SPU27: Snapshots from Edge

Bond types:

(It's important to note the strength of the bonds)

Type of Interaction	Interaction Strength	Interaction Energy
Hydrogen bonds	Weak	4 x 10 ⁻²⁰ J/molecule
Van <u>der</u> Waals	Very weak	2 x 10 ⁻²⁰ J/molecule
Electrostatic	Pretty strong	2 x 10 ⁻¹⁹ J/molecule
Covalent	Very strong	8 x 10 ⁻¹⁹ J/molecule

Interaction energy (U_{int}) and Thermal energy $(Ck_{b}T)$:

•The interaction energy is the energy involved in keeping the substance [sticking] together. Thus, U_{int} is directly proportional to the bond strength, so stronger bonds mean larger U_{int} . Ck_bT is the thermal energy, which we can think about in terms of motion [jiggling] from heat at a temperature T.

•If the thermal energy is larger than U_{int} , then there's enough motion and energy for the bonds to be broken, so the substance will be less tightly bound, as in a gas. If the thermal energy is smaller than U_{int} , then the bonds will hold and the substance will be more tightly bound, as in a liquid.

•The equality $U_{int} = Ck_bT$ is true at a phase transitions. Once you're in a given state, you're on either side of the equality $(U_{int}>Ck_bT$ or $U_{int} < Ck_bT$).

Macromolecule: Proteins

Think about what can cause them to denature and then coagulate. How does this process work?

Macromolecule: Fat - Types of fatty acid chains

Triglycerides consist of a glycerol molecule bound to 3 fatty acid chains, that can be any of the following

