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ABSTRACT

Cross-correlation imaging interferometers designed in the shape of a curve of constant width offer
better sensitivity and imaging characteristics than other designs because they sample the Fourier space of
the image better than other shapes, for example, “T’s” or “Y’s.” In a cross-correlation interferometer
each pair of antennas measures one Fourier component with a spatial wavenumber proportional to the
separation of the pair. Placing the individual antennas of the interferometer along a curve of constant
width, a curve that has the same diameter in all directions, guarantees that the spatial resolution of the
instrument will be independent of direction because the measured Fourier components will have the
same maximum spatial wavenumber in all directions. The most uniform sampling within this circular
region in Fourier space will be created by the particular symmetric curve of constant width that has the
lowest degree of rotational symmetry or fewest number of sides, which is the Reuleaux triangle. The
constant width curve with the highest symmetry, the circle is the least satisfactory although still con-
siderably better than T’s or Y’s. In all cases, the sampling can be further improved by perturbing the
antenna locations slightly off a perfect curve to break down symmetries in the antenna pattern which
cause symmetries and hence nonuniformities in the sampling pattern in Fourier space. Appropriate pat-
terns of perturbations can be determined numerically. As a numerical problem, optimizing the sampling
in Fourier space can be thought of as a generalization of the traveling salesman problem to a continuous
two-dimensional space. Self-organizing neural networks which are effective in solving the traveling sales-
man problem are also effective in generating optimal interferometer shapes. The Smithsonian Astro-
physical Observatory’s Submillimeter Array, a cross-correlation imaging interferometer for astronomy,

will be constructed with a design based on the Reuleaux triangle.

Subject headings: instrumentation: interferometers
1. INTRODUCTION

This paper reports on the results of research conducted
for the Smithsonian Astrophysical Observatory’s Sub-
millimeter Array project on the shapes of interferometers.
The Submillimeter Array (SMA) is a multiple element or
cross-correlation interferometer under construction at the
Mauna Kea Observatory in Hawaii for astronomical
imaging in the submillimeter region of the electromagnetic
spectrum. Cross-correlation interferometers such as the
SMA measure the brightness of a source in discrete spatial
frequencies proportional to the separations of all pairs of
antennas in the array and with relative orientations given
by the relative orientations of the respective antenna pairs.
This set of pairwise separations, mathematically equivalent
to the cross-correlation function of the antenna locations, is
the spectral response of the interferometer and the Fourier
transform of the beam pattern. Thus, the shape of the inter-
ferometer determines the response function of the
instrument.

In radio astronomy, an observation may follow a source
from rise to set across the sky. At each instant, the spectral
response will be the cross-correlation function of the inter-
ferometer projected by the angle between the source and the
optical axis. In addition, the response function will rotate in
following the source because the rotation of the Earth will
cause the orientation of the interferometer, fixed on the
Earth, to rotate with respect to the source. At the end of the
observation, the total spectral coverage will be the integral
sum of the time-varying instantaneous spectral response
which is the rotated and projected cross-correlation func-
tion. This technique, called Earth rotation synthesis, allows
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for significantly better coverage of the Fourier plane than
could be achieved by an instantaneous observation alone.
However, the rotation and projection functions will depend
on the location of the source in the sky and the latitude of
the interferometer. Thus the instrument response is a func-
tion not only of the shape of the interferometer but also
the mode of observation and may be different for each
observation.

This report addresses two questions: what is the best
response function for a general-purpose imaging interfer-
ometer such as the SMA, and how to determine the shape
that best approximates that required response taking into
consideration that the instrument will be used most of the
time in Earth rotation synthesis. These two questions are
difficult for two very different reasons. The first question is
quite broad: for any particular scientific goal, the optimal
response is likely to be unique. The second question is
difficult because the spectral response must be the
cross-correlation of the antenna locations, and the cross-
correlation function is not invertible. A simple consider-
ation suggests that numerical solutions are also difficult. If
we imagine the antenna locations to be restricted to a grid,
then the number of possible configurations increases expo-
nentially with the number of antennas. This exponentially
explosive character has previously prohibited numerical
solutions for arrays with more than a few antennas.

In this report we will suggest that considering the most
basic imaging requirements, the best response is the one
that provides the most complete sampling of the Fourier
space of the image out to the limit of some best spatial
resolution. We will then offer two heuristic solutions, one
analytic and one numerical, both suggesting why arrays
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shaped in the form of a curve of constant width, in particu-
lar the Reuleaux triangle, provide the best approximation
to this response. We will show how to estimate the
reduction of the signal-to-noise of an image made with
other interferometer shapes. For cases where some other
spectral response is dictated by different concerns, we will
show how to use the numerical procedure to find approx-
imations to these other response functions.

