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Figure 10. Riegel-Crutcher cloud (Section 6) in H1absorption (left) and RHT backprojection (right). Overlaid pseudovectors represent polarization angle measurements
from the Heiles (2000) compilation. In the left panel, the intensity scale is linear from —20 K (white) to —120 K (black).

(A color version of this figure is available in the online journal.)
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Molecular Gas Dame et al. 2001
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Molecular Gas “Clouds” Rice et al. 2016
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ABSTRACT 06°204°202°
The all-Galaxy CO survey of Dame et al. is by far the most uniform, large-scale Galactic CO survey. Using a deg
dendrogram-based decomposition of this survey, we present a catalog of 1064 massive molecular clouds SRS SRR AR
throughout the Galactic plane. This catalog contains 2.5 x 10° solar masses, or 2571%7% of the Milky Way’s
estimated H, mass. We track clouds in some spiral arms through multiple quadrants. The power index of Larson’s
first law, the size-linewidth relation, is consistent with 0.5 in all regions—possibly due to an observational bias—
but clouds in the inner Galaxy systematically have significantly (~30%) higher linewidths at a given size,
indicating that their linewidths are set in part by the Galactic environment. The mass functions of clouds in the
inner Galaxy versus the outer Galaxy are both qualitatively and quantitatively distinct. The inner Galaxy mass
spectrum is best described by a truncated power law with a power index of vy = —1.6 £ 0.1 and an upper
truncation mass of My = (1.0 + 0.2) x 10’ M, while the outer Galaxy mass spectrum is better described by a
non-truncating power law with ¥ = —2.2 4 0.1 and an upper mass of My = (1.5 + 0.5) x 10° M, indicating
that the inner Galaxy is able to form and host substantially more massive GMCs than the outer Galaxy.
Additionally, we have simulated how the Milky Way would appear in CO from extragalactic perspectives, for 210°208°206°204°202°
comparison with CO maps of other galaxies. I (deg)

Intensity (K)

=
(=}

Key words: Galaxy: general — ISM: clouds — ISM: molecules Figure 2. Example dendrogram extraction of Orion B: a nearby, well-studied giant molecular cloud. Top left: (/, b) thumbnail of the cloud and its neighboring region

. as seen on the sky. Bottom left: (/, v) thumbnail of the same region. Right: dendrogram cutout, with Orion B’s structures highlighted in blue. The pixels corresponding

Supporting material: machine-readable table to the highlighted dendrogram structures are outlined in the blue contour (in projection); a representative ellipse is drawn in red, with semimajor axis length equal to
the second moment along each relevant dimension (as calculated in Section 2.2). Data come from DHT Survey #27 (the Orion complex).
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What are the /constructive forces?

Any structure’s longevity is affected by which influences govern it.

How (long) do structures live?



ONLY SIMULATIONS ALLOW US 10
UILD, DESTROY & TIME TRAVEL

+"observed” simulations are best


https://en.wikipedia.org/wiki/Pons_Neronianus

ARE SUME PLACES SPECIAL?




The mid-plane of a spiral galaxy is a special place



“Is Nessie Parallel to the Galactic Plane?” . surkers, 2012




Where are we, really?

“IAU Milky Way”, est. 1959

True Milky Way, modern

The equatorial plane of the new co-ordinate system must of necessity pass through
the sun. It is a fortunate circumstance that, within the observational uncertainty, both
the sun and Sagittarius A lie in the mean plane of the Galaxy as determined from the
hydrogen observations. If the sun had not been so placed, points in the mean plane would

not lie on the galactic equator. 7 [Blaauw et al. [959]
Sun is Galactic
~25 pc _ Centeris The Galactic Plane is not quite
“above” the =+ 7 pc offset from the = where you’d think it is
IAU Milky Way L Bl Bty when you look at the sky

Plane Center



In the plane! And at distance of spiral arm!

-43.3 -40.0 -36.7

[Z,=25.0 pc, Ry=8.5 kpc, ©,=220 km/s]

‘no tilt of plane
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..eerily precisely...

Goodman et al. 2014



2014 Simulation

Position [kpc]
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Smith et al. 2014, using AREPO Column Density [cm™2]



2014 Simulation

Position [kpc]

10*! 10% 1028
Column Density [em™]

Smith et al. 2014, using AREPO
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2.3. Establishing “Bone” Criteria

After narrowing down our list to 10 filaments with kinematic
structure consistent with existing spiral arm models, we
develop a set of criteria for an object to be called a “bone”:

Galactic Latitude

-00.20°

1. Largely continuous mid-infrared extinction feature

2. Parallel to the Galactic plane, to within 30°

3. Within 20 pc of the physical Galactic mid-plane, assum- -00.40° EERSEELEE
ing a flat galaxy By

4. Within 10km s~ ' of the global-log spiral fit to any Milky

Wav arm
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But what creates the Bones we observe? brand new
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polarimetry comparison from Hull et al. 2016, more...
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COHERENCE IN DENSE CORES. II. THE TRANSITION TO COHERENCE
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ABSTRACT

After studying how line width depends on spatial scale in low-mass star-forming regions, we propose
that “dense cores” (Myers & Benson 1983) represent an inner scale of a self-similar process that charac-
terizes larger scale molecular clouds.

