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MAGNETIC FIELDS IN MOLECULAR CLOUDS: OH ZEEMAN OBSERVATIONS
RICHARD M. CRUTCHER
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ABSTRACT

We have carried out sensitive OH Zeeman observations of the absorption lines produced in
interstellar dust clouds toward 3C 133, 3C 123, and W51. Conservative (3 ¢) upper limits to the
magnetic field strengths at each position are 15, 25, and 30 microgauss respectively.
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THE LOCAL INTERSTELLAR MEDIUM

RICHARD M. CRUTCHER

Astronomy Department, University of Illinois; and
Radio Astronomy Laboratory, University of California, Berkeley

Received 1980 September 8 ; d 1981 July 16

ABSTRACT

Analysis of the velocities of optical interstellar lines shows that the Sun is immersed in a coherently
moving local interstellar medium whose velocity vector agrees with that of the interstellar wind
observed through backscatter of solar H Lyx and He 1584 photons. The local interstellar medium
consists of both cool clouds and warm intercloud medium gas, has a mass of perhaps ~ 30 M , does
not have severe depletion of trace elements from the gas phase, and appears to be material which has
been shocked and accelerated by stellar winds and supernovae associated with the Sco-Oph OB
association.

Subject heading : interstellar: matter
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The magnetic field of the NGC 2024 molecular cloud:
detection of OH line Zeeman splitting

Letter to the Editor

Richard M. Crutcher 2 and Ilya Kazés'

! Department de Radioastronomie, Observatoire de Paris-Meudon, F-92195 Meudon, France
2 Department of Astronomy, University of Illinois, Urbana, IL 61801, USA
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The antenna feed is a hoghorn (Pippard, 1946) with

Summary
orthogonal dipoles in a circular waveguide. A noise

Zeeman splitting of the main lines of OH in absorp-
tion has been detected for the first time. The derived
magnetic field for a clump in the NGC 2024 molecular
cloud is -38 * 1 microgauss.

Key words: magnetic fields - interstellar molecular
clouds - Zeeman effect

diode signal may be injected into the horn for calibra-
tion. The horizontally and vertically orientated linear
polarizations are coupled to unbalanced transmission
circuits by folded baluns (Jasik, 1961); the polariza-
tion isolation is measured to be in excess of 40 dB.
After amplification by cooled paramps or FET's, the lin-
early polarized signals are combined with the appropria-
te phases in a hybrid to produce circularly polarized
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Fig. 1. Spectra of the 1667 (strongest) and 1665 lines
Gbserved for 13" 18M toward NGC 2024 (RA/DEC [1950.01
05h 39M 14¥3 / -01° 55' 57"). The weakest line is the
assuned gaussian component used for Zeeman analysis.
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The abscissa scale in all figures is the same and is
given in km s-1 relative to the LSR.. The ordinate scale
in °K antenna temperature is correct except that displa-
cenments of zero have been made in most figures.
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Fig. 2. Stokes V spectra of the 1665 (upper) and 1667
(Tower) lines.
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ABSTRACT

We present results of A1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with
~2'5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU
are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where
outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If
one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not
disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields
in the cores from which they formed.

Key words: ISM: magnetic fields — magnetic fields — polarization — stars: formation — stars: magnetic field — stars:

protostars
1984 Online-only material: color figure
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Planck intermediate results

20 16 XXXIl. The relative orientation between the magnetic field and structures
A traced by interstellar dust

Planck Collaboration: R. Adam®, P. A. R. Ade”, N. Aghanim®*, M. L. R. Alves**, M. Arnaud®, D. Arzoumanian®, M. Ashdown®*, |, ,
ABSTRACT

The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to
the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz
provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of
interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity
map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover
two orders of magnitude in column density, from 10?° to 10> cm™2. We measure the magnetic field orientation on the plane of the sky from

aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and

decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization
- ‘ aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and ’ S ’
decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization

fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a

loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures

perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative

orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field

geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually

aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and

MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in

the magnetized ISM.