2. CHOICE OF RESPONSE FUNCTION

In optimizing an imaging system for a particular task, we
would first ask what are the properties of the expected
images and how do we match the instrument response to
those properties given the goals of the experiment. For a
general-purpose instrument, we might rephrase the ques-
tion and ask, given no prior assumptions about the type of
images expected, what are the most basic or common
properties that the imaging system ought to have. While
there are many such properties, selecting just a few, for
example, resolution, signal-to-noise, and sampling accu-
racy, will be sufficient to specify the response and thus the
shape of the interferometer.

Starting with resolution, in the absence of any prior infor-
mation about the image or the goals of an observation, we
will prefer the interferometer to have equal resolution in all
directions. Because the resolution in any direction is deter-
mined by the radial distribution of points in the Fourier
space of the response function, equal resolution in all direc-
tions implies that the response function should be circularly
symmetric. In particular, because the maximum resolution
is set by the maximum wavenumber, the response function
should be contained within a circular boundary in Fourier
space.

The following two arguments concerning the signal-to-
noise ratio and the accuracy of the imaging will show that
the Fourier plane within this boundary ought to be sampled
uniformly. First, in the absence of any prior information
about the image, the highest overall signal-to-noise and the
highest resolution will be achieved simultaneously if the
Fourier domain within the boundary is sampled uniformly.
Uneven sampling will always result in either poorer spatial
resolution or poorer signal-to-noise. For example, a “ T ” or
“Y” shaped cross-correlation interferometer is character-
ized by a centrally condensed sampling distribution with
more sampling points at low spatial frequencies. In such a
case, if the image is formed with equal weight given to all
the measured Fourier components (so-called natural
weighting), the spatial resolution will be less than if all areas
of the Fourier plane are given equal weight. The latter can
be achieved by regridding the data to a uniform grid
(uniform weighting). However, this necessarily implies
assigning nonuniform weights to the data and a corre-
sponding loss of signal-to-noise. The decrease in the signal-
to-noise ratio owing to nonuniform weighting is analogous
to the inefficiency incurred in averaging any set of indepen-
dent measurements with other than equal weights. That is,
in the absence of prior information, we can do no better
than performing a straight or unweighted average of inde-
pendent measurements.

For a cross-correlation interferometer, we can examine
the effect of weighting on the signal-to-noise of the image by
considering an oversimplified case. If the interferometer is
observing a point source at the phase center of the image,
then the signal-to-noise can be written as a simple analytic
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expression (Thompson, Moran, & Swenson 1986, p. 162),

N Y w;
N‘nﬂm’

where s/n is the signal-to-noise ratio measured at a single
sampling point, n,, the number of data points in the sample,
and w;, the weights to the data. This equation illustrates
that the highest signal-to-noise is obtained with weights
identically equal to unity. Although the measurement of the
flux of a point source is not an imaging problem, this equa-
tion is a good illustration because the detrimental effect of
nonuniform weighting is still of the same character even
when considering more complex sources. For more
complex sources, the summations are simply more lengthy
and complex. Thus the highest resolution with the highest
signal-to-noise achievable is obtained with uniform sam-
pling in the Fourier plane. Using the specialized termi-
nology of radio astronomy, the response function of
interferometer should be such as to make natural weighting
and uniform weighting the same.

Second, uniform sampling will provide images least sus-
ceptible to errors arising from unmeasured Fourier com-
ponents. Because a cross-correlation interferometer samples
a discrete number of the Fourier components, nonuniform
sampling will imply less complete sampling. That is, there
will be larger gaps in some places in the Fourier plane and
higher sampling densities elsewhere. Incomplete sampling
implies unmeasured Fourier components which will lead to
errors in the image which are quite separate from errors
arising from noise. Consider an oversimplified example
involving a digitized image with a finite number of discrete
pixels. In this simple case, complete sampling is defined.
Given a choice, would we prefer more measurements on
fewer Fourier components to achieve a high signal-to-noise
on these measured components, or would we prefer to
measure all the Fourier components, although with lower
signal-to-noise, to completely sample the Fourier plane.
The answer is of course the latter because an image formed
with complete sampling will be accurate to within the mea-
sured signal-to-noise whereas an image formed with incom-
plete sampling may have arbitrarily large errors.

In practice, real imaging systems never achieve complete
sampling. In radio astronomy, incomplete sampling is
addressed with image enhancement algorithms, such as
CLEAN (Clark 1980 ) or maximum entropy (Gull 1989),
which perform the inverse Fourier transform from the mea-
sured visibilities to the image, attempting to infer informa-
tion about missing spatial frequencies by a combination of
interpolation from nearby measured frequencies and use of
simple prior information about the image. (A straightfor-
ward inverse Fourier transform implicitly makes the
assumption that the unmeasured components are zero.) The
larger the gaps in the sampling pattern, the greater the
possibility that the interpolation, based on uncertain prior
assumptions, will not be correct, and the greater the possi-
bility for error in the final image. This notion of minimal
gaps in the sampling function was also suggested as a design
criterion for the Very Long Baseline Array (VLBA) (Walker
1984).