"Coherent
Core"

F1G. 10.—An illustration of the transition to coherence. Color and shading schematically represent velocity and density in this figure. On large scales,
material (labeled chaff) is distributed in a self-similar fashion, and its filling factor is low. On scales smaller than some fiducial radius, the filling factor of gas
increases substantially, and a coherent dense core, which is not self-similar, is formed. Due to limitations in the authors’ drawing ability, the figure emphasizes
a particular size scale in the chaff, which should actually exhibit self-similar structure on all scales ranging from the size of an entire molecular cloud complex

down to a coherent core.
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WRAT I HLAMENTS CONTINUE ACROSS CURE™ BUUNDARIES?

blue =VLA ammonia (high-density gas); green=GBT ammonia (lower-res high-density gas); red=Herschel 250 micron continuum (dust)

Goodman, Chen, Offner & Pineda 2016 in prep.
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Simulators are almost observing enough lines...
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SUME PLACES ARE SPECIAL

i

|II

What are “special” places in ISM & how long do they last?

—galactic plane, Bones
—filaments’ influence may last into cores—how long, and when, simulators?

How do “influences” change what is special?
—magnefic fields, feedback, “collisions,” but when, how & where, simulators?




Sneak Preview of ALMA+AREPQ B-field insights...

Hull, Mocz, Burkhart, Goodman, Girart, Cortes, Hernquist, Lai, Li, Springel 2016, Nature, under review.
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Principles of high-dimensional data visualization in astronomy
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~

Astronomical researchers often think of analysis and visualization as separate tasks. In the case of high-dimensional data"S
sets, though, interactive exploratory data visualization can give far more insight than an approach where data processing
and statistical analysis are followed, rather than accompanied, by visualization. This paper attempts to charts a course
toward “linked view” systems, where multiple views of high-dimensional data sets update live as a researcher selects,
highlights, or otherwise manipulates, one of several open views. For example, imagine a researcher looking at a 3D volume
visualization of simulated or observed data, and simultaneously viewing statistical displays of the data set’s properties
(such as an z-y plot of temperature vs. velocity, or a histogram of vorticities). Then, imagine that when the researcher
selects an interesting group of points in any one of these displays, that the same points become a highlighted subset in all
other open displays. Selections can be graphical or algorithmic, and they can be combined, and saved. For tabular (ASCII)
data, this kind of analysis has long been possible, even though it has been under-used in astronomy. The bigger issue
for astronomy and other “high-dimensional” fields, though, is that no extant system allows for full integration of images
and data cubes within a linked-view environment. The paper concludes its history and analysis of the present situation
with suggestions that look toward cooperatively-developed open-source modular software as a way to create an evolving,
flexible, high-dimensional, linked-view visualization environment useful in astrophysical research.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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INKED VIEWS OF RIGH-DIMENSIONAL DATA
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HIGH-UIMENSIONAL DATA

ATMOSPHERIC AND OCEANIC TEMPERATURE CHANGE

w.. 3 % ~ 8 8§,
§ o si—


http://www.pnas.org/content/99/1/455/F1.expansion.html
https://www-pls.llnl.gov/?url=science_and_technology-earth_sciences-ocean_temperatures
http://visiblecement.nist.gov/

DATA-DIMENSIONS-DISPLAY

1D: Columns = “Spectra”, “SEDs” or “Time Series” (x-y Graphs)
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4D: Time Series of Volumes = “3D Movies”
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bLUE

video by Tom Robitaille, lead glue developer
glue created by: C. Beaumont, M. Borkin, P. Qian,T. Robitaille, and A. Goodman, PI
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paws_correct - PRIMARY

Subsets
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Image Widget

Plot Layers
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Image Widget

Plot Options
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video by Chris Beaumont, glue developer
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dollars logo - Google Search

Installing Glue

Getting started

User Interface Guide

3D viewers in Glue

Using the IPython terminal in Glue
Working with Data objects

Starting Glue from Python
Configuring Glue via a startup file
Customizing your Glue environment

