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Abstract. The Pandora computer program is a general-purpose non-
LTE atmospheric modeling and spectrum synthesis code which has been
used extensively to determine models of the solar atmosphere, other stel-
lar atmospheres, and nebulae. The Pandora program takes into account,
for a model atmosphere which is either planar or spherical, which is ei-
ther stationary or in motion, and which may have an external source of
illumination, the time-independent optically-thick non-LTE transfer of
line and continuum radiation for multilevel atoms and multiple stages of
ionization, with partial frequency redistribution, fluorescence, and other
physical processes and constraints, including momentum balance and ra-
diative energy balance with mechanical heating. Pandora includes the
detailed effects of both particle diffusion and flow velocities in the equa-
tions of ionization equilibrium. Such effects must be taken into account
whenever the temperature gradient is large, such as in a chromosphere-
corona transition region.

1. Introduction

In this paper we first present a description of four different types of model atmo-
sphere calculations: radiative equilibrium, general equilibrium, semi-empirical,
and hydrodynamical, followed by a brief discussion of the important effects that
should be included in model calculations. Then we describe the Pandora pro-
gram which can be used for many different purposes, but is restricted at present
by the assumptions of one-dimensionality and time-independence. Pandora can
be used for the first three types of model calculations but does not include the
detailed time-dependent effects used in the hydrodynamic calculations. We list
the publications that document the methods used in the program and that give
the results of many different applications. The program is available to new users
on request (with the caveat that it is an extensive general-purpose program that
requires a significant commitment of learning time on the part of the user; see the
Pandora webpage http://cfa-www.harvard.edu/∼rloeser/pandora.html).
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2. Types of Model Atmosphere Calculations: An Overview

Model atmospheres can be classified as being of four general types: radiative
equilibrium, general equilibrium, semi-empirical, and hydrodynamical. The first
is based on the constraint of radiative equilibrium for which the temperature dis-
tribution is determined so that the outward radiative flux is constant with depth.
Radiative equilibrium models assume that there are no sources of non-radiative
heating, and are normally time-independent without mass flows. Except in spe-
cial cases, the temperature decreases monotonically with decreasing depths. Ex-
amples are the deeper layers of stellar atmospheres (photospheres) that show no
evidence of non-radiative heating effects. See Kurucz (1970, 1979, 1991, 1998).

General equilibrium models are usually time-independent but include the
effects of non-radiative energy flow due to thermal conduction, particle diffusion,
and mass flows, and can include mechanical heating specified in some parametric
way. Examples are the thin transition regions between neutral and ionized
regions where a very steep temperature gradient results from strong resonance-
line cooling at the lower temperatures. See Fontenla, Avrett, & Loeser (2002).

Semi-empirical models use a prescribed temperature distribution which is
selected to obtain agreement between the spectrum calculated from the model
and an observed spectrum. From such a model one can use the calculated
departures from constant radiative flux to infer the corresponding mechanical
heating distribution. Examples are stellar chromospheres that show emission due
to an outward increase in temperature caused by the dissipation of mechanical
energy in some form. See Vernazza, Avrett, & Loeser (1981) and Avrett (2002).

Hydrodynamical models simulate dynamical processes and use their prop-
erties to supply the mechanical heating necessary to account for an observed
spectrum that shows emission in excess of that determined by radiative equilib-
rium. Such hydrodynamical models must assume some initial conditions to get
the gas motions started, but then the model relies on internal wave motions to
produce the mechanical heating. The aim in such calculations is to include all
important physical processes and to match the given observations well enough
to have confidence that the simulation is realistic. The time-dependent hydrody-
namical models cannot be expected to lead to good agreement with observations
if any important physical processes are not included or are not treated correctly.
To the extent that the hydrodynamical models agree with observations they
tell us more about the physical mechanisms at work than can be learned from
the semi-empirical models, since the latter can indicate only the general prop-
erties of the temperature and mechanical heating distributions yielding a given
spectrum. In extreme cases the variations with time in hydrodynamical models
can be very large, suggesting that time-averaged quantities in a corresponding
time-independent semi-empirical model may not properly represent the physical
conditions in the atmosphere. Examples are the dynamical solar atmospheric
models of Carlsson & Stein (1997, 1999).

