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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

Self-gravitating
leaves

CLUMPFIND segmentation

vz

x (RA) 

y 
(d

ec
.) 

vz

x (RA) 

y 
(d

ec
.) 

c

d

8

6

4

2

0

8

6

4

2

0

T m
b 

(K
)

T m
b 

(K
)

Self-gravitating
structures

All structure

a b

Click to rotate

Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).

In
te

ns
ity

 le
ve

l

Local max

Local max

Local max

Merge

Merge

Le
af

Le
af

Le
af

B
ra

nc
h

Tr
un

k

Test level

Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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Galileo’s New Order,  A WorldWide Telescope Tour by Goodman, Wong & Udomprasert 2010 
Microsoft Research WWT Software (~now “OpenWWT”): Wong (inventor), Fay (architect), et al.
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BIG DATA and ”Human-Aided Computing” 

example here from: Beaumont, Goodman, Kendrew, Williams & Simpson 2014; based on Milky Way Project catalog (Simpson et al. 2013), which came from Spitzer/
GLIMPSE (Churchwell et al. 2009, Benjamin et al. 2003), cf. Shenoy & Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools
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BIG DATA and ”Human-Aided Computing” 

example here from: Kaynig...Lichtman...Pfister et al. 2013, “Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy
Images”; cf. Shenoy & Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools

25 GB volumetric cube



BIG DATA and ”Human-Aided Computing” 
mark neurons

machine-
learning 
algorithm 
(RF+CRF)

example here from: Kaynig...Lichtman...Pfister et al. 2013, “Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy
Images”; cf. Shenoy & Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools (Note: RF=Random Forest; CRF=Conditional Random Fields.)
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video by Tom Robitaille, lead glue developer 
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“The Early Phases of Star Foration” 



Andi Burkert asked a question:  
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No one knew. 
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.

LETTERS NATURE | Vol 457 | 1 January 2009

64
 Macmillan Publishers Limited. All rights reserved©2009



data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

Self-gravitating
leaves

CLUMPFIND segmentation

vz

x (RA) 

y 
(d

ec
.) 

vz

x (RA) 

y 
(d

ec
.) 

c

d

8

6

4

2

0

8

6

4

2

0

T m
b 

(K
)

T m
b 

(K
)

Self-gravitating
structures

All structure

a b

Click to rotate

Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

Self-gravitating
leaves

CLUMPFIND segmentation

vz

x (RA) 

y 
(d

ec
.) 

vz

x (RA) 

y 
(d

ec
.) 

c

d

8

6

4

2

0

8

6

4

2

0

T m
b 

(K
)

T m
b 

(K
)

Self-gravitating
structures

All structure

a b

Click to rotate

Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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cf. colorbrewer2.org 



John Tukey’s warning:  
“details of control can  
make or break such a system”
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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 Communication: Literature as a filter for (BIG) Data
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WorldWide	Telescope:	ADS	All-Sky	Survey adsass.org



WorldWide	Telescope: flickr.com/groups/astrometry/	ADSASS/oldAstronomy
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“Galactic Plane”

“Galactic Plane”

the Milky Way



“Is Nessie Parallel to the Galactic Plane?”

Yes but why not at Zero of Latitude (b=0)?



Where are we, really?
“IAU Milky Way”, est. 1959

True Milky Way, modern

Sun is  
~75 light years 

“above” the  
IAU Milky Way  

Plane

Galactic  
Center is  

~20 light years 
offset from the  

IAU Milky Way  
Center 

+ =
The Galactic Plane is not quite 

where you’d think it is  
when you look at the sky

[Blaauw et al. 1959]
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A full 3D skeleton?

(flipped) image of IC342 from Jarrett et al. 2012;   WISE Enhanced Resolution Galaxy Atlas simulations courtesy Clare Dobbs
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Smith et al. 2014, using AREPO
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