The Physical Properties of Large-Scale Galactic Filaments

Catherine Zucker, Alyssa Goodman, Cara Battersby
Harvard-Smithsonian Center for Astrophysics

catherine.zucker@cfa.harvard.edu

Milky Way Bones: Ultra-dense, high aspect ratio Nessie analogs that may form the "Skeleton" of the Milky Way. Analogs must satisfy quantitative Bone criteria (Zucker+2015)

Nessie Analog from Zucker+2015

(4)

And it may have friends!
Large-Scale Herschel Filaments: Dense, cold filaments (aspect ratios >>10) chosen through visual inspection of Hi -GAL images. Confirmed velocity contiguous through ${ }^{13} \mathrm{CO}$ GRS data (Wang+2015)

Giant Molecular Filaments: 70+pc lower density filaments traced mainly by ${ }^{13} \mathrm{CO}$, with typical aspect ratios between 5:1-10:1 (Ragan+2014, AbreuVicente+2016)

MST Bones: Filaments created by connecting dense BGPS $\mathrm{N}_{2} \mathrm{H}+/ \mathrm{HCO}+$ sources in p - p-v space using Minimum Spanning Tree algorithm. Must also satisfy additional Bone criteria based on Zucker+2015 criteria (Wang+2016)

But they have different properties and utility in tracing spiral structure

(8)

Size Scale Comparison of Large-Scale Filament Catalogs: Herschel column density map with filament outlines overlaid

Filament Venn

Diagram: Only 18% of large-scale filaments share any overlap with other largescale filament catalogs
(10)

Systematic offsets in column density (top left), temperature (top right), scale height (bottom left) and position angle (bottom right) among different classes