For a radiative equilibrium model one must specify the effective temperature
(which measures the total radiative flux), the surface gravity, and the chemical
composition of the atmosphere, and can then calculate a model atmosphere and
the corresponding spectrum to compare with an observed stellar spectrum. In
many cases, combinations of values of the effective temperature, gravity, and
composition can be found that lead to good agreement between calculated and
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observed spectra. However, if the observed spectrum shows emission features
that cannot be explained with radiative equilibrium models, one can carry out
general equilibrium calculations, or can change the radiative equilibrium tem-
perature distribution to a semi-empirical distribution chosen by trial-and-error
to give a best match between the calculated and observed spectra. The final
alternative is to introduce wave motions that heat the atmosphere and to cal-
culate a self-consistent time-dependent hydrodynamical model in an attempt to
match the observed spectrum. The hydrodynamical calculations are complex,
and the results reported to date by Carlsson & Stein match some observations
well but fail to match others. See Kalkofen (2001).

3. Important Processes in Model Atmosphere Calculations

3.1. Atomic and Molecular Data

Consider the calculation of the spectrum of atomic hydrogen. A good repre-
sentation of the hydrogen atom in most cases is one having 15 levels, with 105
line transitions. It is not possible to calculate the hydrogen spectrum without
including the many other atoms, ions, and molecules that influence the lines
and bound-free continua of hydrogen and that provide the dominant opacity
contributions in various parts of the spectrum. These contributions include not
only the negative hydrogen ion and the bound-free continua of He, C, Mg, Si,
Al, Ca, Na, Fe, and other atoms, but vast numbers of line transitions from these
and other atoms, ions, and molecules. All of these need to be represented in
detail with many levels and transitions, and all interact with each other. For-
tunately, most of these interactions can be treated iteratively with no intrinsic
convergence problems. The model calculations of all four types require extensive
multilevel atomic and molecular systems in order to calculate in detail the in-
tensity of radiation as a function of both wavelength and depth. When LTE (see
below) can be assumed, it is sufficient to include in the model calculation only
the opacity due to all the lines and the various continua as functions of wave-
length and depth (since the ratio of emission to absorption is then given by the
Planck function). Extensive line-opacity tabulations are available on CD-ROMs
from R. Kurucz (see http://kurucz.harvard.edu).

3.2. Non-LTE Effects

Radiative equilibrium models usually are calculated assuming local thermody-
namic equilibrium (LTE), i.e., assuming that all atomic and molecular energy
levels are populated at each depth as they would be in thermal equilibrium
corresponding to the kinetic temperature at that depth. This is a good ap-
proximation for high-density regions at large optical depths where the radiation
intensity at a given location is produced in a small surrounding volume and
hence can be represented by the Planck function at the local temperature. But
in low-density atmospheric regions where photons are likely to be scattered (i.e.,
re-emitted after an absorption with no intervening collisional transitions) the
radiation is produced in a larger surrounding volume. If this volume extends
into or beyond the surface layers, where there is little or no emission, the radi-
ation intensity at the given location is usually smaller than that given by the
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local Planck function. Such non-LTE effects are of critical importance in low-
density atmospheric regions, such as in stellar chromospheres and higher layers.
To account for non-LTE effects it is necessary to solve complicated systems of
radiative transfer and statistical equilibrium equations. See Vernazza, Avrett,
& Loeser (1973), Mihalas (1978), Anderson (1989), Avrett & Loeser (1992),
Avrett (1996), and especially the proceedings of the recent Tübingen workshop
on Stellar Atmospheric Modeling (Hubeny, Mihalas, & Werner 2002).

3.3. Partial Redistribution

The thermal motions of atoms which absorb and re-emit photons in a given line
cause frequency redistribution within the narrow Doppler core of the line. In
the far wings, however, frequency redistribution is limited and the scattering is
essentially coherent. Complete frequency redistribution (CRD) over the entire
line is a useful simplifying approximation, but one that is inappropriate for
strong lines formed in low-density atmospheric regions.

The theory of partial frequency redistribution (PRD) is reasonably well
understood and should be included for all strong lines. See the review of early
developments by Linsky (1985), and the more recent papers by Cooper, Ballagh,
& Hubeny (1989), Hubeny & Lanz (1995), and Uitenbroek (2001).

The CRD line source function is frequency-independent while the line source
function determined from the more general PRD theory varies from core to wing.
It is often important to include PRD interlocking between lines having an energy
level in common, and between blended or partially overlapping lines (e.g., see
Mauas, Avrett, & Loeser 1989), and to include the detailed effects of Doppler
shifts due to relative gas motions.

