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The "data deluge” in science is old news. Now, it's pouring, and we need working tools to collect, sort out, understand, and keep what is falling down on us.

In astronomy, the greatest insights very often come from studies where more than one "band” of data (e.g. optical, infrared, radio, X-ray) is combined. And, data sets
aren't just large--they are often also high-dimensional, in that they contain information about flux as functions not just of position on the sky, but also as functions of a
third dimension (e.g. frequency, velocity), and/or of time. Life science, geophysical, and geospatial data all present similar challenges.

In this talk, | will focus on examples drawn from my group's research on star formation in molecular clouds. In particular, | will show how new visualization and statistical
analysis techniques relying on interactive high-dimensional views of data and on automated algorithms for "segmenting” data give new insight. "Segmentation” in imaging

terms refers to extracting the meaningful structures from data, and | will show results from both dendrogram (tree-hierarchy) and machine-learning approaches. 1 will
emphasize how the visualization of segmentation results is critical for understanding. The highlighted science results will show how we can now--for the first time--
quantitatively but intuitively understand the connections between the "real” (position-position-position) space where simulations (e.g. of star formation) can be made and
the "observational” (e.g. position-position-velocity) space available to earthbound astronomers. As a result of this newfound understanding, we can place important limits
on the validity of virial-theorem-based calculations of the properties of gas--allowing, for example, for better estimates of which gas in star-forming regions is most likely
to stay bound long enough to form stars.

Even though this abstract may sound technical to non-star-formation or non-computational researchers, my goal will be to keep the talk accessible to non-experts, so
people from other fields faced with high-dimensional data and visualization challenges should feel free to join in--and to ask questions
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http://www.pnas.org/content/99/1/455/F1.expansion.html
http://www.pnas.org/content/99/1/455/F1.expansion.html
https://www-pls.llnl.gov/?url=science_and_technology-earth_sciences-ocean_temperatures
https://www-pls.llnl.gov/?url=science_and_technology-earth_sciences-ocean_temperatures
http://visiblecement.nist.gov/
http://visiblecement.nist.gov/

High-Dimensional
Data

GENERALLY
I D: Columns ="“Spectra”,“SEDs” or “Time Series”

2D: Faces or Slices = “Images”

3D: Volumes ="3D Renderings”
4D: Time Series of Volumes =*“3D Movies”
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“Three” Dimensions: Spectral-Line Mapping '

. We wish we could measure... But we can measure...

Simulations

y “"o-p-v" cubes

V, " ’ -Vz/m
Z /

v, only from

“spectral-line
maps”

Hydrodynamic AMR Simulation, ¢

Tuesday, March 22, 2011




High—DIiDr:teansional C@/\/\PLETE Pérseus Star Formation

“o-p-v" cubes

mm peak (Enoch et al. 2006)
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“Astronomical Medicine”

“KEITH” “PERSEUS”
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“Taste-Testing”’ Simulations
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to >CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of T}, (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x—y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position—position—velocity (p—p-v) s ace.
RA, right ascension; dec., declination. For comparison with the ability
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same for

T o L O o S P TS S TS DRy PR

“Dendrogram’
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Fig. 1, and velocity with respect to the Local Standard of Rest increases
front (—0.5kms ') to back (8 kms ).

data, CLUMPFIND typically finds features on alimited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set® can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees”
were proposed as a way to characterize clouds’ hierarchical structure

64

NATURE|Vol 457|1 January 2009

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p—p-v) data cube into
an easily visualized representation called a ‘dendrogram’®. Although
well developed in other data-intensive fields'"'?, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency”’.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (a,) and luminosity
(L). The volumes can have any shape, and in other work'* we focus on
the significance of the especially elongated features seen in 11448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mium = Xi3c0Li3co, where Xj5c0 = 8.0 X 10* cm®*K ™ 'km ™ 's
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, oops = 56,2RIGMjum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where o1, < 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p—p—v space where self-
gravity is significant. As o, only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields'’, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

Local max

Test level

3 7

Leaf

“gcal max

Leaf 39

—Trunk =@

Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.

©2009 Macmillan Publishers Limited. All rights reserved

Goodman et al. Nature, 2009
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|-D: points; 2-D closed curves (contours); 3-D surfaces enclosing volumes
see 2D demo at http://am.iic.harvard.edulindex.cgi/DendroStar/applet
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The DendroStar Applet for L1448: Try me!

http://am.iic.harvard.edul/index.cgi/DendroStar/a
Dendrogram Algorithm by Erik Rosolwosky; Applet by Douglas Alan
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Taste-Testing
“Gravity”

LETTERS

CLUMPFIND segmentation

Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to >CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smalles f-
gravitating structures in the region corre:

dendrogram; pink shows the smalle:

gravitating leaves within them; and green corresponds to the surface in the
data cube containing ignifi ission. Dendrogram branches

over the range of T}, (main-beam temperature) test-level values for which
the virial para r i than 2. The x—y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizati v sitil locity (p—p—v) space.
sion; dec., declination. For comparison with the ability of
s (€) to < hierarchical structure, d shows a pseudo-

dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the

ximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and smal e structure in the data. In the online PDF version, the 3D
cubes (aand b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest inc
front (—0.5kms ') to back (8 kms ™).

