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The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

The Spitzer Space Telescope observed 75 galaxies as part of its SINGS NG L

(Spitzer Infrared Nearby Galaxies Survey) Legacy Program. The
galaxies are presented here in a Hubble Tuning-Fork diagram, which
groups galaxies according to the morphology of their nuclei and spiral
arms, The designation of these galaxies and their placement in the
diagram ts based on their visible-light appearance. The main goal of the
SINGS program is to characterize the infrared properties of a wide range
of galaxy types. The images of the galaxies are composites created
from data taken by IRAC (the Infrared Array Camera) at 3.6 and 8.0 pm,
and MIPS (the Multiband Imaging Photometer for Spitzer) at 24 um.

The infrared range probed by these and other observations
taken for the SINGS project allows for the detailed study of
star formation, dust emission, and the distribution of stars in
each galaxy. Light from old stars appears as blue in the
images, while the lumpy knots of green and red light are
produced by dust clouds surrounding newly bom stars, The
elliptical galaxies on the left are almost entirely made of old L7
stars, while spiral galaxies like our own Milky Way are rich in ’

young stars and the raw materials for future star formation. p

More information can be found at: ,
http://sings. stsci.edu/ -7
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1936: “The Realm of the Nebulae” by Edwin Hubble

FLLPTICAL NERULAFE

Y -Ir.
- lfv.j;lc

Fia. 1. The Sequence of Nebular Types.

The {!;i:gffsﬂ'.l 19 & schameatie rh[)l‘l‘:ﬂ‘nfﬂ-f]‘l"n of the :'!'..'l.l (B O r_]f (‘];L:miﬂ(-_,';fi(_:n,
A fow nebulw of mixed types are found betwesn the two sequences of spirals,
The fransition etape, B0, iy more or Jeas hypotbetical, The transition between
£7 sud 8B, is smooth end contimnous, Between B7 and 8, no nebule are
definitely recogmized,

“Hubble’s Tuning Fork Diagram”
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The Shapley-Curtis Debate at the
Smithsonian Natural History Museum, 1920



From National Acadeay of Sciendos, For Release tc Afternocn Papers,
Suitheonian Instituticn, Washingtéh, D. €. Monday, April 26
(Carl H. Butuan, Repreaenuttns.

HOW MANY UNIVERSES ARF THERE?

This evening two Californis astronomers will discues the Size of the

Universe, fmd present their views as to whethat or not there is only cne or

soveral universes, before the National Acadeny of Sciences, which is ncw in

session in Washingtcen.,

In this public ceeting, Dr. Barlow Shapley of the Mt. Wilson Solar Ob-
servatory, will discuss recently socured evidence pointing to the disensions of
our galaxy of stars, known popularly as the Milky Way, which he belisves to be
ten times greatur than is held in the older theories concernirg the dizensicns
and. coapositione of the Milky Way. In other words, he clajms that it takes
light about three hundred thousands of years to cross from cne side to the other
cf the epace occupied by the 3,000,000,000 stars of which our sun is the nearest
one. . Ee holdp the' epiral nebulas, those clameshell.like cloudy luminous objects
soen by great telescppes, to be inside our systex.

. Doctor Ghapley's views will be followed bty the discussion of Doctor Heber
D. Curtia of the Lick Observatory, who will dseferd the older view that our
Milky Way is approxiualely of the dimensions suggested by Newcomb, about 30,000
light-years in diameter, with the spiral nebulas regarded as veéry probadbly
individufl gelaxies of "island universes®, like ours. Thus thére way be -
@illion cther universes sach hiving 3,000,000,000 stare. Inhabitants of
fuiercus universes would see owr Milky Way as & spirsl nebula. The lect
these two learned astronomers will be followed by & general discussion ¢

the auditors present whe are interested in the development cf this new ¢
in scientific research.