3.4. Particle Diffusion and Advection

In atmospheric regions with steep temperature gradients, e.g., a chromosphere-
corona transition region, three sources of heat flow should be considered: thermal
conduction, particle diffusion, and, in the case of mass flows, advection (under-
stood to include the ionization effects described below). Thermal conduction
depends in a simple way on the temperature gradient.

In a partially ionized gas, ambipolar diffusion of ions (diffusing toward lower
temperatures) and of atoms (diffusing toward higher temperatures) also depends
on the temperature gradient, and is often more important than thermal conduc-
tion. The main heat flow contribution made by diffusion is the ionization energy
carried by ions that recombine to release energy at lower temperatures.

Advection refers to the effects of mass and particle flow velocities. Flows
toward lower temperature regions also cause ions to release their ionization en-
ergy at the lower temperatures and heat the gas, but this component of the heat
flow does not depend on the temperature gradient. If roughly the same total
heat flow toward lower temperatures is needed to balance the losses of energy
by radiation, then the temperature gradient will be reduced in order to reduce
the conduction and diffusion contributions. Conversely, given roughly the same
radiative losses to be balanced, a flow toward higher temperature regions coun-
teracts the opposite flow of heat carried by conduction and diffusion, so that
the temperature gradient must be larger in order to enhance the conduction and
diffusion contributions.
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The profiles of the hydrogen and helium resonance lines formed in the solar
transition region are greatly affected by diffusion and by flows, and Doppler line
shifts are much less important than the asymmetric changes in line intensity and
central reversal due to the influence of flows on excitation and ionization. These
conclusions are based on our current reference model of the solar atmosphere
that extends from the photosphere into the corona, and that is roughly in accord
with the observed solar spectrum from radio waves to X-rays (Fontenla, Avrett,
& Loeser 2002).

4. The Pandora Atmosphere Program: General Description

Pandora deals with a time-independent one-dimensional atmospheric region that
is either finite or semi-infinite in the plane-parallel case, or that has spherical
symmetry. The atmospheric layers can be stationary or can be moving relative
to each other. Illumination from an external source can be prescribed at the
atmospheric boundary (front or back in the finite case).

The basic calculation assumes a given temperature and density stratifica-
tion. Typically a temperature distribution is prescribed and the density is deter-
mined assuming 1) hydrostatic equilibrium (balancing gas pressure and gravity),
or 2) pressure equilibrium in the absence of gravity (or any other constraint). Af-
ter the radiative properties of the atmosphere are calculated, a revised tempera-
ture distribution can be determined subject to energy balance constraints, using
parameters that describe given non-radiative processes. For example, Avrett
and Loeser (1988) in a study of quasar broad emission line regions calculated
the internal structure and the emergent spectrum of a constant-pressure cloud
of a given large optical thickness with given illumination incident upon one face.
The temperature distribution in this case was determined from the constraint of
radiative energy balance. This is an example of the general equilibrium type of
calculation discussed above. A new temperature distribution also can be deter-
mined by trial-and-error to obtain agreement between the calculated spectrum
and an observed one, thus obtaining a semi-empirical model.

Given the temperature and density distributions, the non-LTE energy level
populations of the various atoms and ions can be calculated. In typical problems
the line and continuum optical depths can reach very large values, but collisions
between atoms and electrons are too infrequent to establish LTE except in the
deepest layers. The statistical equilibrium equations determine the populations
at any point in the atmosphere given the properties of the radiation at that
point. According to the radiative transfer equation, the radiation at that point
depends on the radiative sources and hence on the populations throughout a
large surrounding volume. The set of coupled transfer and statistical equilibrium
equations must be solved for both the populations and the radiative intensities
at all points in the atmosphere. For a single line transition this can be called
the two-level transfer problem. The general case of an atom or ion with many
interacting line transitions can be called the multi-level transfer problem. These
cases will be discussed further in the following sections. First, however, we
consider some other parameters that need to be determined as part of the overall
solution.
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As the temperature changes throughout the atmosphere we may need to
calculate the level populations of each successive ionization stage of a given
element, e.g., Si-I, Si-II, Si-III, Si-IV, . . ., and each of these stages may have a
large number of discrete energy levels. For simplicity, Pandora treats, in any
one computer run, the levels of a single ionization stage together with the lowest
level of the next higher stage to determine the relative populations of these
levels. The sum of the populations of these two stages is a certain fraction
of the total element abundance. After calculating the populations for Si-I–II,
assuming all silicon to be in these two stages, the subsequent Si-II–III calculation
will then exclude the Si-I fraction, etc. The Si-I–II populations must then be
redetermined by a calculation that excludes the fraction in Si-III and higher
stages. Such iterations require several repeats to get consistent results. This
approach assumes that ionization and recombination take place only between
successive stages and not, e.g., between Si-I and Si-III.

