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The "data deluge" in science is old news.  Now, it's pouring, and we need working tools to collect, sort out, understand, and keep what is falling down on us.
In astronomy, the greatest insights very often come from studies where more than one "band" of data (e.g. optical, infrared, radio, X-ray) is combined.   And, data sets 
aren't just large--they are often also high-dimensional, in that they contain information about flux as functions not just of position on the sky, but also as functions of a 
third  dimension (e.g. frequency, velocity), and/or of time.  Life science, geophysical, and geospatial data all present similar challenges.

In this talk, I will focus on examples drawn from my group's research on star formation in molecular clouds.  In particular, I will show how new visualization and statistical 
analysis techniques relying on interactive high-dimensional views of data and on automated algorithms for "segmenting" data give new insight.    "Segmentation" in imaging 
terms refers to extracting the meaningful structures from data, and I will show results from both dendrogram (tree-hierarchy) and machine-learning approaches.  I will 
emphasize how the visualization of segmentation results is critical for understanding.  The highlighted science results will show how we can now--for the first time--
quantitatively but intuitively understand the connections between the "real" (position-position-position) space where simulations (e.g. of star formation) can be made and 
the "observational" (e.g. position-position-velocity) space available to earthbound astronomers.   As a result of this newfound understanding, we can place important limits 
on the validity of virial-theorem-based calculations of the properties of gas--allowing, for example, for better estimates of which gas in star-forming regions is most likely 
to stay bound long enough to form stars.

Even though this abstract may sound technical to non-star-formation or non-computational researchers, my goal will be to keep the talk accessible to non-experts, so 
people from other fields faced with high-dimensional data and visualization challenges should feel free to join in--and to ask questions
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GENERALLY
1D: Columns = “Spectra”, “SEDs” or “Time Series”
2D: Faces or Slices = “Images”
3D: Volumes = “3D Renderings”
4D: Time Series of Volumes = “3D Movies”
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Image Credit: Jonathan Foster & Jaime Pineda CfA/COMPLETE Deep Megacam Mosaic of West End of Perseus
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data, CLUMPFIND typically finds features on a limited range of scales,
abovebut close to thephysical resolution of thedata, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clumpmass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2Dmaps of column density.With this early 2Dwork as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of treemethodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogramof a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum5X13COL13CO, where X13CO5 8.03 1020 cm2K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs, 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations showposition–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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http://am.iic.harvard.edu/index.cgi/DendroStar/applet
Dendrogram Algorithm by Erik Rosolwosky; Applet by Douglas Alan
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data, CLUMPFIND typically finds features on a limited range of scales,
abovebut close to thephysical resolution of thedata, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clumpmass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2Dmaps of column density.With this early 2Dwork as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of treemethodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogramof a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum5X13COL13CO, where X13CO5 8.03 1020 cm2K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs, 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations showposition–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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What’s Bound?  Can we Know?

Yellow highlighting= “self-gravitating”

“Self-gravitating” here just means αvir (=5sv2R/GMlum) < 2
(à la Bertoldi & McKee 1992–BUT–see Shetty et al. 2010)

Rosolowsky et al. 2008 (ApJ) &
Goodman et al. 2009 (Nature) see PDF...
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Gravity-free HD Simulations from Padoan et al. 2006;
 L1448 analysis from Rosolowsky et al. 2008

both lines derived from 13CO “observations”

But...

Tuesday, March 22, 2011



Caveats/Worries about p-p-v (bijection)
... and the virial parameter

from Shetty, Collins, Kauffmann, Goodman, Rosolowsky & M. Norman 2010; 
see also recent work of Dib et al., Ostriker et al., Ballesteros-Paredes et al., Myers, and Smith, Clark & Bonnell
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Linked Dendrogram Views in IDL (1)

Video & implementation: Christopher Beaumont, CfA/UHawaii; 
inspired by AstroMed work of Douglas Alan, Michelle Borkin, AG, Michael Halle, Erik Rosolowsky

Linked Views, 
e.g. Dendro...
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Linked Dendrogram Views in IDL (2)
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Linked Dendrogram Views in IDL (3)
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2010,
2011

Arce, Beaumont, Borkin, Pineda, Goodman
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What “upshifts” are justified?....
IOTW, how do we go from a “snapshot” to cumulative effects?
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Machine Learning What riles up 
the ISM?
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(p-p-v) Case Study (Beaumont)
All of M17“Buried” SNR G16.05-0.57

JCMT data
12CO 3--2
~3.5 deg2
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Seamless Astronomy
Alberto Accomazzi, Doug Burke, Alberto Conti, Carol Christian, Mercé Crosas, Raffaele D’Abrusco, Rahul Davé, 
Christopher Erdmann, Jonathan Fay, Jay Luker, Alyssa Goodman, Michael Kurtz, Gus Muench, Alberto Pepe, Curtis Wong
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What’s the 3D “magnetic lasso”?

How do you use it with a mouse?

How can a human “steer” computer-aided selection?

visit our new “Viz-e-Lab”!

Challenge #1: 3D Selection
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What does 
“Publication-Quality” 
Graphics Mean in an 
Interactive 3D World?

data, CLUMPFIND typically finds features on a limited range of scales,
abovebut close to thephysical resolution of thedata, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clumpmass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2Dmaps of column density.With this early 2Dwork as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of treemethodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogramof a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum5X13COL13CO, where X13CO5 8.03 1020 cm2K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs, 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations showposition–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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High-Dimensional 
Data and Visualizations
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3D Milky Way, 
Predictive KS??

Tuesday, March 22, 2011
The "data deluge" in science is old news.  Now, it's pouring, and we need working tools to collect, sort out, understand, and keep what is falling down on us.
In astronomy, the greatest insights very often come from studies where more than one "band" of data (e.g. optical, infrared, radio, X-ray) is combined.   And, data sets 
aren't just large--they are often also high-dimensional, in that they contain information about flux as functions not just of position on the sky, but also as functions of a 
third  dimension (e.g. frequency, velocity), and/or of time.  Life science, geophysical, and geospatial data all present similar challenges.

In this talk, I will focus on examples drawn from my group's research on star formation in molecular clouds.  In particular, I will show how new visualization and statistical 
analysis techniques relying on interactive high-dimensional views of data and on automated algorithms for "segmenting" data give new insight.    "Segmentation" in imaging 
terms refers to extracting the meaningful structures from data, and I will show results from both dendrogram (tree-hierarchy) and machine-learning approaches.  I will 
emphasize how the visualization of segmentation results is critical for understanding.  The highlighted science results will show how we can now--for the first time--
quantitatively but intuitively understand the connections between the "real" (position-position-position) space where simulations (e.g. of star formation) can be made and 
the "observational" (e.g. position-position-velocity) space available to earthbound astronomers.   As a result of this newfound understanding, we can place important limits 
on the validity of virial-theorem-based calculations of the properties of gas--allowing, for example, for better estimates of which gas in star-forming regions is most likely 
to stay bound long enough to form stars.

Even though this abstract may sound technical to non-star-formation or non-computational researchers, my goal will be to keep the talk accessible to non-experts, so 
people from other fields faced with high-dimensional data and visualization challenges should feel free to join in--and to ask questions