The Shapley-Curtis Debate at the
Smithsonian Natural History Museum, 1920
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More info at http://cosmology.carnegiescience.edu/timeline/1781 (Herschel); http://cosmology.carnegiescience.edu/timeline/1920 (Shapley-Curtis)
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Bonus: “spectral line mapping,” especially in the radio,
also gives velocity, thanks to the Doppler effect |

P 1

Radio Infrared Visible Ultra-violet X-ray
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very thin infrared dark cloud “Nessie” lies directly in the Galactic
midplane and runs along the Scutum rus Arm in position-position-velocity (p-p-v) space as traced by low
density CO and higher-density NH; gas. Nessie was presented as the first “bone” of the Milky Way, an
extraordinarily long, thin, high-contrast filament that can be use r Galaxy’s “skeleton.” Here we present

1 Abstract dence for additional bones in the Milky Way, arguing that Nessie is not a curiosity but one of several filaments that

" od that ; od d could potentially trace Galactic structure. Our 10 bone candidates are all long. filamentary, mid-infrared extinction
Recently, Goodman et al. (2014) argued that a very long, very thin infrared dark features that lie parallel to, and no more than 20 pe from, the physical Galactic mid-plane. We use CO, NH', HCO™,
cloud “Nessie” lies directly in the Galactic mid-plane and runs along the Scutum-
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Over the past several decades, astronomers have begun to define the structure ftad i, which 1s publicly available. We aiso perform a position-position-velocity (p-p-v) analys
and kinematic properties of the Milky Way. Yet, despite a large conglomeration of a subset of the filaments and find that while 60%-70% lic in the plane of the Galaxy, only 30-45%
literature on the subject, many key questions remain. For instance, how many temperature, and density, we broadly distinguish three fllament categories, which could be indic
spirals arms does the Milky Way have, cf. (Vallée 2008)? What is the location of = of different formation mechanisms or histories. Highly elongated “Bone-like” filaments show the most
these arms? And how would these arms appear to an observer viewing the Milky potential for tracing gross spiral structure (e.g. arms), while other categories could simply be lar,

: . . . . mcentrations of moleculs 5 (GMCs, core complexes)
Way from the outside? An understanding of the Milkky Way's three dimensional concentrations of molecular g core compie
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QUESTION Andi Burkert: Is Nessie
“parallel to the Galactic Plane™?

ANSWER no one immediately knew the
answer!




“Galactic Plane”

The Milky Way
(Artist's Conception)



“Is Nessie Parallel to the Galactic Plane?”




Yes, but why not at Zero of Latitude (b=0)?

GLIMPSE | MIPSGAL
VIEWER

LINK TO CURRENT VIEW TOGGLE PINS QUESTIONS?
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Galactic Longitude




Nessie:

=xtended”




“Nessie Extended”

~500 light years long & 1.5 light years thick
300:1 axial ratio
200,000 solar masses

BUT, why is it near b=-0.5, and not b=0?



Where are we, really?

“IAU Milky Way”, est. 1959

True Milky Way, modern

The equatorial plane of the new co-ordinate system must of necessity pass through
the sun. It is a fortunate circumstance that, within the observational uncertainty, both
the sun and Sagittarius A lie in the mean plane of the Galaxy as determined from the
hydrogen observations. If the sun had not been so placed, points in the mean plane would

not lie on the galactic equator. | [Blaauw et al. 1959]
Galactic
Sun is Center is . . .
~75 light years ~20 light years B The Galactic Plane is not quite
“above” the + offset from the - where you’d think it is
IAU 1\|f|ﬂky Way IATU Milky Way when you look at the sky
ane

Center
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“Viewed from known elevation, features in a flat plane are found at angular
positions given by their distance.”



Yes, Nessie is EXACTLY in the Galactic Plane!

(0.4 degrees “below” the IAU plane)

What about its distance?

we can use “radial velocities” to estimate distance in a rotating galaxy...



A Rotating (Spiral) Galaxy Observed from its Qutskirts...
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In the plane and at the distance of spiral arm!

-43.3 -40.0 -36.7

[Z,=25.0 pc, Ry=8.5 kpc, ©,=220 km/s]

‘no tilt of plane

o)
~-
Q
o
>
x
)
qe)
—
R
)
9
0O
O
O

Galactic Longitude (1)




..eerily precisely...