The electron number density needed in these calculations depends on the
ionization of various constituents. Consider the simple case in which the electron
density ne is the sum of the proton density np and the contribution (Z×nH) from
all other elements, where nH is the total hydrogen density and Z, in the simplest
case, is the fraction of those elements that are once ionized, thus contributing one
electron. For hydrogen we can write nH = nHI + np (when molecular hydrogen
can be ignored), and nHI = b1nenpψ(T ) where nHI = nenpψ(T ) is the LTE Saha-
Boltzmann equation for the neutral hydrogen density (in the lowest level) and b1
is the departure coefficient, or correction factor, obtained from the detailed non-
LTE calculation for hydrogen. Eliminating nHI and np gives a quadratic equation
that can be solved for ne, given Z, nH, b1, and T . The indirect dependence of
Z and b1 on ne is treated iteratively.

The different ions (including neutral atoms) interact with one another not
only through their contributions to ne but also because the different ions influ-
ence and are influenced by the common radiation field which varies with wave-
length and with location in the atmosphere. When solving for the populations of
a given ion we need to know in detail how other ions absorb and emit radiation
at the transition frequencies of the given ion. Pandora treats this dependence
iteratively, including all important non-LTE effects. In the case of the Sun the
non-LTE populations of H, H−, He-I, He-II, C-I, Si-I, Mg-I, Fe-I, Al-I, Ca-I,
and Na-I are computed to determine ne and the observed continuum, and the
influence of the very large number of lines in the spectrum is considered when
calculating photoionization rates. For this purpose Pandora uses a sampled set
of Kurucz’s line opacities (see Avrett, Machado, and Kurucz 1986).

5. The two-level transfer problem

Consider a line transition involving levels 1 and 2. Ignoring absorption and
emission by other sources and ignoring stimulated emission for simplicity, the
radiation intensity at a given location results from the emission and absorption
at every frequency. The radiative transfer equation for frequency ν in the line is

dIν
dz

=
−hν
4π

φν(n1B12Iν − n2A21), (1)
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where B12 and A21 are the Einstein coefficients for absorption and spontaneous
emission, z is geometrical distance measured in the direction of the radiation
intensity Iν , n` represents number density of level `, and φν is the normalized
absorption profile that includes the effects of Doppler broadening near line center
and other types of broadening in the wings. Here for simplicity we have assumed
that the emission profile is also φν so that the absorbed and emitted photons
are uncorrelated; this is the assumption of complete frequency redistribution
(CRD). When a line such as the hydrogen Lα line has substantial opacity in
the wings, and when the perturbing densities are low, then the absorption of a
photon in the wings is followed by the re-emission of a photon with a frequency
that is likely to be close to that of the absorbed photon, rather than a frequency
near line center; this is the more general case of partial frequency redistribution
(PRD). Pandora allows any line to include PRD effects (see Vernazza, Avrett,
and Loeser 1981 and Avrett and Loeser 1984).

Using CRD as in equation (1), we introduce the monochromatic optical
depth τν (again in the direction of Iν), and write

dIν
dτν

= −Iν + S, (2)

where S is the line source function

S =
n2

n1

A21

B12
(3)

(without stimulated emission). In the simple case of only radiative and collisional
transitions between levels 1 and 2 (and no continuum), the statistical equilibrium
equation is

0 = n1(B12J + C12)− n2(A21 + C21), (4)

where
J =

∫
φνJνdν (5)

and where the mean intensity is given by

Jν =
1

4π

∫
IνdΩ. (6)

One can solve equation (2) for Iν in terms of S and express the result as

Iik =
∑
j

ΛijkSj , (7)

where i and j are depth indices between 1 and ND and k is the frequency index.
Here the integral has been approximated by the sum of the values of S weighted
by appropriate coefficients. These Lambda-operator weighting coefficients de-
pend only on the values of τik and on the choice of formal approximation of the
variation of S(τν) between one value of τν and the next. Several different func-
tional representations are available in Pandora; the choice we find works best
is simply to approximate S in the interval τi−1,k ≤ τ ≤ τi+1,k by the parabola
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through S(τi−1,k), S(τi,k), and S(τi+1,k), i 6= 1, ND, and linearly in all other
intervals.

