by the different length arrows in Fig. 3. We include a freeze-out zone in the model where
the CO undergoes a substantial depletion from the gas phase. The exact value of the abundance of the
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Figure 4: The top two plots show the χ2 values versus the abundance and density repectively.
The lowest χ2 values represents the input parameter used in our model. The third plot is
the χ2 surface as a function of the two parameters. The contour values range form 10 - 14
in steps of 1 and a circular shape indicates no correlation between the paramters.

remaining gas phase CO in the frozen out zone is not critical to the model since it has a negligible effect
on the line profiles.

3.3 3D Radiative transfer code modelling

The observational literature and analysis above serve to roughly constrain some of the physical param-
eters needed to solve the radiative transfer problem. One constraint on the CO abundances is set by
measurements of the interstellar abundance ratios, from Schoier et al. (2002) these are

C18O

C17O
= 3.9;

12CO
13CO

= 77;
13CO

C18O
= 7.3; (1)

Figure 4 shows the χ2 procedure used to constrain the input parameters. The first two
plots show how the χ2 of a model varies when one input parameter is held constant and
all others are varied. The plots show the best χ2 and also how the variation in either
parameter can cause a worse fit to the data. The bottom plot is the χ2 surface as s function
of the abundance and density. A circular profile indicates no correlation exists amongst
these two parameters which may be due to non-linear optical depth effects. We only show
here the procedure carried out for the abundance and density in the inner boundary layer
but this was carried out for for all the parameters listed in Table 2.

Each model was used as an input to a 3D molecular line transport code (described in Keto et al.
2004; Rawlings et al. 2004; Redman et al. 2002) to produce synthetic line profiles for direct comparison
with the observations. The integrated emission was also calculated in a given line of sight through the
cloud. After a reasonable fit to the strength and width of the profiles was reached from varying the CO
abundance the remaining quantities were varied over narrow ranges to improve the quality of the fits
(for example, the turbulent width controls the thickness of the individual hyperfine lines seen in C17O).
It should be emphasized that the CO abundances were the dominant factor in the line profile formation,
for example exact values of infall velocity had only a second order effect on the line strength, shape and
width.

Table 2 lists the best fit parameters used in our final models. Examination of Table 2 shows that
the boundary layers have systematically higher CO abundances than the envelope. The most obvious
explanation for this is that the interaction of the jet with the envelope in the boundary layers (irrespective
of the jet model) causes shock heating which in turn liberates molecular material that is frozen onto the
dust grains. As already shown above the gas away from the boundary layer exhibits heavy CO depletion
(Fig. 2). The temperature and CO abundance rises from 35K in the outer boundary layer adjacent to
the envelope to 90K in the inner boundary layer towards the jet. The rise in modeled temperature and
the changes in the CO abundances are consistent with our knowledge of CO sublimation temperatures.
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Table 2: Best fit radiative transfer model parameters. The first four parameters were constrained by
observations and fine tuned to improve the model fits. The abundances (defined as Nspecies/NH2

) are our
derived parameters. Entries marked with an asterisk are somewhat unconstrained by the model since
there was little contribution to the line shape from these components. The density parameters for
all three components refer to the peak value of a r−2 power law density profile that has
been truncated at a small radius.

Parameters Envelope Outer Inner
boundary boundary
layer layer

Temperature (K) 10 35 90
Peak Density (cm−3) 106 105 104

Velocity (km s−1) -0.6 1.9 3.5
Turbulent 0.1 0.3 1.4
width (km s−1)
Abundance 12CO (×10−7) 170 200 350
Abundance 13CO (×10−7) 2.5 6 80.0

Abundance C18O (×10−7) 0.5 0.8* 1.4*

Abundance C17O (×10−7) 0.1 0.33* 0.56*

From Table 2 the abundance enhancement of 13CO going from the outer boundary layer to the much
warmer inner boundary layer is nearly twice that of 12CO. The reason for this is likely to be complex
involving chemical fractionation effects due to shock photons, selective desorption off the dust grains and
grain surface chemistry.

We can compare our derived abundances in the envelope with those of Jørgensen et al. (2004). They
modeled L483 to find the following average abundances

C18O

H2

= 2.5 × 10−8;
C17O

H2

= 7.8 × 10−9. (2)

These are broadly similar to, but lower than, our envelope values. Their modeled profiles underestimated
the intensity with respect to observations. They concluded that the out-most part of the envelope may
not have been accounted for in the models. A multi component model, such as that presented here,
would be an alternative way to raise their derived abundances.