Key words. ISM: clouds — ISM: magnetic fields — ISM: structure — magnetohydrodynamics (MHD) — polarization — turbulence

A number of studies, using the polarization of background
starlight caused by dichroic absorption, have targeted filaments
1990 in dark clouds (e.g. Goodman et al. 1990, 1995; Pereyra &

Magalhdes 2004; Alves et al. 2008; Chapman et al. 2011;
Cashman & Clemens 2014), and in the diffuse ISM at lower col-
umn densities (McClure-Griffiths et al. 2006; Clark et al. 2014).
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MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS:
INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS

RICHARD M. CRUTCHER!, BENJAMIN WANDELT?">, CARL HEILES?, EDITH FALGARONE’, AND THOMAS H. TROLAND®

I Astronomy Department, University of 11linois, Urbana, IL 61801, USA
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3 Departments of Physics and Astronomy, University of Illinois, Urbana, Il 61801, USA
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ABSTRACT

The onlv direct meacanremente of interctellar maonetic field ¢trenothe denend an the Zeeman effect which camnlec

many fields are so weak that the mass/flux ratio in many clouds must be significantly supercritical. A two-thirds
power law comes from isotropic contraction of gas too weakly magnetized for the magnetic field to affect the
morphology of the collapse. On the other hand, our study does not rule out some clouds having strong magnetic

fields w1th cr1t1ca1 mass /1 ﬂux ratlos

the dens1ty but not the magnetlc field strength We further find strong ev1dence for B in molecular clouds bemg
randomly distributed between very small values and a maximum that scales with volume density n as B o« n%% for
n > 300 cm~3, with an uncertainty at the 50% level in the power-law exponent of about +0.05. This break-point
density could be interpreted as the average density at which parsec-scale clouds become self-gravitating. Both the
uniform PDF of total field strengths and the scaling with density suggest that magnetic fields in molecular clouds
are often too weak to dominate the star formation process. The stochasticity of the total field strength B implies that
many fields are so weak that the mass/flux ratio in many clouds must be significantly supercritical. A two-thirds
power law comes from isotropic contraction of gas too weakly magnetized for the magnetic field to affect the
morphology of the collapse. On the other hand, our study does not rule out some clouds having strong magnetic
fields with critical mass/flux ratios.

19 89 Key words: ISM: magnetic fields — polarization — stars: formation
Online-only material: color figures
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Taurus, Barnard 1918






deiles (

Optical Polarization from Goodman et al. 1990 compilation, on Taurus *CO from Narayanan et al. 2008
(created for Steve Strom’s birthday, 2008. .. “published” as video: vimeo.com/101109410



Dec. Offset (deg.)

) 4 3
R.A. Offset (deg.) R.A. Offset (deg.)

Fic. 3.—(Left) Image of 2CO J = 1—0 emission of a subfield within the Taurus molecular cloud integrated over the velocity interval 5.5-7.5 km s~! and (right)
image of 12CO velocity centroid (Narayanan et al. 2008), with overlay of optical polarization vectors from the compilation by Heiles (2000). The molecular line emis-
sion and velocities exhibit streaks that are aligned along the local magnetic field direction. The solid line box outlines the area on which the axis-constrained PCA method is
applied. The dotted-line box shows the area within which the polarization angles are averaged to estimate the mean magnetic field direction.

Heyer et al. 2008

[*but we still may not really know B in highest density gas...]



Taurus, Barnard 1918
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2. THE HI SKY AT ARCMIN RESOLUTION

2.1. Sheets and Filaments, Supersonic and Not
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Meanwhile, in the Theoryverse. ..



The Theoryverse

[not to scale]

Mostly Dark Matter, Some Baryons
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.; The NEW Theoryverse
7 [still not right, but gettting much more realistic]
= 4r ]
$ ot Duarte-Cabral & Dobbs 2016
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Figure 7. Morphology of the molecular gas in our Milky Way simulation. The grey-scale background image shows the H, column density (cf. Fig. 4), while 10% 10

the purple points show the strength of the CO velocity-integrated intensity, Wco, estimated as described in the text. Many of the clouds in the inter-arm region
have no portions with integrated intensities above 0.1 K km s~! and thus would appear entirely ‘dark’ in CO observations.