Combining equations (5) – (7) gives

J i =
∑
j

WΛ
ijSj . (8)

The statistical equilibrium equation (4) can be written in terms of S as

Si =
J i + εBi

1 + ε
, (9)

where ε = C21/A21 and Bi = (2hν3/c2) exp(−hν/kTi) (the Planck function
without stimulated emission). Combining equations (8) and (9) gives a set of
simultaneous equations for S at each depth.

This is basically the way the two-level problem should be solved when ε is
very small. Normally over 1/ε iterations would be required to obtain a solution
by alternately evaluating equations (8) and (9), i.e. by iterating between the
radiative transfer and statistical equilibrium equations. Accelerated Lambda It-
eration (ALI) techniques have been developed that allow this iterative approach
to succeed (see Rybicki & Hummer 1991, 1992, Heinzel 1995, and the review
by Avrett 1996). For a single transition we have found that solving the set of
simultaneous equations is faster than ALI. For multilevel cases (discussed be-
low) however, ALI is usually much faster because ALI can take account of the
interactions between transitions while computing the iterative solutions for each
transition.

6. The multi-level transfer problem

When there are many radiative transitions in the model atom, equations (8) and
(9) still can be applied to each transition, but ε and B now take a more general
form based on all transition pathways between the upper and lower levels of the
given transition, apart from the direct radiative transition. Pandora is based on
such a generalization of the two-level solution. Since the ε and B terms for a
given radiative transition depend on the solutions of other radiative transitions,
one must iterate on these terms even though the solution for each transition,
given ε and B, is exact. The advantage of this method is that the individual
solutions show the causes of calculated results (e.g., why a given source function
has a particular variation with depth). The disadvantage is that this method
generally requires more computing than other methods developed in recent years.

As explained above, Pandora combines the radiative transfer and the sta-
tistical equilibrium equations for a given radiative transition into sets of simul-
taneous equations, one such set for each of the ND depth points of the atmo-
sphere. For a model ion with NL levels and a continuum, we have NL statistical
equilibrium equations analogous to equation (4). For a model ion with NT tran-
sitions there are NT sets of simultaneous equations that must be solved. (If
every radiative transition between NL levels is treated in the ion model, then
NT = NL(NL − 1)/2.) These calculations must be repeated iteratively because
the ε and B terms for one radiative transition depend on the other radiative
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transitions. Solving NT sets of simultaneous equations for ND depths for many
iterations can require much computing. However, it is rarely necessary to solve
all these sets of simultaneous equations (i.e., to compute a “full solution”) for
each of the NT radiative transitions of a particular model ion. For all but the
relatively strong line transitions it is sufficient just to let Pandora iterate be-
tween equations (8) and (9), i.e., just to carry out “Lambda iterations” for the
relatively weak transitions. For other, often faster, methods in current use, see
the papers in Hubeny, Mihalas, & Werner (2002).

7. Non-local statistical equilibrium (non-LTE)

We have also incorporated velocity terms in the Pandora statistical equilibrium
equations, so that equation (4) would be written as

− d

dz
(n1V ) = n1(B12J + C12)− n2(A21 + C21) (10)

to take account of the effect of a mass velocity V (increasing in the direction
of the z coordinate). The derivative term causes n1 at each depth to depend
on n1 at other depths, so that we use a finite difference procedure to solve
the differential equation for n1(z) assuming given values for the other terms,
including n2. Then we evaluate

G =
1
n1

d

dz
(n1V ), (11)

and finally write equation (8) as

0 = n1(B12J + C12 +G)− n2(A21 + C21), (12)

which is then solved as before. In this way an advection term has been introduced
into the equations of statistical equilibrium. (The Doppler shift due to mass flow
is also included in the line absorption profile calculations.) The term on the left
side of equation (10) is more important for ionization than for excitation (i.e.,
when n2 represents the ion density rather than excitation level 2).