3.4 Mass of the outflow

Using Table 2 and our observations of the column density of H2 (Fig. 2) we derived the column density
of 13CO in the outflow. Integrating this over the spatial extent of the outflow (Margulis & Lada, 1985;
Parker et al., 1991; Coulson et al., 2004) then yields the mass of outflowing material. We include material
affected by the jet plus boundary layer material from Table 2 to get the abundance and using an average
value for N[H2] we derive a 13CO outflow mass of ≈ 0.019 solar masses over the extent of the outflow, we
deduce the outflow energy to be 8.76 × 1034 J and momentum ∼ 1.1 × 1032 kg m s−1. These values are
consistent with results obtained by integrating 13CO line wing emission, which is specifically caused by
the outflowing component (Parker et al., 1991). L483 is on the transition between Class 0 and Class 1,
meaning its core still resides within a substantial envelope. Estimating the gravitational binding energy
of the cloud from our model parameters as ∼ 1.0 × 1035 J, we can say the outflow kinetic energy is
sufficient to play a role in disrupting the surrounding envelope.

3.5 12CO

Fig. 5 shows 12CO modeled integrated emission. The top map is the emission as would be seen with a
high resolution (≈ 1′′) instrument and on the bottom is the same emission as would be seen through a
wider beam (≈ 15′′) such as the JCMT. The outflow is at the same position angle as L483 and orientated
with the right hand side lobe pointing 30◦ towards the observer as in Fig. 3. The overall morphology
shows a reasonable agreement with that observed in fig. A.2. of Tafalla et al. (2000).
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Figure 5: Contour plot of 12CO model integrated emission from L483 highlighting the jet morphology.
The top panel is modeled emission with a ≈ 1′′ beam, the bottom panel shows the emis-
sion convolved for a ≈ 15′′ beam. The emission includes both the red and blue-shifted
components of the outflow. The + signs mark positions observed by J. Hatchell and the circles
represent positioned observed in C17O. Offsets are (RA, Dec) in arcseconds from RA = 18h14m50s.6 Dec
= -4◦40′49′′ (B1950)

Figure 6: 12CO (2 - 1) observed and modeled line profiles. The continuous line is the observed profile .
The line profiles are from an approximately east-west string of positions across the molecular outflow.
Their locations are marked with a ’+’ on Fig. 5 (data from Hatchell et al. 1999)
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Figure 7: 13CO (2 - 1) observed and modeled line profiles. The continuous line is the observed profile.
The offset between cells is 10” and the middle panel is at 0” offset.

In Fig. 6 we show the observed line with a continuous line and the overlayed modelled profile with
a broken line. 12CO has contributions to its profile from all components, envelope, outer and inner
boundary layer. Specifically each profile has two peaks, one larger than the other. The large peaks on
the blue and red-shifted sides coincide with the location of maximum outflow emission and were used to
constrain the inner boundary layer abundance and velocity. As seen in Fig. 5 the position of the 12CO
profiles coincide with the peak emission of the outflow. We found only a high velocity component with
significant abundance enhancement could account for the peak. The parameters for the inner boundary
layer are those that model the contribution of the outflow to the line profile. Alongside the outflow peak
is a smaller maximum which is closely delineated by parameters from the envelope and outer boundary
layer regions. Such a big absorption dip indicates massive self absorption occurring in this species. It
should be noted the envelope will have a small input to either side of the self absorption dip but the
inner boundary layer component will totally dominate the emission and line width in the modelled profile.
12CO J = 4 → 3 data was also obtained for the same pointing positions as 12CO J = 2 → 1 and were
well fit by our model but it is not shown here for clarity and conciseness.

3.6 13CO

The 13CO modeled profile closely matches the self absorption dip seen in the observed profile, Fig. 7. In
optically thick species, after the onset of self-absorption, the intensity starts to become relatively insensi-
tive to the overall molecular abundance (Ward-Thompson & Buckley, 2001; Jørgensen, Schoier & van Dishoeck,
2002). This was the case for our 13CO models too. The blue asymmetric profile and the absorption dip
could only be reproduced from the abundance and velocity parameters of the envelope. However, to
account for the broadening in the blue-shifted side of the observed profiles (all five positions are on
the blue-shifted side of the central source) we required a contribution from the fast flowing, warm in-
ner boundary layer component. This contribution provides an extra constraint on the boundary layer
abundance.

3.7 C18O

The C18O modeled profile in Fig. 8 exhibits a stronger blue than red side though there is no strong
self-absorption dip in between. We cannot see any self absorption in C18O because its abundance is not
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Figure 8: C18O (2 - 1) observed and modeled profiles. The continuous line is the observed profile. The
offset between cells is 10”.

high enough to trigger this optical depth effect. It may also be that there is a small contribution on
the blue side of the peak from the outflow since the five pointing positions are all on the blue-shifted
side of the outflow. The peak of the intensity lies at the same position as the minimum of 13CO’s self
absorption dip. The line is not too optically thick and we found the abundance in the envelope was the
main parameter controlling the shape of the modelled profile. Contributions from the inner or outer
boundary layer have very little to no effect. This reaffirms the role of C18O as a good tracer of static
components residing deep inside the envelope.