These considerations of resolution, signal-to-noise, and
sampling accuracy precede and are not fundamentally
changed by post-observational error correction or decon-
volution procedures. For example, an algorithm such as
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self-calibration (Schwab 1980) which attempts to reduce
phase errors introduced by atmospheric fluctuations by
enforcing phase closure may improve an image by reducing
a particular contribution of noise, but this will not affect the
resolution, the weighting of the Fourier components, nor
the sampling. However, goals different from general
imaging may require a different response function. We will
discuss ways of designing interferometers for different
response functions in § 6.

3. AN ANALYTIC APPRECIATION

The discussion of the previous section suggests that we
look for interferometer shapes whose response functions are
a uniform distribution of sampling points within a circular
boundary. As mentioned in the Introduction, astronomical
cross-correlation interferometers are almost always used in
Earth rotation synthesis where the response depends on the
duration of the observation and the locations of the source
and interferometer. However, it is instructive to first con-
sider the case where the problem can be exactly defined,
where the spectral response is simply the cross-correlation
of the antenna locations. This corresponds to instantaneous
imaging, with the interferometer and the image plane paral-
lel and their centers aligned. We will return to Earth rota-
tion synthesis in § 5.

The criterion that the interferometer have the same
resolution in all directions leads directly to a design around
a curve of constant width by the following argument. For
the case we are interested in, where the distribution of sam-
pling points will be uniform inside a circular boundary, the
resolution will be set by the radius, or wavenumber of the
boundary. Placing the antennas along a curve of constant
width ensures that the maximum separation of the
antennas, and thus the resolution, will be the same in all
directions. This defining property of a curve of constant
width may be visualized by imaging such a curve placed
between two parallel planes and rolled. The curve has con-
stant width if the planes do not bump up and down. The
circle is the simplest curve of constant width, but there are
an infinite number of constant width curves, symmetrical
and non symmetrical. Any regular polygon with an odd
number of sides can be made into a curve of constant width
by replacing each of the sides with a circular arc with the
opposite vertex as the center. Of all the curves of constant
width, the circle is the one with the highest degree of rota-
tional symmetry, and of the curves formed from regular
polygons, the curve formed from the equilateral triangle has
lowest. Construction procedures and other interesting facts
about these curves may be found in Gardner (1968) and
Rademacher & Toeplitz (1957). Any of these shapes will
create an interferometer with equal resolution in all direc-
tions. Thus the requirement for equal resolution in all direc-
tions defines the boundary of the spectral response function
and specifies the family of curves of constant width as the
correct shape. Interferometers built on a circular plan
include the Culgoora Radioheliograph (Swenson & Mathur
1967).

The requirement that the sampling function be uniform
within the previously defined circular boundary is sufficient
to select the symmetric triangular curve of constant width,
the Reuleaux triangle, as the best out of the infinite family of
constant width curves by the following argument. Consider
the sampling pattern produced by an interferometer with
individual antennas evenly spaced around the perimeter of
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a circle. In this case, the antenna separations in real space
will be evenly spaced in angle so that the samples in Fourier
space must lie on radial spokes (Fig. 1). For any single
angle, the separations in that direction, which are parallel
chords across the circle, will be distributed in length as the
cosine of the angle subtended by the chord from the center
of the circle. At the shortest separations, the change in
separation is rapid as is the change in cosine of a small
angle. But at the largest separations, there is very little
change in distance between pairs. The sampling points at
the shortest spacings are then relatively far apart radially
but tightly bunched in the perpendicular direction, in
azimuth. At the longest spacings, the sampling points are
very similar in radius, but far apart in azimuth around
the perimeter of the outer boundary in Fourier space. In
the midrange the sampling approximates a uniform grid
(Fig. 1).

If the antennas are distributed uniformly around the
perimeter of a Reuleaux triangle (Fig. 2), the spacings will be
differently distributed in length and orientation. For
example, consider the shortest spacings. In both the circle
and the triangle, these are the spacings produced by the
separations between adjacent pairs, every other pair, and so
on. In the case of the circle, the smallest spacings are the
same at all orientations as are the next smallest and so on.
In the case of the Reuleaux triangle, the length of the spac-
ings connecting antennas along the sides of the triangle is
different than the lengths connecting antennas across the
vertices. Thus the lengths change with different orientations.
This difference breaks down some of the symmetry in the
circular array resulting in a more uniform distribution
(Fig. 2).