10-0M_ 107 106

x (kpc)

Figure 2. Top-down view of the simulation from Dobbs (2015) used in this work, as a 3-colour (RGB) image of the column densities of
CO (red), Ha (green) and atomic H (blue), in units of gcm™2. For the synthetic observations, we positioned the observer in the top-left
corner, at (0,3,0) kpc coordinates.

Mellema
et al. 2009
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The Carlverse, 1974

A MODERN LOOK AT ‘INTERSTELLAR CLOUDS’

CARL HEILES
University of California, Berkeley, Calif., U.S.A.

Abstract. We compare past and present modes of investigation of the structure of the interstellar gas.

Many aspects of the interstellar cloud model are invalid.
nterstellar optical absorption lines and H1 21-cm emission lines show a number of very large ag-

gregates with properties similar to those of ‘cloud complexes’. At nonzero velocities especially for b<0°,
exist optical lines which have no Hi1 counterparts. These are almost certainly produced in low-density
gas clouds; perhaps the intercloud medium is itself cloudy.

Maps of H1 column density taken over large velocity ranges do not reveal much small-scale structure.
This fact cannot easily be reconciled with the statistical analyses of interstellar reddening. The maps

do reveal largeI coherent gas_structures which are often filamentary in_shape and at least sometimes
aligned Earallel to the interstellar magnetic field.

Maps of Hi1 column density over small velocity ranges show much small-scale structure, often fila-
mentary n shag. The filaments are almost universallz oriented Earallel to the interstellar ma%)etlc e
and have Doppler velocity gradients along their lengths. In one area the geometry of the field and gas

almost exclusively suggests Alfvén-type motions.



The Carlverse, 1974
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A MODERN LOOK AT ‘INTERSTELLAR CLOUDS’

1974IAUS...

CARL HEILES
University of California, Berkeley, Calif., U.S.A.

Abstract. We compare past and present modes of investigation of the structure of the interstellar gas.

Until recently, insufficient data have been available to make such a discussion. We
will find that some aspects of the cloud model remain valid. Other aspects, especially
the assumptions concerning randomness, are incorrect. Much of the observable gas
is affected by the interstellar magnetic field and/or huge explosions. Many large ag-
gregates contair hierarchical structure with non-random shapes and velocities. Out-
side these aggregates, the gas is often distributed in long, delicate, interconnected
filaments rather than clouds.
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Yesterday, in the diffuse gas. ..



Declination

GALFA HI shows huge filaments/combing, aligned with B.. ..
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Figure 10. Riegel-Crutcher cloud (Section 6) in H 1 absorption (left) and RHT backprojection (right). Overlaid pseudovectors represent polarization angle measurements
from the Heiles (2000) compilation. In the left panel, the intensity scale is linear from —20 K (white) to —120 K (black).

(A color version of this figure is available in the online journal.)



Last Month, in Dense Gas. ..
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2012: Andi Burkert .askeol a question:
s Nessie “parallel to the Galactic Plane"? *
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- 2016: Yes. And-, it has friends, and théy're very useful. = % -
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2.3. Establishing “Bone” Criteria

THE SKELETON OF THE MILKY WAY

CATHERINE ZUCKER', CARA BATTERSBY?, AND ALYSSA GOODMAN? After narrowing down our list to 10 filaments with kinematic
lAsl:mnomy Depanzmem, University of Virginia, Charlottesville, VA 22904, USA: catherine.zucker @cfa harvard.edu . . . e .
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA structure consistent with existing spu'a] arm models, we

Received 2015 June 27; accepted 2015 September 21; published 2015 MM DD

develop a set of criteria for an object to be called a “bone”:

ABSTRACT
Recently, Goodman et al. argued that the very long, very thin infrared dark cloud “Nessie” lies directly in the Galactic : R - -
midplane and runs along the Scutum—Centaurus Arm in position—position—velocity (p—p—v) space as traced by lower- 1' Largely continuous mld lnfrared extinction featu‘re
density _CO. and high‘epde_nsity NH; gas. Nessie was presented as the first “bone” of the Milky Way, an 2. Parallel to the Ga.lactic plane, to Within 300
extraordinarily long, thin, high-contrast filament that can be used to map our Galaxy’s “skeleton.” Here we present e . . . .
evidence for additional bones in the Milky Way, arguing that Nessie is not a curiosity but one of several filaments that 3. Within 20 pc of the phySICal Galactic Inld—plane, assum-
could potentially trace Galactic structure. Our 10 bone candidates are all long, filamentary, mid-infrared extinction .
features that lie parallel to, and no more than 20 pc from, the physical Galactic mid-plane. We use CO, N,H™, HCO™, ng a ﬂat galaxyl
and NHj radial velocity data to establish the three-dimensional location of the candidates in p—p—v space. Of the 10 ithi - H H
candidates, 6 also have a projected aspect ratio of >50:1; run along, or extremely close to, the Scutum—Centaurus 4' WIthln 10 km S Of the glObal-lOg Sp ll'a.l ﬁt to a.[ly Ml]‘ky
Arm in p—p—v space; and exhibit no abrupt shifts in velocity. The evidence presented here suggests that these Way arm
candidates mark the locations of significant spiral features, with the bone called filament 5 (“BC_18.88-0.09”) being a . . . -1
close analog to Nessie in the northern sky. As molecular spectral-line and extinction maps cover more of the sky at 5. No abrupt shifts in VClOClty (Of more than 3km s per

increasing resolution and sensitivity, it should be possible to find more bones in future studies.

Key words: Galaxy: kinematics and dynamics — Galaxy: structure — ISM: clouds 10 I?C) Wlthln extlnC.tlon feature
L ee——— ——tmmmestmmEO 6. Projected aspect ratio >50:1.
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Figure 3. Distributions of length, radius, aspect ratio, and mass for the 10 bone candidates, based on data from Table 2.
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Figure 1. Results of performing a slice extraction along the filamentary extinction feature of our strongest bone candidate, filament 5. The top panel shows a Spitzer-
GLIMPSE 8 pum image of filament 5, and the red trace indicates the curve (coincident with the extinction feature) along which a p—v slice was extracted. The bottom
panel shows the p—v slice, with the red boxed region indicating the emission corresponding to filament 5.
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Figure 2. Position-velocity summary of bone candidates and spiral arm models. Blue background shows 12CO emission from Dame et al. (2001), integrated between
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Figure 8. The final fate of the mass within clump Alpha shown at 1 #4y,.
The green dots show the positions of gas which will eventually be accreted
by the massive sink (red dot). Black dots show the position of sinks and blue
dots show the location of material in cores. The gas which will be accreted
by the massive sinks is well distributed throughout the clumps, and generally
cores within this region will not be disrupted by the massive sink.
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PROBLEM 1

On what scale(s) does filamentary structure
matter, and when, in the end-gome of star-
formation?

PHD 1

For synthetic observations best “matching”
molecular line & dust data, determine from
whence and when bulk of mass gets to
forming cores & stars.

Particular focus on timing.

with: Klessen, Glover+; Smith, Fuller+; Caselli,
Pineda+; Alves, Lombardi, Hacar, Tafalla+
related fo work of Sthyear Harvard grad student H. Chen



“Connections”: What if filaments continue across “core” boundaries?

blue =VLA ammonia (high-density gas); green=6BT ammonia (lower-res high-density gas); red=Herschel 250 micron continuum (dust)

Goodman, Chen, Offner & Pineda 2016 in prep.
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Mock Observations + Statistics are the Way Forward.
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Observed space is not real space
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QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS
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ABSTRACT

The physical properties of molecular clouds are often measured using spectral-line observations, which provide the
only probes of the clouds’ velocity structure. It is hard, though, to assess whether and to what extent intensity features
in position—position—velocity (PPV) space correspond to “real” density structures in position—position—position
(PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds,
and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm,
we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified
in PPP space into corresponding intensity structures in PPV space and then measures the geometric overlap of
the projected structures with structures identified from the synthetic observation. The fractional overlap between
a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-
dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure
how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated
star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and
gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which
offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that
superposition induces a ~40% uncertainty in masses, sizes, and velocity dispersions derived from *CO (J = 1-0).
As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material
is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived
from PPV and PPP information typically disagree by a factor of ~2. This uncertainty makes it particularly difficult
to judge whether gravitational or kinetic energy dominate a given region, since the majority of virial parameter
measurements fall within a factor of two of the equipartition level @ ~ 2.