Monster to Bone

There could be 1000s more of these to find...a full skeleton perhaps?



A full 3D skeleton?

(flipped) image of IC342 from Jarrett et al. 2012; WISE Enhanced Resolution Galaxy Atlas simulations courtesy Clare Dobbs




2014 Simulation

N

Position [kpc]

(V]

1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-

8 9 10 11 12 13 14

< L\' ‘<" - < \
-0 = .\.-“_- s »,".\ = " A
I e
AN £ »
DY ¢ 3
< &P
I |z =
M| | 1 T 111 I

1 020 1 021 1 022 1 023
Smith et al. 2014, using AREPO Column Density [cm™2]



2014 Simulation

0.10

0.05

0.00

Position [kpc]

-0.05

-0.10

13.0 13.1 13.2 13.3
1021 1022 1023

Column Density [em™]

Smith et al. 2014, using AREPO



Au

Authorea

BLIC W NG DI

The Bones of the Milky Way

+ Add author | |3 Re-arrange authors

This is a preprint. The published article is available at the Astrophysical
Je rsion, published in

Open
Preprint

De 1t, and you can use

nd its structure.

1 Introduction
Determining the structure of the Milky Way,
challenge for astronomers. We
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do not have a definitive picture of the Milky Way*
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Determining the structure
point within itis a perpetual
the Galaxy has spiral arms & w &
many (see Vallée 2008). Recent observations of maser proper

in determining the three-
dimensional (3D) position of the Galaxy’s center and rotation
speed (Reid et al. 2009; Brunthaler et al. 2011). But, to date,
we still do not have a definitive picture of the Milky Way’s 3L
structure.

‘The analysis offered in this paper suggests that some infrared
dark clouds (IRDCs)''—in particular very long, very dark,
clouds—appear to delineate major features of our Galaxy as
would be seen from outside of it. In particular, we study a >3
long cloud associated with the IRDC called “Nessie
etal. 2010), and we show that it appears to lie parallel to and no
more than just a few parsecs from the true Galactic plane.

Our analysis uses diverse data sets, butit hinges on combining
those data sets with a modern understanding of the meaning

nfrared dark cloud”, or * pically refers to any cloud
that s opague in

.04

st ion- e
Scutum ~

of the’

fores' _.cened) vie

“true” Galactic
determined as
ey e is typically not
at b = 0, as projected onto the sky. The exact offset from
b = 0depends on distance, as we explain in Section 3.1. Taking
these offsets into account, one can profitably re-examine data
relevant to the Milky Way’s 3D structure. The Sun’
point slightly “above” the plane of the Milky Way offers useful
perspective
IRDCs are loosely defined as clouds with column densities
high enough to be obvious as patches of significant extinction
against the diffuse galactic background at mid-infrared wave-
lengths. Peretto & Fuller (2009) set the boundaries of IRDCs at
an opti of avelength, equivalent to an Hy
column density ™. In the Peretto & Fuller (2010) sam-
ple, clouds have average column densities of a few 10 cm >,
Some IRDCs actively form high-mass stars (e.g., Pillai et al
06 and Rathborne et al. 2007). Kauffmann & Pillai (2010)
explain that while some starless IRDCs are potential sites of fu
ture high-mass star formation and the few hundred densest and
the most massive IRDCs may very well contain a large fraction




A Tour of Possible Milky Way Bones\
(images show Spitzer MIPSGAL overlain on optical image;
dotted lines show projected sky posm w f Milky Way spiral arms)
Alyssa Goodman

January 2014
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40 months of work...