Programmatically configuring plots

B Building Custom Data Viewers
The Goal: Basketball Shot Charts

Shot Chart Version 1: Heatmap and
plot

Shot Chart Version 2: Court markings
Shot Chart Version 3: Widgets

Shot Chart Version 4: Selection
Viewer Subclasses

Valid Function Arguments

Ul Elements

Other Guidelines

Watching data far chanees

& Read the Docs

Building Custom Data Viewers — Glue 0.9.0 documentation balzer82.g aF

Docs » Building Custom Data Viewers O Edivormsmrom

Building Custom Data Viewers
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Glue's standard data viewers (scatter plots, images, histograms) are useful in a wide variety of data
exploration settings. However, they represent a tiny fraction of the ways to view a particular dataset.
For this reason, Glue provides a simple mechanism for creating custom visualizations using
matplotlib.

Creatinga custom data viewer requires writing a little bit of Matplotlib code but involves little to no

GUI programming. The next several sections illustrate how to build a custom data viewer by
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“cuts” along arbitrary paths
flood-ill selection (2D, 3D)
export fo d3po, plotly

custom viewers (e.g. GIS, WorldWide Telescope, Super Mario)

plot manipulation/customization (via Matplotlib)

flexible import/export

saved sessions (.glu)

Anaconda Navigator install /upgrade

Yes, please do go start adding code now, at github.com/glue-viz.


https://github.com/glue-viz
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The "Paper" of the Future

Alyssa Goodman, Josh Peek, Alberto Accomazzi, Chris Beaumont, Christine L. Borgman,
How-Huan Hope Chen, Merce Crosas, Christopher Erdmann, August Muench, Alberto Pepe,
™ » \ Al . n

Curtis Wong +Addauthor XS Re-arrange authors

5-minute video demonsration of this paper is available at ! Youlube link.

1 Preamble

A variety of research on human cognition demonstrates that humans learn and communicate best
when more than one processing system (e.g. visual, auditory, touch) is used. And, related
research also shows that, no matter how technical the material, most humans also retain and
process information best when they can put a narrative “story* to it. So, when considering the
future of scholarly communication, we should be careful not 10 do blithely away with the linear

narrative format that articles and books have followed for centuries: instead, we should enrich it

Much more than text is used to commuicate in Science. Figures, which include images
diagrams, graphs, charts, and more, have enriched scholarly articles since the time of Galileo,
and ever-growing volumes of data underpin most scientific papers. When scientists communicate
face-to-face, as in talks or small discussions, these figures are often the focus of the
conversation. In the best discussions, scientists have the ability to manipulate the figures, and to
access underlying data, in real-time, so as to test out various what-if scenarios, and to explain
findings more clearly. This short article explains—and shows with demonstrations—how
scholarly "papers" can morph into long-lasting rich records of scientific discourse
enriched with deep data and code linkages, interactive figures, audio, video, and commenting

Cognition
Paper of

Astrometry.net

FEEDBACK HELP ALYSSA CGOODMAN ~

Konrad Hinsen

Many good suggestions, but if the goal is “long-lasting rich
records of scientific discourse®, a more careful and critical
attitude towards electronic artifacts is appropriate. | do see
it concerning videos, but not a word on the much more
critical situation in software. Archiving source code is not
sufficient: all the dependencies, plus the complete build
environment, would have to be conserved as well to make
things work a few years from now. An "executable figure® in
the form of an IPython notebook wil...

Merce Crosas

Konrad, good points; this has been a concern for the
community working on reproducibility. Regarding data
repositories, Dataverse handles long-term preservation and
access of data files in the following way: 1) for some data
files that the repository recognizes (such as R Data, SPSS,
STATA), which depend on a statistical package, the system
converts them into a preservation format (such as a
tab/CSV format). Even though the original format is also
saved and can be accessed, the new preservation format
gua...

Konrad Hinsen

That sounds good. | hope more repositories will follow the
example of Dataverse. Figshare in particular has a very
different attitude, encouraging researchers to deposit as
much as possible. That's perhaps a good strategy to
change habits, but in the long run it could well backlire
when people find out in a few years that 909% of those
deposts have become useless

Christine L. Borgman
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Principles of high-dimensional data visualization in astronomy
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Astronomical researchers often think of analysis and visualization as separate tasks. In the case of high-dimensional data

sets, though, interactive exploratory data visualization can give far more insi J‘# ‘];‘b do
1Dcode

and statistical analysis are followed, rather than accompanied, by visualiza
toward “linked view” systems, where multiple views of high-dimensional ¢
highlights, or otherwise manipulates, one of several open views. For example,
visualization of simulated or observed data, and simultaneously viewing st:
(such as an z-y plot of temperature vs. velocity, or a histogram of vorticitis
selects an interesting group of points in any one of these displays, that the sa
other open displays. Selections can be graphical or algorithmic, and they can
data, this kind of analysis has long been possible, even though it has been
for astronomy and other “high-dimensional” fields, though, is that no extant
and data cubes within a linked-view environment. The paper concludes its

with suggestions that look toward cooperatively-developed open-source mod
flexible, high-dimensional, linked-view visualization environment useful in a
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to *CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Ty, (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x—y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position—position—velocity (p—p-v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (aand b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from

front (—0.5kms™!) to back (8 kms ™).