We also include particle diffusion velocities when there are steep tempera-
ture and ionization gradients. The hydrogen atom and proton diffusion velocities
are given by VH = [X/(1 + X)]VA and Vp = −[1/(1 + X)]VA where X is the
ionization fraction np/nHI and

VA = DX
d

dz
(lnX) +DT

d

dz
(lnT ) (13)

is the ambipolar diffusion velocity. The coefficients DX and DT are functions
of the local number densities and the temperature, respectively. The diffusion
velocity enters the calculation in the same way as the mass flow velocity except
that hydrogen atoms and protons diffuse in opposite directions. See Fontenla,
Avrett, & Loeser (1990, 1991) for details.
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8. Implementation

Rather than going through the calculations in a fixed way, Pandora assumes a
hands-on approach by the user. There are many input switches for specifying 1)
alternative methods for specific calculations, 2) amounts of printout, 3) levels of
printout detail, and 4) auxiliary output files (for use by other programs needing
various Pandora-computed quantities). The user need not specify any of these
options, alternative methods, or numerical control parameters at the start of a
new calculation because Pandora provides defaults for all of them. There now
exists a collection of atomic data input files for model ions of general interest;
in many cases more than one version of a given ion is available, ranging from
abbreviated to detailed models.

Pandora proceeds by iterating. It computes a specified number of grand
iterations and then stops, having saved in various disk files all the data needed
to resume the calculation for another specified number of iterations. Thus the
evolving solution can be supervised closely and various control parameters and
choices of method can be adjusted for optimal progress.

The computational properties of some of the procedures Pandora uses for
various steps in the calculation have not been studied in detail for all types of
applications. What has worked well for specific calculations in the past may not
work well when applied to new, different regimes. We have provided many input
control parameters to try to prevent unreasonable numerical behavior.

For some steps in the calculation, e.g. the evaluation of the Λijk coefficients
in equation (7), Pandora provides a menu of different methods that have been
found to be well suited for specific situations. In each case the user can specify
which method to use. We have begun to document what we have learned about
the advantages and disadvantages of these alternatives, to help others choose.

9. Documentation

There are four sources of information about the program. 1) The Pandora print-
out is intended to be reasonably self-explanatory. There are printing options that
allow the details of almost any calculation to be printed so that any step can be
studied or verified. 2) A User’s Guide is available that lists all input parameters,
program options, and program outputs, along with extensive explanations of pa-
rameters and options. We continue to add material to this Guide. 3) The basic
Pandora documentation, begun 36 years ago in October 1966, now consists of
over 3400 pages of handwritten program notes specifying every program change
or addition. Finally, a readily accessible source of information consists of 4) the
derivations and explanations included in the following publications:

Avrett, E. H., & Loeser, R. 1969, Formation of line and continuous spectra. I.
Source-function calculations, Smithsonian Astrophys. Obs. Spec. Rept. No.
303, 99pp

[Complete derivation of the two-level and multi-level statistical equilibrium
and transfer equations, with integral operators used for the formal solution of
the transfer equation.]
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Avrett, E. H. 1971, Solution of non-LTE transfer problems, J. Quant. Spectrosc.
Radiat. Transfer, 11, 511-529

[Basic formulation and discussion of non-LTE computational methods.]

Vernazza, J. E., Avrett, E. H., & Loeser, R. 1973, Structure of the solar chro-
mosphere. I. Basic computations and summary of results, ApJ 184, 605-631

[Derivation of the equations of statistical equilibrium and radiative transfer
for lines and the hydrogen Lyman-continuum; electron number density, hydro-
static equilibrium, and H− non-LTE equations.]

Vernazza, J. E., Avrett, E. H., & Loeser, R. 1976, Structure of the solar chro-
mosphere. II. The photosphere and the temperature-minimum region, ApJS 30,
1-60

[Effect of line opacities throughout the spectrum based on Kurucz data;
continuum data calculations for wavelengths 0.13 – 500 µm.]

Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, Structure of the solar chromo-
sphere. III. Models of the EUV brightness components of the quiet Sun, ApJS
45, 635-725

[Derivation of the energy balance equations, Lα partial redistribution, sup-
plementary levels in the statistical equilibrium equations and in the Lyman-
continuum transfer equation. Continuum data calculations for wavelengths 40
nm – 3 cm.]