This notion of achieving more uniform sampling by
reducing the symmetry of the sampling pattern makes sense
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F1G. 1.—Sampling pattern for a circular array of 21 antennas. Triangles
indicate the antenna locations and the dots indicate the separations of all
pairs of antennas. These separations are proportional to the wavenumber
of the sampling in Fourier space and are also equivalent to the cross-
correlation function of the antenna locations. Thus the axes indicate physi-
cal space for both the antennas and their separations and are proportional
to wavenumber in Fourier space. The circular array produces a sampling
pattern that is too tightly packed in radius at large wavenumbers and too
tight in azimuth at small. In between the sampling is fairly uniform.
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Fi1G. 2—Sampling pattern for a symmetric array of 24 antennas in a
Reuleaux triangle. Differences in separations between antennas along the
sides of the triangle and across the vertices create a less symmetric and
more uniform sampling pattern in Fourier space. See Fig. 1 for an explana-
tion of the triangles and dots.

if we think of uniform sampling in the sense of an average
equal density of the sampling points across the Fourier
domain. Apart from the symmetry represented by a regular,
periodic, tessalation of the plane—which is apparently not
achievable as a cross-correlation function except over a
limited subset of the sampling domain (Golay 1976)—other
types of symmetries will in general reduce unformity. There-
fore, it should be possible to improve the sampling of
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designs based on curves of constant width, by perturbing
the symmetry of the antenna locations off of a perfect curve.
Cornwell (1988) explored this notion of asymmetry in the
design of circular arrays with small numbers of antennas.
He used a numerical algorithm to place the antennas
around the perimeter of a circle to achieve the most uniform
sampling within a circular domain in Fourier space
resulting in a quasi-random looking distribution around the
circle. Continuing along this line of thought, we might
suppose that the sampling could be further improved by
perturbing the antenna locations in two dimensions, radius
and azimuth, rather than just azimuth. A comparison of
two designs for nine antennas, one generated by a computer
algorithm that also allows variation in radius, shows that
this is the case (Fig. 3).

This analysis suggests that to achieve the most uniform
sampling within a circular boundary the antennas should
be placed in a slightly perturbed pattern along the perimeter
of a Reuleaux triangle. The perturbations will have a quasi-
random character in that while there will be an infinite
number of perturbed patterns with equally good sampling,
random perturbations will not always produce good results
especially for small numbers of antennas. Thus we need a
procedure for determining a good pattern of perturbations.
For this we will employ a numerical algorithm described in
the next section.

4. A NUMERICAL APPROACH

While we know the forward mapping from a shape to the
sampling pattern, we do not know the inverse mapping. But
certainly, we should be able to find the shape which best
approximates a desired sampling pattern with a numerical
optimization program. Heuristic search algorithms such as
simulated annealing, genetic algorithms, or neural networks
are indicated by the exponentially explosive character of the
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F1G. 3.—a) Circular array of nine antennas where the antenna locations are confined to the perimeter of the circle, but optimized in one dimension,
azimuth, to produce the most uniform sampling pattern within a circular region in Fourier space. (b) Triangular array of nine antennas where the antenna
locations are optimized in two dimensions to produce the most uniform sampling within a circular region in Fourier space. Relative to Fig. 3a, perturbations
in radius in addition to azimuth allow further breakdown of symmetry, and hence better uniformity in the sampling pattern. In particular the central hole is

smaller as are the empty spaces between sampling points throughout the region.
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problem. While all of these algorithms will work, for
example, Cornwell (1988) used simulated annealing while
Golay (1970) used a random guessing algorithm, the most
efficient in this application is the neural or elastic net. Effi-
ciency is key because not only does the search space expand
exponentially with the number of antennas, but calculation
of the cross-correlation function is itself an n* operation.
This adverse scaling has previously prevented solution for
arrays with more than a few antennas and even then on a
limited solution space. For example, the solutions of Golay
(1970) are restricted to a fixed grid while those of Cornwell
(1988) are confined to the perimeter of a circle.

One might suppose that the difficulty with simulated
annealing or stochastic search is that after some initial
adjustments, it becomes progressively more difficult to
blindly guess an adjustment which results in an improve-
ment, and most of the trials, calculated at a cost of n? oper-
ations, are simply discarded. In contrast, gradient descent
algorithms which calculate the direction of best improve-
ment based on the current solution make better use of the
available information and converge much more rapidly.
However, as is well known, they are prone to trapping in
local minima whereas a random guessing algorithm such as
simulated annealing will eventually escape local minima to
find the best solution at the global minimum. These con-
siderations suggest that to improve on the performance of
simulated annealing we might experiment with algorithms
with a different mix of randomness and gradient descent yet
which are still effective in avoiding local minima. Neural or
elastic nets are suggested by their successful performance on
the well-known traveling salesman problem which like our
array design problem poses the difficulty of an exponen-
tially explosive search space plagued by numerous local
minima.