3.8 C17O

In Fig. 9 we observe the hyperfine structure induced by the 17O nucleus. The relative intensity of two
hyperfine lines allow us to determine the optical depth in the cloud making it a very useful species to
observe with. The hyperfine structure of C17O was included in the R.T. code by using the line strengths
and relative intensities from Ladd, Fuller & Deane (1998) to construct the basic line shape that replaces
the gaussians used for lines without hyperfine structure. The hyperfine components are discernible
though there is some mild blending due to infall motion in the core. The boundary layer parameters
have a negligible effect on the modeled line profiles with the turbulent velocity far more important.

4 Discussion and conclusions

We modelled L483 in four isotopomers of CO in order of decreasing abundance 12CO, 13CO, C18O and
C17O. Each species delineates a different region and therefore we get a clearer picture of cloud dynamics.

C18O and C17O are optically thin and are important tracers of the denser regions of star forming
clouds. Optically thick species such as 12CO and 13CO are more abundant and more susceptible to the
jet motion. They trace regions farther out from the centre of the cloud and have line profiles showing
a large line width consistent with material exposed to a high velocity jet. Using a radiative transfer
code and a dynamical model for L483 we were able to self-consistently calculate for the first time the
abundance of the CO isotopes in the different regions of such a cloud.

Our principal finding is that the CO line profiles in L483 are well fitted with a self-consistent envelope
plus boundary layer model and that the CO abundances increase substantially in this boundary layer.
The most likely reason for this is that molecular ices on dust grains are heated and released back into the
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Figure 9: C17O (2 - 1) observed and modeled line profiles. The continuous line is the observed profile.
The offset between cells is 10” and the middle panel is at 0” offset. Their locations are marked with a
filled circle on Fig. 5

gas phase in the boundary layer. A constant abundance model was found to overestimate the abundance
towards the centre of the cloud and only freeze-out of material towards the centre was able to produce
modeled profiles consistent with observations. Our tanh geometry is chosen because it matches the
observed morphology seen in other protostellar outflows (Tafalla et al., 2000). Other geometries are
possible for the outflow e.g. conical, cylindrical outflow but it is unlikely that it would have a substantial
effect on our results because such a detailed treatment of the boundary layer components is difficult to
achieve until there is sub-arcsecond resolution resolution.

We emphasize that our results provide an abundance enhancement measurement rather than proving
an exact mechanism by which the CO is enhanced, e.g. chemical reactions or dissociation. A more
detailed treatment would involve a full dark cloud and gas-grain chemistry whilst accounting for localized
shock heating. The most enhanced species in our study, by a factor of ∼ 30, is the 13CO
material. The exothermic reaction leading to the creation of 13CO (Duley & Williams,
1984) is shown below

13C+ +12 CO ⇀↽12 C+ +13 CO + ∆E (3)

where the zero-point energy difference ∆E is equivalent to a temperature ∆E/k of 35 K. This
mechanism may be the source for the enhanced abundance observed from our modeling.

The enhanced abundance seen in the boundary layer effect may also be detectable in other molecules.
Park et al. (2000) used interferometric observations of HCO+ and observed anti-infall profiles close to
the centre of the cloud. They concluded the HCO+ was tracing the outlying regions of the outflow, i.e.
a region between the envelope and the jet. The reason the HCO+ emission is predominately seen here
rather than in the more extensive envelope is also likely due to an enhancement of HCO+ caused by
the shock-heated release of icy grain mantles followed by chemical reaction. CO and H2O are liberated
into the gas phase and the shock-induced radiation field then can photodissociate CO to C+. This then
reacts with the H2O to form HCO+. Such a model was successfully used to explain the enhancement of
HCO+ commonly seen at the bases of molecular outflows (Rawlings et al., 2000, 2004). The results in
this paper demonstrate that a combination of datasets with several lines and transitions coupled with
a 3D molecular line transport code is a powerful way to determine the properties of dense star forming
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cores.
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Goldsmith P. F., Li D., Krčo M., 2007, ApJ, 654, 273

Hatchell J., Fuller G. A., Ladd E. F., 1999, A&A, 344, 687

Jørgensen J. K., Hogerheijde M. R., Blake G. A., van Dishoeck E. F., Mundy L. G., Schöier F. L., 2004,
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