data, CLUMPFIND typically finds features on alimited range of sc
above but close to the physical resolution of the data, and its results
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data s n be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure tr
were proposed as a way to characterize clouds’ hierarchical structure

64

NATURE|Vol 457|1 January 2009

using 2D maps of column density. Wi i W inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p—p-v) data cube into
an easily visualized representation called a ‘dendrogram’®. Although
well developed in other data-intensive fields'"'?, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency”’.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local ma
ima of emission merge with each other, and its implementation i
explained in Supplemen S r y, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation

sible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D

Fig. 3 and its legend), by sorting their ‘branches’ to not

hich eliminates dimensional information on the x axis while

rving all information about connectivity and hierarchy.

Numbered ‘billiard ball’ labels in the figures let the reader match

features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation

surfaces, such as radius (R), velocity dispersion (,) and luminosity
(L). The volumes can have any shape, and in othe rk'* we focus on
g ally elongated featur: en in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mium = Xi3col X, 8.0x 10 ecm?K 'km ™ 's
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
d to estimate the role of self-gravity at each point in the hierarch
alculation of an ‘observed’ virial parameter, tops R/ GMiym-
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
wh < vhere gravitational energy is ¢ arable to or larger
than kinetic energy) correspond to regions of p—p—v space where self-
gravity is significant. As o, only represents the ratio of kineti
to gravitational energy at one point in time, and does not e
capture external over-pressure and/or magnetic fields'’, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

Intensity level

Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig s the direct
analogue of the tree shown here, only constructed from ‘isosurface’ ratj
than ‘point’ intersections. It has been sorted and flattened for representg

on a flat page, as fully representing dendrograms for 3D data cubes v
require four dimensions.

©2009 Macmillan Publishers Limited. All rights reserved

Goodman et al. Nature, 2009
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Real and Simulated 3CO
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But... Caveats/Worries about b-p-v (bijection)
...and the virial parameter
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from Shetty, Collins, Kauffmann, Goodman, Rosolowsky & M. Norman 2010;
see also recent work of Dib et al., Ostriker et al., Ballesteros-Paredes et al., Myers, and Smith, Clark & Bonnell
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THE COMPLETE SURVEY OF OUTFLOWS IN PERSEUS
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ABSTRACT

We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the
COMPLETE Survey large-scale ?CO(1-0) and *CO(1-0) maps. We used three-dimensional isosurface models
generated in right ascension-declination—-velocity space to visualize the maps. This rendering of the molecular
line data allowed for a rapid and efficient way to search for molecular outflows over a large (~16 deg?) area. Our
outflow-searching technique detected previously known molecular outflows as well as new candidate outflows.
Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These
new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the
Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately
surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence
in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are
responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with
active star formation within Perseus of sizes in the range of 1-4 pc. We find that outflows have enough power to
maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We
found no correlation between outflow strength and star formation efficiency (SFE) for the six different regions we
studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected
due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain
low SFEs in clusters.

Key words: ISM: clouds — ISM: individual objects (Perseus) — ISM: jets and outflows — ISM: kinematics and
dynamics - stars: formation — turbulence

Online-only material: color figures
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“Shells™

COMPLETE Shells in Perseus
ABSTRACT

We present a study on the shells in the Perseus molecular cloud using the COM-
PLETE survey large-scale '2CO(1-0) and '*CO(1-0) maps. The shells are spread
throughout most of the Perseus cloud and have circular or arc-like morphologies with
a range in radius of about 0.2 to 3 pe. Most of the CO shells are coincident with near-
infrared nebulosity of similar shape and have a candidate powering source near the
center. We suggest they are formed by the interaction of spherical or very wide-angle
winds powered by young stars inside or near the Perseus molecular cloud complex —a
cloud that is commonly considered a low-mass star forming region. It is clear that two
of the twelve shells are powered by high-mass stars near the cloud, while the others

appear to be powered by low or interr

winds with a mass loss rate of about 111) ll] h a t r! i 1 e S u p
the ISM?

observed shells, which are cle: imp

age of the pre-main sequence stars in

mass loss rate. Our estimates indicate i
that create the shells is similar to the ta
energy input from both collimated protes < v s <
from young stars is sufficient to maintain the turbulence in the molecular cloud. Most
of the shells had not been detected before, most likely as maps of the region lacked
the coverage and resolution needed to distinguish the shells. Large scale molecular line
and IR continuum maps of a sample of other clouds will help investigate the frequency
of powerful shells from low-mass stars and the impact from stellar winds from nearby

massive stars on low-mass star forming regions.