Avrett, E. H., and Loeser, R. 1984, Line transfer in static and expanding spher-
ical atmospheres, in Methods in Radiative Transfer, ed. W. Kalkofen (Cam-
bridge: Cambridge Univ. Press), 341-379

[Derivation of the line transfer equations in spherical geometry with radial
expansion and partial frequency redistribution.]

Hartmann, L., & Avrett, E. H. 1984, On the extended chromosphere of αOrionis,
ApJ 284, 238-249

[Application of Pandora calculations in spherical geometry with radial ex-
pansion.]

Avrett, E. H. 1985, Recent thermal models of the chromosphere, in Chromo-
spheric Diagnostics and Modelling, ed. B. W. Lites (Sunspot, NM: National
Solar Observatory), 67-127

[Detailed calculations of net radiative cooling rates.]

Avrett, E. H., Machado, M. E., & Kurucz, R. L. 1986, Chromospheric flare
models, in The Lower Atmosphere in Solar Flares, ed. D. F. Neidig (Sunspot,
NM: National Solar Observatory), 216-281

[Describes the use of Kurucz’s sampled line opacities in photoionization rate
calculations and spectrum synthesis.]

Avrett, E. H., & Loeser, R. 1987, Iterative solution of multilevel transfer prob-
lems, in Numerical Radiative Transfer, ed. W. Kalkofen (Cambridge: Cambridge
Univ. Press), 135-161
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[Derivation and discussion of the equivalent two-level atom method of solv-
ing multi-level problems, with tabulated numerical solutions.]

Avrett, E. H., & Loeser, R. 1988, Radiative transfer in the broad emission-line
regions of quasi-stellar objects, ApJ 331, 211-246

[Energy-balance non-LTE model atmosphere calculations with incident ra-
diation, heavy-element cooling, and X-ray absorption.]

Mauas, P. J., Avrett, E. H., & Loeser, R. 1988, Mg-I as a probe of the solar
chromosphere, ApJ 330, 1008-1021

[Includes a discussion of how to combine multiplet transitions in a simple
way.]

Luttermoser, D. G., Johnson, H. R., Avrett, E. H., & Loeser, R. 1989, Chromo-
spheric structure of cool carbon stars, ApJ 345, 543-553

[Modeling of N-type carbon stars with PRD calculations of the Mg-II lines.]

Mauas, P. J., Avrett, E. H., & Loeser, R. 1989, Computed profiles of the C-I
multiplets at λ1561 and λ1657, ApJ 345, 1104-1113

[Partial frequency redistribution in multiplet lines.]

Fontenla, J. M., Avrett, E. H., & Loeser, R. 1990, Energy balance in the solar
transition region. I. Hydrostatic thermal models with ambipolar diffusion, ApJ
355, 700-718

[Derivation of the effects of hydrogen ambipolar diffusion on the hydrogen
number density calculations and on energy transport.]
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[CO opacity and net radiative cooling rate calculations.]
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[Results of model calculations with hydrogen ambipolar diffusion for quiet
and active regions of the solar atmosphere.]
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Formation of the infrared emission lines of Mg-I in the solar atmosphere, ApJ
379, L79-L82

[Line transfer calculation with a 41-level atomic model for Mg-I, including
charge exchange and collisions with hydrogen atoms.]
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[Calculation of solar He-I and He-II lines.]

Avrett, E. H., Chang, E. S., & Loeser, R. 1994, Modeling the infrared magnesium
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eds. D. M. Rabin, J. T. Jefferies, & C. Lindsey (Dordrecht: Kluwer), 323-339

[Calculation of infrared line spectra.]

Avrett, E. H., Fontenla, J. M., & Loeser, R. 1994, Formation of the solar 10830
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(Dordrecht: Kluwer), 35-47

[Modeling the absorption of the infrared continuum by the He-I line due to
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Avrett, E. H. 1995, Two-component modeling of the solar IR CO lines, in In-
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(Singapore: World Scientific), 303-311

[Construction of models based on spacecraft observations of the infrared
CO lines.]
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Stellar Surface Structure, eds. K. G. Strassmeier & J. L. Linsky (Dordrecht:
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[Review of current stellar atmosphere modeling.]
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the Sun: Ninth Cambridge Workshop, eds. R. Pallavicini & A. K. Dupree (San
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[Effects of time variation in the formation of CO lines.]
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