Cara Battershy Catherine Zucker

UConn Professor, former Harvard-Smithsonian postdoc Harvard Graduate Student
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operties of Large-Scale Galactic Filaments
_ | Catherine Zucker, Cara Battersby, Alyssa Goodman
== PIHITTN (Submitted on 27 Dec 2017)

The characterization of our Galaxy's longest filamentary gas features has been the subject of several studies in recent years, producing not
only a sizeable sample of large-scale filaments, but also confusion as to whether all these features (e.g. "Bones”, "Giant Molecular Filaments")
are essentially the same. They are not. We undertake the first standardized analysis of the physical properties (densities, temperatures,
morphologies, radial profiles) and kinematics of large-scale filaments in the literature. We expand and improve upon prior analyses by using
the same data sets, techniques, and spiral arm models to disentangle the filaments' inherent properties from selection criteria and
methodology. Our results suggest that the myriad filament finding techniques are uncovering different physical structures, with length (11-
269 pc), width (1-40 pc), mass (3 x 10° Mg - 11X 10° M), aspect ratio (3:1 - 117:1), and dense gas fraction (0.2-100%) varying by at
least an order of magnitude across the sample of 45 filaments. As part of this analysis, we develop a radial profile fitting code, RadFil, which
is publicly available. We also perform a position — position — velocity (p — p — v) analysis on a subset of the filaments and find that while
60%-70% lie in the plane of the Galaxy, only 30-45% also exhibit kinematic proximity to purported spiral arms. In a parameter space defined

34 35 43 44
by aspect ratio, temperature, and density, we broadly distinguish three filament categories, which could be indicative of different formation
éhgg_;;%ﬁ% %_.: mechanisms <?r hlStOI’IeS.. Highly elongated Bone-.llke filaments show the most potential for tracing gross spiral structure (e.g. arms), while ) ﬁ :
= e other categories could simply be large concentrations of molecular gas (GMCs, core complexes).
Ry s COmments: Submitted to The Astrophysical Journal
= FESSSSS gubjects:  Astrophysics of Galaxies (astro-ph.GA)
45 46 Cite as: arXiv:1712.09655 [astro-ph.GA]

(or arXiv:1712.09655v1 [astro-ph.GA] for this version)
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1 Introduction
Determining the structure of the Milky Way, from our vantage point within i a perpetual
rallenge for astronomers. We know the Galaxy has spiral arms, but it remains unclear
ctly how many, cf lée 8). Recent observations of maser proper motions give
ccuracy in ¢ fmining the three-dimensional position of the Galaxy's

center and rotation speed ( al., 2009 tha a . But, to date, we still
do not have a definitive picture Milky Way’s three dimensional structure.

1 Abstract

Recently, Goodman et al. (2014) argued that a very long, very thin infrared dark
cloud “Nessie” lies directly in the Galactic mid-plane and runs along the Scutum-
Centau \ y =d by low density CO
and hig st “bone” of the Milky
Way, ar can be used to map

our gal jitional "bones” in the
Milky W one of many filaments
the bone candidates are

ie parallel to, and no
more t -plane. We use CO,

NoH+ n of the candidates in
positior ites have a projected

[ ]
aspect he Scutum-Centaurus
armin | : three candidates are
Nessie- irms in both physical

space : be spurs, feathers, or
interarn ructure. As molecular
spectre increasing resolution
and ser to ultimately create a
global- ar individual skeletal

features. inis work Is supporied in part by the NSF Hed and DOD ASSURE
programs under NSF grant no. 1262851 and by the Smithsonian Institution.

2 Introduction

Over the past several decades, astronomers have begun to define the structure
and kinematic properties of the Milky Way. Yet, despite a large conglomeration of
literature on the subject, many key questions remain. For instance, how many
spirals arms does the Milky Way have, cf. (Vallée 2 ? What is the location of
these arms? And how would these arms appear to an observer viewing the Milky
Way from the outside? An understanding of the Milky Way's three dimensional
structure has eluded us, largely due to the fact that we are embedded in the

oalaxv we are attemptina to delineate
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(Blaauw et al
“true”