Subject headings: star: formation ISM: jets and outflows ISM: clouds ISM:

individual (Perseus) ISM: kinematics and dynamics turbulence

Arce, Beaumont, Borkin, Pineda, Goodman




Properties of Molecular Clouds

as
“Equivalent Momentum”

(using Larson 1981)

grey boxes mark lines of constant
“momentum,” as labeled

What riles up
the ISM?

What “upshifts™ are justified?....
IOTW, how do we go from a “snapshot” to cumulative effects?

Note theory gives ~10 to 1000 Mg km s per B-star wind.
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The Milky Way Project aims to sort and
Vi Mg B - measure our galaxy, the Milky Way. Initially
\ ..~ . S . 8 g TIRPRE I we're asking you to help us find and draw
o : '- & e o W | bubbles in beautiful infrared data from the
Spitzer Space Telescope.

Understanding the cold, dusty material that
we see in these images, helps scientists to
learn how stars form and how our galaxy

¢¢ S h e I I S 99 ‘anges and evolves with time.
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BUBBLES

2 site to find out more about the science
hind the Milky Way Project.

What riles up

Machine Learning the ISM?
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Support Vector Machines in One Minute
(SVM is a kind of “Machine Learning”)
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Interactive 3D World!?
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LETTERS

x (RA)

(L) Click to rotate )

CLUMPFIND segmentation

Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to ">CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale
gravitating structures in the region corresponding to the lea

dendrogram; pink shows the smallest surfaces that contain di

gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of T,,;, (main-beam temperature) test-level values for which
the virial parameter is less than

gravitating’ leaves labelled with bil

Fig. 1. The 3D visualizations show p:

RA, right ascension; dec., declination. For comparison with the abil
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (aand b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed v n, the front face of each 3D cube (the home’ view in the
interactive online version) corresponds e: to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (—0.5 km ) to back (8 km s

data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the ph I resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set® can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees”
were p sed as a way to characterize clouds” hierarchical structure
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NATURE|Vol 457|1 January 2009

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
a cts the hi hical structure of a 3D (p—p—v) data cube into
an easily visualized representation called a ‘dendrogram’’. Although
well developed in other data-intensive fields'"'?, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency”’.

Figure 3 and its legend explain the construction of dendrograms

matically. The dendrogram quantifies how and w

ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2¢).

A dendrogram of a spectral-line data cube allows for the estimatio:
of key physical properties associated with volumes bounded by iso-
surfaces h as radius (R), velo
(L). The volumes can I
the significance of the especially elongal
(Fig. 2a). The luminosity is an approximate proxy ss, such
that Mium = Xi3coLisco, where Xi5c0 = 8.0 X 10* cm? K™ "km ™ 's

ce Supplementary Meth upplementary Fig,
rived values for size, ma relocity di ion can then be

d to estimate the role of self-gravity at each point in the hier Y
via calculation of an ‘observed’ virial parameter, oty = 5 2RI GMjumm.
In principle, extended the tree (Fig. 2, yellow highlighting)

2 (where gravitational energy is comparable to or larger
tic energy) correspond to regions of p—p—v space where self-
gravity is significant. As o, only represents the ratio of kinetic energ;
to gravitational en at one point in time, and does not explicit!
capture external over-pressure and/or magnetic fields', its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

igure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
on profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
set of points (for example the light purple dots) in one
sion, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D da own in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersecti It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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Goodman, Rosolowsky, Borkin, Foster, Halle,
Kauffmann & Pineda, Nature, 2009
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The "data deluge” in science is old news. Now, it's pouring, and we need working tools to collect, sort out, understand, and keep what is falling down on us.

In astronomy, the greatest insights very often come from studies where more than one "band” of data (e.g. optical, infrared, radio, X-ray) is combined. And, data sets
aren't just large--they are often also high-dimensional, in that they contain information about flux as functions not just of position on the sky, but also as functions of a
third dimension (e.g. frequency, velocity), and/or of time. Life science, geophysical, and geospatial data all present similar challenges.

In this talk, | will focus on examples drawn from my group's research on star formation in molecular clouds. In particular, | will show how new visualization and statistical
analysis techniques relying on interactive high-dimensional views of data and on automated algorithms for "segmenting” data give new insight. "Segmentation” in imaging

terms refers to extracting the meaningful structures from data, and | will show results from both dendrogram (tree-hierarchy) and machine-learning approaches. 1 will
emphasize how the visualization of segmentation results is critical for understanding. The highlighted science results will show how we can now--for the first time--
quantitatively but intuitively understand the connections between the "real” (position-position-position) space where simulations (e.g. of star formation) can be made and
the "observational” (e.g. position-position-velocity) space available to earthbound astronomers. As a result of this newfound understanding, we can place important limits
on the validity of virial-theorem-based calculations of the properties of gas--allowing, for example, for better estimates of which gas in star-forming regions is most likely
to stay bound long enough to form stars.

Even though this abstract may sound technical to non-star-formation or non-computational researchers, my goal will be to keep the talk accessible to non-experts, so
people from other fields faced with high-dimensional data and visualization challenges should feel free to join in--and to ask questions