PRI R I SR R

data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set® can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees”
were proposed as a way to characterize clouds’ hierarchical structure
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using 2D maps of column density. Withtb  -~'v 2D work as inspira-

tion, we have developed a structure-id =~ ww, , ~+hm that
abstracts the hierarchical structure of a Y A0% e,
an easily visualized representation callec Oy

well developed in other data-intensive
application of tree methodologies so fa
and almost exclusively within the a1
‘merger trees’ are being used with in
Figure 3 and its legend explain t}
schematically. The dendrogram que O
ima of emission merge with each . t
explained in Supplementary Metk "% 4 a
determined almost entirely by tt '

sensitivity to algorithm parametc e E i owy

possible on paper and 2D screen
data (see Fig. 3 and its legend
cross, which eliminates dimens
preserving all information
Numbered ‘billiard ball’ labe
features between a 2D map !
online) and a sorted dendrc

A dendrogram of a spectr .:." ~y
of key physical properties "
surfaces, such as radius (K)y ve.
(L). The volumes can have any shape,

(Fig. 2a). The luminosity is an approximate proxy for mass, Stew.

that My, = Xi3coLlizco, where Xj5c0 = 8.0 X 10*°cm?K 'km ™ 's
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, top; = 56,°R/ GMjypm.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where oyps < 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p—p—v space where self-
gravity is significant. As o, only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields', its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

Local max =
Test level | |
: T !
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: B
@ Merge k1
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2 2
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£ e s
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==Trunk =4

Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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A role for self-gravity at multiple length scales in the

process of star formation

Alyssa A. Goodman®?, Erik W. Rosolowsky*>, Michelle A. Borkin'f, Jonathan B. Foster?, Michael Halle'?,

Jens Kauffmann'? & Jaime E. Pineda”

Self-gravity plays a decisive role in the final stages of star forma-
tion, where dense cores (size ~0.1 parsecs) inside molecular clouds
collapse to form star-plus-disk systems'. But self-gravity’s role at
earlier times (and on larger length scales, such as ~1 parsec) is
unclear; some molecular cloud simulations that do not include
self-gravity suggest that ‘turbulent fragmentation’ alone is suf-
ficient to create a mass distribution of dense cores that resembles,
and sets, the stellar initial mass function®. Here we report a ‘den-
drogram’ (hierarchical tree-diagram) analysis that reveals that
self-gravity plays a significant role over the full range of possible
scales traced by '>CO observations in the L1448 molecular cloud,
but not everywhere in the observed region. In particular, more
than 90 per cent of the compact ‘pre-stellar cores’ traced by peaks
of dust emission’ are projected on the sky within one of the den-
drogram’s self-gravitating ‘leaves’. As these peaks mark the loca-
tions of already-forming stars, or of those probably about to form,

< a . a N . < - K " a

overlapping features as an option, significant emission found between
prominent clumps is typically either appended to the nearest clump or
turned into a small, usually ‘pathological’, feature needed to encom-
pass all the emission being modelled. When applied to molecular-line
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Bottom panel: Red=column density from Herschel, green=70 micron data from Herschel, and blue= 8 micron data
image courtesy of Cara Battershy
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COHERENCE IN DENSE CORES. II. THE TRANSITION TO COHERENCE
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ABSTRACT

After studying how line width depends on spatial scale in low-mass star-forming regions, we propose
that “dense cores” (Myers & Benson 1983) represent an inner scale of a self-similar process that charac-
terizes larger scale molecular clouds.

"Coherent
Core"

F1G. 10.—An illustration of the transition to coherence. Color and shading schematically represent velocity and density in this figure. On large scales,
material (labeled chaff) is distributed in a self-similar fashion, and its filling factor is low. On scales smaller than some fiducial radius, the filling factor of gas
increases substantially, and a coherent dense core, which is not self-similar, is formed. Due to limitations in the authors’ drawing ability, the figure emphasizes
a particular size scale in the chaff, which should actually exhibit self-similar structure on all scales ranging from the size of an entire molecular cloud complex

down to a coherent core.
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