The traveling salesman’s problem is to choose the short-
est closed tour through a number of randomly distributed
cities. To solve this problem by simulated annealing, we
start from an initial guess and randomly swap pairs of cities
in the order of tour. In the course of random guessing, we
always accept solutions which shorten the tour, but we also
accept solutions which increase the tour length according to
a Boltzmann probability e Z*T, where E is the figure of
merit, analogous to an energy, and kT can be thought of as
a proportionality constant times a temperature which
decreases slowly over time allowing the solution to con-
verge. This process suggests crystallization by slow cooling
or annealing. The occasional uphill steps in the algorithm
allow the algorithm to escape local minima. In fact, it can be
shown that if the temperature is cooled slowly enough, the
algorithm will asymptotically converge to the correct solu-
tion (Geman & Geman 1984). However, in practice, the
proof of asymptotic convergence is but meager consolation
since there is no guarantee that any solution deemed suffi-
ciently acceptable by whatever merit will be found in any
finite period of time.

To solve the traveling salesman’s problem using an elastic
net, we imagine the tour to be represented by an elastic
band. Initially the elastic band is placed on the plane con-
taining the cities as a small closed loop which need not go
through any cities. We then pick cities at random, find the
closest spot on the elastic band, and stretch the band a
small amount in the direction of the city. Over time the
band will stretch to become closer and closer to a valid and
short tour. Previous research shows that the elastic net is

CROSS-CORRELATION INTERFEROMETERS 847

competitive with simulated annealing in the traveling sales-
man problem (Durbin & Wilshaw 1987).

To proceed toward an algorithm capable of solving the
array design problem, we generalize the travel salesman
problem to a two-dimensional continuous space. Instead of
requiring the band to pass through discrete cities we require
the band to cover as best as possible some two-dimensional
region of arbitrary shape. In this case we discretize the
elastic band so that it is made up of a fixed number of nodes
connected by elastic. Following the same iterative pro-
cedure except randomly picking points on the plane rather
than cities, we find the closest nodes on the band and move
them closer to the randomly selected point. Over time, the
nodes will distribute themselves over the plane so that no
part of the plane is too far from one of the nodes. The result
is a minimax solution; the algorithm minimizes the average
maximum distance between the nodes and all points on the
plane (see § 6).

Continuing the abstraction, we may imagine instead of a
band, a two-dimensional elastic sheet or net of nodes con-
nected by elastic bands. In this case our iterative procedure
tugs at the sheet, stretching it into shape like pulling pizza
dough to cover a pan. In the case of a two-dimensional
sheet covering a two-dimensional surface, the problem is
still interesting, that is to say nontrivial, if the sheet has a
different topology than the shape it is to cover. For
example, the sheet may be topologically simply connected,
that is it has no holes, while the region to be covered is a
torus. The elastic net algorithm in these topological
mapping examples has been studied as a so-called self-
organizing neural network (Kohonen 1984).

Finally, we may relate these algorithms to interferometer
design by a further abstraction, imagining that our elastic
net has the topology of the cross-correlation function of the
antennas. If we index the n antennas, the net can be specified
asann x n — 1 grid of nodes labeled by two antennas. The
elastic may be strung between neighboring nodes defined as
those having antenna indices differing by one. Each node
then has four nearest neighbors, i, j connected to i + 1, j,
i — 1, j, etc. Starting from an initial configuration of the
antennas, we calculate the shape of the net as the cross-
correlation function of the antenna locations. Then we ran-
domly choose points in the circular region in Fourier space,
stretching and pulling the net. In this case stretching the net
means repositioning the respective antennas associated with
the node in motion. Of course, it is not possible to move
only a single node since each antenna is related to n — 1
nodes. But nevertheless averaging the required movements,
over time, the net or cross-correlation function, will adapt
to the specified topology, which is the required spectral
response of the interferometer.

More specifically, the algorithm used in this study con-
sists of two steps, a search step and a relaxation step. In the
search step we find the point of the cross-correlation func-
tion m,(f) closest to a given random point x(t) in the Fourier
domain

I () — m(2) | = min, || x(£) — m®) || .

In the relaxation step we adjust the positions of those
points in the cross-correlation function within some neigh-
borhood, N (t) around m_(t) which may be larger than the
nearest neighbors as specified above. The adjustment is
made so that on average—allowing that we cannot adjust
one cross-correlation point without moving n — 1 others—
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the points in the neighborhood lie closer to the randomly
selected point in Fourier space x(t):

m{t + At) = mt) + a(t)[x(t) — m{)] forie N.t),

myt + At) = my(t) otherwise .