Determining the structure Salactic
ithin itis a perpetual determined as
i a a G is typically not
many (see Vallée 2008). Recent observations of maser proper 0, as projected onto the sky. The exact offset from
motions give unprecedented accuracy in determining the three- b = 0 depends on distance, ain in Se 1
dimensional (3D) position of the Galaxy’s center and rotation
speed (Reid et al. 2009; Brunthaler et al. 2011). But, to date,  relevant to the Mil
we still do not have a definitive picture of the Milky Way's 3D point slightly “above” the plane of the Milky Way offers useful
perspective
he analysis offered in this paper suggests that some infrared IRDCs are loosely defined as clouds with column densities
dark clouds (IRDCs)''—in particular very long, very dark, high enough to be obvious as patches of significant extinction
clouds—appear to delineate major features of our Galaxy as  against the diffuse galactic background at mid-infrared wave-
would be seen from outside of it. In particular, we study a >3 lengths. Peretto & Fuller (2009) set the boundaries of IRDCs at
long cloud associated with the IRDC called “N Jackson  an optical depth of 0,35 at 8 um wavelength, equivalent to an Hy
etal. 2010), and we show that it appears to lie parallel toandno  column density ~10%cm™. In the Peretto & Fuller (2010) sa
more than just a few parsecs from the true Galactic plane. ple, clouds have average column densities of a few 102 cm
Ouranalysis uses diverse data sets, but it hinges on combining ~ Some IRDCs actively form high-mass stars (e.g., Pillai et al
those data sets with a modern understanding of the meaning 2006 and Rathbome et al. 2007). Kauffmann & Pillai (2010)
explain that while some starless IRDCs are potential sites of fu-
cm “infrared dark cloud”, or “IRDC”, typically refers to any ¢ ture high-mass star formation and the few hundred densest and
aque in the mid-infz the most massive IRDCs may very well contain a large fraction
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ABSTRACT

Recently, Goodman et al. argued that the very long, very thin infrared dark cloud “Nessie” lies directly in the Galactic
midplane and runs along the Scutum—Centaurus Arm in position-position-velocity (»—p-) space as traced by lower-
density CO and higher-density NH; gas. Nessie was presented as the first “bone” of the Milky Way, an

y ament that can be used to map our Galaxy’s “skeleton.” Here we present
evidence for additional bones in the Milky Way, arguing that Nessie is not a curiosity but one of several filaments that
could potentially trace Gal Our 10 bone candidates are all long, filamentary, mid-infrared extinction
features that lie parallel to, and no more than 20 p from, the physical Galactic mid-plane. We use CO, NoH*, HCO*,

2 More

Refereed

Articles
2015,18

Rad#il, which is publicly available. We also perform a position-position-velocaty (p-p-v) analysis on

t of the filaments and find that while 60%-70% lic in the plane of the Galaxy, only 30-45% also

hibit kinematic proximity to purported spiral arms. In a parameter space defined by aspect ratio,

temperature, and density, we broadly distinguish three filament categories, which could be indicative

of different formation mechanisms or histories. Highly elongated “Bone: filaments show the most

potential for tracing gross spiral structure (e.g. arms), while other categories could simply be large
concentrations of molecular gas (GMCs, core complexes)
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Seamless Astronomy-style tools used in this project

authorea.com (open publishing)

thedata.org (open data)

glueviz.org (open source tools)

milkyway3d.org (collaborative data)

worldwidetelescope.org (universe information system)

virtual observatory standards (international online information-sharing systems)
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A 5-minute video demonsration of this paper is available at this YouTube link.

1 Preamble

A variety of research on human cognition demonstrates that humans learn and
communicate best when more than one processing system (e.g. visual, auditory,
touch) is used. And, related research also shows that, no matter how technical
the material, most humans also retain and process information best when they
can put a narrative “story" to it. So, when considering the future of scholarly
communication, we should be careful not to do blithely away with the linear
narrative format that articles and books have followed for centuries: instead, we
should enrich it.

Much more than text is used to commuicate in Science. Figures, which include
Images, diagrams, graphs, charts, and more, have enriched scholarly articles
since the time of Galileo, and ever-growing volumes of data underpin most
scientific papers. When scientists communicate face-to-face, as in talks or small
discussions, these figures are often the focus of the conversation. In the best
discussions, scientists have the ability to manipulate the figures, and to access
underlying data, in real-time, so as to test out various what-if scenarios, and to
explain findings more clearly. This short article explains—and shows with
demonstrations —how scholarly "papers” can morph into long-lasting rich
records of scientific discourse, enriched with deep data and code linkages,
interactive figures, audio, video, and commenting.
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