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ABSTRACT

The physical properties of molecular clouds are often measured using spectral-line observations, which provide the
only probes of the clouds’ velocity structure. It is hard, though, to assess whether and to what extent intensity features
in position—position—velocity (PPV) space correspond to “real” density structures in position—position—position
(PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds,
and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm,
we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified
in PPP space into corresponding intensity structures in PPV space and then measures the geometric overlap of
the projected structures with structures identified from the synthetic observation. The fractional overlap between
a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-
dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure
how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated
star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and
gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which
offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that
superposition induces a ~40% uncertainty in masses, sizes, and velocity dispersions derived from '*CO (J = 1-0).
As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material
is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived
from PPV and PPP information typically disagree by a factor of ~2. This uncertainty makes it particularly difficult
to judge whether gravitational or kinetic energy dominate a given region, since the majority of virial parameter
measurements fall within a factor of two of the equipartition level o ~ 2.

4 Key words: ISM: clouds — radiative transfer — techniques: image processing — techniques: spectroscopic
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HST [Olll], Ha and [NIl] emission-line image from Hester et al.
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Synthetic [Olll], Ha and [NIl] emission-line image from a 5123 numerical simulation: Mellema, Henney, Arthur & Vazquez-Semadeni 2009
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Cumulative distributions of the probability that the accretion duration is less than a, for six simulations. Each
distribution is weighted to reduce a sampling bias which limits late starts to short durations. In these figures
the spacing of points increases for long durations, indicating that the chance of accreting for a decreases with a.

Each distribution is fit with a random stopping function of form P(a) = 1 - exp(-a/<a>), with mean duration
<a>. Each fit is labelled with the ratio of <a> to the initial free fall time and to the star-forming duration of the
simulation. The fit quality and the curvature of the distribution tend to increase as the star-forming duration
spans a greater number of mean accretion durations. In the W10 simulations, introducing magnetic fields and
winds tends to decrease the mean accretion duration.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND' feature-
identification algorithms as applied to ">CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in

NATURE|Vol 457|1January 2009

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p—p-v) data cube into
an easily visualized representation called a ‘dendrogram™’. Although
well developed in other data-intensive fields'""?, itis curious that the
application of tree methodologies so far in astrophysics hasbeen rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency®.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2¢).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (¢,) and luminosity
(L). The volumes can have any shape, and in other work'* we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that My = Xi3colisco» where X 5c0= 8.0 X 10¥ cm? K 'km™'s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velodity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation ofan ‘observed’ virial parameter, %y, = 56,°RIGMjym.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
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Neither simulation is “truthful.”

But, they might be good enough to Taste.



Neither simulation is “truthful.”
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Tastemaker 1: Chemistry
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Figure 18. H, column density map of S11 (a), and the integrated *CO (J = / _sups With and without chemistry (b, c).

The Astrophysical Journal, 777:173 (20pp), 2013 November 10 doi:10.1088/0004-637X/777/2/173, 2013.
QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS

Christopher N. Beaumont! ’2, Stella S. R. Offner3’5, Rahul Shetty4, Simon C. O. Glover4, and Alyssa A. Goodman2



Tastemaker 2: Projection

Superposition Velocity-induced structure

Figure 1. Schematic representation of superposition and velocity-induced
structures. Colors indicate velocity. Left: three PPP structures (top) merge into
2 PPV structures (bottom), due to the similar velocity of the front and back
structures. Right: a single density structure with internal velocity gradients
(top) splits into two PPV structures (bottom).

Beaumont et al. 2013
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Figure 1. Schematic representation of superposition and velocity-induced
structures. Colors indicate velocity. Left: three PPP structures (top) merge into
2 PPV structures (bottom), due to the similar velocity of the front and back
structures. Right: a single density structure with internal velocity gradients
(top) splits into two PPV structures (bottom).
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Made possible by: NASA, ADS, CDS, Seamless Astronomy &
Microsoft Research.

Created by: Alberto Pepe, Gus Muench, Thomas Boch, Chris
Beaumont, Jonathan Fay, Max Lu, Alberto Accomazzi,
Sarah Block & Alyssa Goodman.

Infographic at right: Popular Science Magazine, June 2014,
created by Katie Peek.

The Most Intriguing Stars In The Universe [Infographic]

Here are the stars that get the closest scrutiny from scientists
By Katie Peek Posted 05.19.2014 at 11:42 am
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Star map lilustration by Katie Peek; Original maps courtesy ADS All-Sky Survey, ADSASS.org

In late 2013, a group of astronomers in the U.S. and France made a new kind of sky map, which charts the how intensely
scientists have studied features in the heavens. To build the map, they analyzed a million references to celestial objects
in a NASA database of journal articles. Astronomers can use the online version—Astrophysics Data System All-Sky
Survey—find data on their targets. The team is also launching a citizen science project later this year to incorporate
archival images in the interactive tool. In the meantime, the map already reveals the most intriguing parts of the universe.

This article originally appeared in the June 2014 issue of Popular Science.
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