Key words: ISM: clouds — radiative transfer — techniques: image processing — techniques: spectroscopic
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Figure 1. Schematic representation of superposition and velocity-induced
structures. Colors indicate velocity. Left: three PPP structures (top) merge into
2 PPV structures (bottom), due to the similar velocity of the front and back
structures. Right: a single density structure with internal velocity gradients

(top) splits into two PPV structures (bottom).
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A UNIFORM CATALOG OF MOLECULAR CLOUDS IN THE MILKY WAY
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ABSTRACT

The all-Galaxy CO survey of Dame et al. is by far the most uniform, large-scale Galactic CO survey. Using a
dendrogram-based decomposition of this survey, we present a catalog of 1064 massive molecular clouds
throughout the Galactic plane. This catalog contains 2.5 x 10® solar masses, or 2571%7% of the Milky Way’s
estimated H, mass. We track clouds in some spiral arms through multiple quadrants. The power index of Larson’s
first law, the size-linewidth relation, is consistent with 0.5 in all regions—possibly due to an observational bias—
but clouds in the inner Galaxy systematically have significantly (~30%) higher linewidths at a given size,
indicating that their linewidths are set in part by the Galactic environment. The mass functions of clouds in the
inner Galaxy versus the outer Galaxy are both qualitatively and quantitatively distinct. The inner Galaxy mass
spectrum is best described by a truncated power law with a power index of v = —1.6 & 0.1 and an upper
truncation mass of My = (1.0 & 0.2) x 10’ M, while the outer Galaxy mass spectrum is better described by a
non-truncating power law with vy = —2.2 + 0.1 and an upper mass of My = (1.5 & 0.5) x 10° M, indicating
that the inner Galaxy is able to form and host substantially more massive GMCs than the outer Galaxy.
Additionally, we have simulated how the Milky Way would appear in CO from extragalactic perspectives, for
comparison with CO maps of other galaxies.
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Figure 2. Example dendrogram extraction of Orion B: a nearby, well-studied giant molecular cloud. Top left: (/, b) thumbnail of the cloud and its neighboring region
as seen on the sky. Bottom left: (/, v) thumbnail of the same region. Right: dendrogram cutout, with Orion B's structures highlighted in blue. The pixels

to the highlighted dendrogram structures are outlined in the blue contour (in projection); a representative ellipse s drawn in red, with semimajor axis length equal to
the second moment along cach relevant dimension (as calculated in Section 2.2). Data come from DHT Survey #27 (the Orion complex).
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carl heiles
To: Alyssa Goodman

May 15, 2016 at 9:22 AM
Inbox - goodman.alyssa [
Cc: Green, Gregory, Catherine Zucker, Doug Finkbeiner, carl heiles, hide
Blakesley Burkhart
Re: history

alyssa, you must be dreaming. Healpix in 19817 even fits (i dunno about fits...). i don't recall how i made (i assume it
was me, not dave) that contour plot, but back in those days the only way i can imagiine was to use a Calcomp plotter.
That's a pen-and-ink plotter that used paper 2 or 3 feet wide on a roll so the length could be arbitrarily long.

like, the students in my just-given radio astronomy lab class make 21-cm line images of large peices of the sky from
their own data with our lab 3.5 m dish and change contrast, etc at will, on our modern-day monitors. one of them dug up
some of my old papers with such images that i made in yesteryear. i tell the students what i had to go through to make
such images--they were made with a computer controlled laser scanning back and forth on a 3 x 4 inch (i think) glass
photographic plate and | would do a set of four on each plate to get four 35 mm slides. i'd do the ones in each set with
different laser intensities and stretches, and hope that i'd successfully develop the plates and one would be suitable.
and, also, that i'd be succdessful in using a glass cutter to get the four slids from the larger plate without braking
anything. and then there were the color images, with color representing velocity, made with ed jenkins. for that we used
a modified computer-controlled laseer scanner, originally made for use in magazine publishing, that worked on 12x18
negative plastic, and direct-contact it to make images on photogaphic paper.

anyway, i have no idea where the original files might be--and even if i did, you'd have a tough time finding a Calcomp

plotter to go with them!
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