The function off) is a monotonically decreasing function
which allows the algorithm to converge, but a might also
depend on the neighborhood function, N (). The algorithm
carries the appellation “neural network ” because we may
imagine the neighborhood function to be the output of a
similarity matching processor or neuron which is used
adaptively in relaxing the synaptic weights of the neurons
(the positions of our cross-correlation points). In the lan-
guage of neural nets, the algorithm is said to have learned
the required inverse mapping, albeit for a particular case, in
that the information becomes encoded in the neural
network in the synaptic weights connecting each neuron
(Kohonen 1984).

We would expect, based on our analytic appreciation of
the array design problem, that starting from any pattern of
antennas, for example, random, the algorithm would always
find a solution based on the Reuleaux triangle such as illus-
trated in Figures 3 or 4. Experience suggests that this is
indeed the case. It is also possible to start from a circle or
triangle and allow the algorithm to adjust the antenna loca-
tions a small amount simply to break down symmetries in
the sampling pattern. Figure 5 is a circular pattern with
much of the symmetry removed by the elastic net. However,
in the case of nontriangular patterns the algorithm must be
stopped at some arbitrary point, because allowed to con-
verge, the solution is always triangular. Comparing Figures
4 and 5, the triangular solution has better sampling than the
circular near the edge and center of the Fourier domain.

As opposed to the traveling salesman problem where
simulated annealing and the elastic net are competitive, in
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Fi1G. 4—Triangular array of 24 antennas which has been optimized for
the most uniform coverage by an elastic or neural net algorithm. Pertur-
bations of the antenna locations away from a perfect Reuleaux triangle
break down symmetry in the sampling pattern leading to more uniform
coverage. Compare with Fig. 2.
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F1G. 5—Circular array of 21 antennas partially optimized for the most
uniform coverage by an elastic or neural net algorithm. In this case the
solution was frozen before convergence to preserve the circular shape of
the array. Allowed to run to convergence the solution would be triangular
similar to the solution in Fig. 4. The perturbed circle here has much better
coverage than the perfect circle in Fig. 1, but not as good as the triangular
array in Fig. 4.

this two-dimensional topological mapping problem, the
elastic net is very much faster. For example, for 12 antennas,
the difference on a RISC workstation is a few minutes
versus a few hours. The concern that the algorithm is sus-
ceptible to trapping in local minima must be valid, but
experience shows that, as with the traveling salesman
problem, very good results are obtained very rapidly.
Multiple trials with different initial configurations and with
different randomly selected points in the Fourier plane will
find different patterns of symmetry breaking perturbations
on the Reuleaux design. But the various solutions are in
various measures equally good. A particular solution
cannot be guaranteed, but this is characteristic of heuristic
search algorithms. For example, there is no guarantee that
simulated annealing will not be trapped in a local minimum
for a very long time, exceeding any allowed computational
patience.

5. EARTH ROTATION SYNTHESIS

As mentioned in the Introduction, the response function
of interferometers used in Earth rotation synthesis is not
simply the cross-correlation function of the antenna loca-
tions, but rather the integral sum of a time-varying function
which is the cross-correlation function rotated and project-
ed by a constantly changing viewing angle as the interfer-
ometer tracks the source from rise to set across the sky. In
Earth rotation synthesis an individual sampling point will
trace out an elliptical arc in the Fourier plane over the
course of an observation (Thompson et al. 1986, p. 86), and
the interferometer design should consider the distribution
of these arcs rather than the individual points in the cross-
correlation function. This additional complexity does not
change the original imaging requirements, and the choice of
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a response function which provides for uniform sampling of
the Fourier plane out to some maximum resolution is still
the same. However, perhaps the biggest difficulty is that the
optimization of the shape of the interferometer is no longer
a well-defined problem because the same shape will gener-
ate different response functions depending on the particular
observation, that is, the location of the source in the sky and
the location of the interferometer on Earth.

Nonetheless, the problem when taken apart is not as
intractable as it first appears. First, if we have a circularly
symmetric response, the response will be invariant under
rotation of the array, and we need consider only the effects
of the projection of the response. A projection is a simple
linear operation which will transform a uniform response
within a circular boundary to a contracted uniform
response within an elliptical boundary. During a tracking
observation, the projection will be the least at transit, when
the source passes the meridian, and greater on either side.
Thus the instantaneous responses over the course of the
observation will be a family of uniform distributions with
elliptical boundaries. These ellipses, centered on the origin
in the Fourier plane, will rotate and expand to a maximum
area as the source rises to transit, rotating and decreasing as
the source sets. Thus the final response function will be a
sum of ellipses of varying sizes, all centered on the origin,
and at the end of the observation we will always have a
response which is more heavily weighted toward the center
of Fourier plane. To compensate, we might ask for an array
shape which provides a sampling function with lower
density in the center so that this deficit in the center would
be filled in by the smaller and denser projected sampling
patterns early and late in the observation.

Such a request may be in vain in that there probably are
no array patterns whose cross-correlation functions are
centrally evacuated. One way to understand this statement
is to think of the cross-correlation function as the overlap of
the function with itself separated by some distance or lag in
x and y. These lags are the independent variables in the
two-dimensional cross-correlation. Suppose we have a func-
tion of value unity on a circle and zero elsewhere. Then the
cross-correlation or overlap of this circle with itself has a
value of two or zero almost everywhere, the exceptions
being the points where the circles are tangent and the
unique point of zero lag where the overlap is 2ar. Now
consider figures such as the “Y ” or the “ T.” These have an
overlap of unity or zero almost everywhere, but much
higher values along certain directions where the arms of the
two overlapping figures line up. Along these special direc-
tions, the overlap decreases linearly with increasing lag
from the maximum at zero lag to the point where the over-
lapping figures separate. Along other directions, the lag falls
immediately to unity. This is another way of understanding
why the cross-correlation function of closed figures like the
circle or Reuleaux triangle will be more uniform than the
cross-correlation of open figures such as the “T” or “Y.”
Ignoring the point at zero lag, which is not relevant for
radio interferometers built of discrete elements, it is difficult
to imagine a two-dimensional figure whose overlap with
itself decreases with smaller lag. Thus it will not be possible
to have an instantaneous response function which is cen-
trally evacuated. The best we can do in Earth rotation syn-
thesis is start with a shape whose instantaneous response is
flat so that over the course of the observation, although the
response function will become denser in the center, the effect
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will be less so that if we had started with a centrally con-
densed instantaneous response.

Figure 6 shows a comparison of the coverage obtained in
Earth rotation synthesis with the 24-element perturbed
Reuleaux triangle of Figure 4 and the 27-element “Y ”-
shaped Very Large Array. Although Earth rotation synthe-
sis always improves the sampling over the instantaneous
response, the deficiencies of the nonuniform instantaneous
response generally remain as deficiencies in the time-
integrated response. For example, the instantaneous
response of a “Y ” pattern has a higher density in the center
and a boundary shaped like a six pointed star. After Earth
rotation synthesis, the sampling of the “Y ” is improved, but
the outlying points of the star have simply become outlying
tracks and the relative density in the center has increased
further. Similarly, the Fourier coverage of the Reuleaux tri-
angle is also much improved, and the response maintains its
good properties of equal resolution in all directions and
more nearly uniform coverage.

The dependence of the response function on the decli-
nation of the source and the duration of the observation
means that to demonstrate a more formal proof, either
numerical or deductive, we would have to specify the decli-
nation and duration of the observation in the definition of
the problem. For example, we might choose the midpoint of
the operating range of the instrument, or possibly the
average response function over a range of declinations and
durations about some midpoint. In this regard, our pre-
vious discussions of the response as the simple cross-
correlation of the antenna locations is quite relevant
because the midpoint of the operating range of an interfer-
ometer is generally the zenith. The array will likely observe
as far north as south, and the observations are generally
scheduled with equal time before and after transit. Thus the
response function at zenith is arguably the correct single
response to choose for the optimization of the response for
Earth rotation synthesis.

As this discussion illustrates, there are a number of ways
to approach the problem. Yet all the ones tried lead back to
the choice of the Reuleaux triangle. In summary, Figure 6
and the discussion above clearly demonstrate why the
Reuleaux triangle will outperform “T’s” and “Y’s” in
Earth rotation synthesis. The figure and the discussion also
suggest very intuitively why there is probably no better
shape for Earth rotation synthesis. However, a more defini-
tive argument would require a more definitive statement of
the problem, including the particulars of the operation of
the array. Perhaps for a general imaging instrument, we
have gone as far as we can.

6. THE TRADE-OFF BETWEEN SIDELOBES AND
SIGNAL-TO-NOISE

As mentioned in the discussion on image quality, in other
circumstances we might wish to specify a nonuniform spec-
tral sensitivity function. For example, in the design of
single-dish antennas, there is a well-known trade-off
between overall signal-to-noise and the sidelobe level of the
antenna beam. In Fourier space, the maximum signal-to-
noise at the highest resolution is achieved with a pillbox
sampling distribution which will result in a beam shaped as
the Bessel function J,(x)/x with sidelobes at the 19% level.
In contrast, a truncated Gaussian distribution in Fourier
space will result in an approximately Gaussian shaped
beam. The main beam will be broader than that achieved by
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F1G. 7.—Array of 24 antennas which provides a tapered sampling func-
tion in Fourier space useful in applications requiring small sidelobes in the
beam pattern. The array shape is optimized to provide the closest approx-
imation to a Gaussian response within a circular boundary. Evidently,
there are no patterns whose cross-correlation function closely meets these
criteria, but the pattern here has a softer edge than, for example, the
pattern in Fig. 4.

the pillbox sampling, implying a reduced resolution, but the
sidelobes will be significantly less. For some applications,
for example, to reduce ringing or concentrate the beam
power, we might prefer an approximately Gaussian
response. To achieve this, we might substitute a Gaussian
distribution of randomly selected points in the Fourier
plane in place of our uniform distribution to bias the
stretching of the net. Previous research shows that this is
nearly but not quite correct. The problem is analogous to
early work on the optimal distribution of frequency chan-
nels in telephony where the task is to assign a limited
number of channels to cover some bandwidth with the con-
dition that the signals have a known but nonuniform prob-
ability distribution in frequency (Bennet 1948). In this case
the result will be a weighted minimax solution. Extension to
multiple dimensions has come to be known as vector quan-
tization because the task may be stated as minimizing the
average quantization error between the set of input signal
vectors x, described by a probability distribution p(x), and
M., the closest member in a set of measurement vectors,

<e> = J;/ ” X — mc(x) || p(X)dI/x ’

where dV, is a volume differential, and || - || is an arbitrary
metric. Previous work on neural networks has shown that if
the input signal vector x is a random variable with a prob-
ability density p(x), then a self-organizing neural network
will converge such that the distribution of the measurement
vectors, in the asymptotic limit of a large number of such
vectors, will be of the form f[p(x)], where f is some contin-
uous, monotonically increasing function (Kohonen 1984).
The function f has been calculated analytically for the case
where the neighborhood function N, is restricted to the
measurement vector m, itself, that is, a zero width neighbor-

hood, or equivalently if we let the self-organizing neural
network converge with N, — 0 as t - co. In the limit the
elastic net algorithm is the same as the vector quantization
algorithm proposed by Linde, Buzo, & Gray (1980), and we
find that the measurement vectors will have a density
[p(x)1% g = n/(n + r), where n is the dimensionality of the
measurement vectors and r is the power in the metric
I f Il =[f frdx]" (Zador 1982). Figure 7 illustrates one
array which approximates a Gaussian distribution in
Fourier space with a circular boundary. The approximation
is not particularly good presumably because there are no
functions whose cross-correlation function is a Gaussian
truncated with a circular boundary. However, because of
the tapered sampling density this array would have a beam
with a lower sidelobe level.

7. TRADE-OFFS TO SUBOPTIMAL DESIGN

How much better is the optimal configuration than
another configuration? For example, the “Y ” configuration
offers certain advantages in construction requiring only half
the path length to connect the antennas as required by the
optimal triangle. Alternatively, if one is considering upgrad-
ing an existing “ T ”-shaped interferometer, would money be
better spent on more antennas or on reconfiguring the
antenna locations? Referring back to our discussion in § 2
we may ask how many antennas in a “Y” would be
required to equal the image quality of the triangle. if the
nonuniform cross-correlation function of the “Y ” were re-
gridded on the same scale as the cross-correlation function
of the triangle. The best “Y” configuration for seven
antennas has a point source signal-to-noise advantage
including the penalty from regridding, which is 5% better
than the six antenna triangle; however, on the grid scale of
the triangular array, there are empty grid cells in the cross-
correlation function of the “Y ” which are covered by the
cross-correlation function of the triangular array. The seven
antenna “Y” is therefore a poorer design than the six
antenna triangle since the 5% improvement in signal-to-
noise is not worth the image degradation caused by the
incomplete coverage. With eight antennas in a “Y,” the
poorer image quality owing to nonuniform coverage will be
offset to some extent by a 24% improvement in signal-to-
noise. A nine antenna “Y ” performs better in all respects
than the six antenna triangle, with an improvement in
signal-to-noise of 46% and better overall coverage. In some
rough sense we may say that six antennas in a triangle is
worth approximately eight antennas in a “Y.” The per-
formance benefit or cost saving can be substantial if the
antennas themselves are expensive, as is always the case
with interferometers designed for astronomical observa-
tions at high frequency in the radio spectrum.

8. CONCLUSIONS

Interferometer shapes based on slightly perturbed curves
of constant width, in particular the Reuleaux triangle, offer
the most complete sampling in the Fourier space of the
image. This holds not only in so-called snapshot imaging in
which the spectral response is simply the cross-correlation
function of the antenna locations, but is also generally true
in Earth rotation synthesis in which the response is a time
integration of the changing instantaneous responses
obtained in tracking a source from rise to set across the sky.

Self-organizing neural networks are effective in gener-
ating the perturbed shapes.
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The Smithsonian Astrophysical Observatory’s Sub-
millimeter Array, a cross-correlation interferometer for
astronomical imaging at submillimeter wavelengths, will be
built with a shape based on a triangular curve of constant
width.

Work performed at Lawrence Livermore National
Laboratory under the auspices of United States Depart-
ment of Energy contract number W-7405-ENG-48.
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