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Fundamental?in a few minutes... 

“B5” “Nessie”

>100 pc~0.01 to 10 pc

But first...
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2016 AD



2000 years ago…
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Circus of Hadrian, c. 125 AD

Mausoleum of Augustus, 28 BC 

Ponte Vittorio Emanuele II, 1886 Colosseum, 90 AD 

Ponte Sant’Angelo, 134 (Hadrian) 

Pons Neronianus, c. 50 AD, 
 under Ponte Sant’Angelo 

Pons Fabricus, 62 BC  
(oldest in Rome)

Capitoline Hill 
Citadel→Piazza Venezia 

500 BC →1540 AD

All Stone&
All in rome&
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Extant

Pons Neronianus, c. 50 AD, 
 under Ponte Sant’Angelo 

Capitoline Hill 
Citadel→Piazza Venezia 

500 BC →1540 AD

Colosseum, 90 AD 

New

Ponte Vittorio Emanuele II, 1886

but not of time˝
...or of Type

Disappearing

Erased

A sequence...

Circus of Hadrian, c. 125 AD

Replaced



Replaced Extant NewDisappearingErased

Rome 
is a mixture of

the Star-forming ISM
and so is  

*Recycled?

*

100 pc



Any structure’s longevity is affected by which influences govern it.

What are the destructive/constructive forces? 

How (long) do structures live? 



2016c. 80 AD

Only Simulations allow us to  
Build, destroy & time travel

+“observed” simulations are best 

https://en.wikipedia.org/wiki/Pons_Neronianus


Capitoline Hill 
Citadel→Piazza Venezia 

500 BC →1540 AD

Are some places special?

What are “special” places in ISM & how long do they last? 
How do “influences” change what is special?



The mid-plane of a spiral galaxy is a special place.



“Is Nessie Parallel to the Galactic Plane?”

Yes but why not at Zero of Latitude (b=0)?

-A. Burkert, 2012



Where are we, really?
“IAU Milky Way”, est. 1959

True Milky Way, modern

Sun is  
~25 pc 

“above” the  
IAU Milky Way  

Plane

Galactic  
Center is  

~7 pc offset from the  
IAU Milky Way  

Center 

+ =
The Galactic Plane is not quite 

where you’d think it is  
when you look at the sky

[Blaauw et al. 1959]
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In the plane!  And at distance of spiral arm!

Goodman et al. 2014
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with tilt...eerily precisely...

Goodman et al. 2014



Smith et al. 2014, using AREPO (hydro+chemisry, imposed spiral potential, no B-fields, no local (self-)gravity, no feedback)

100 pc

 
2014 Simulation



+20 pc

-20 pc

100 pc

Smith et al. 2014, using AREPO (hydro+chemistry, imposed potential, no B-fields, no local (self-)gravity, no feedback)

 
2014 Simulation



Wang+2015

Wang+2016

The	Physical	Properties	of	Large-Scale	

Galactic	Filaments

Nessie	is	a	“Bone”	of	the	Milky	Way

And	it	may	have	friends!

But	they	have	different	properties	and	utility	in	tracing	spiral	structure		

Catherine	Zucker,	Alyssa	Goodman,	Cara	Battersby

Harvard-Smithsonian	Center	for	Astrophysics

The	infrared	dark	cloud	

“Nessie”	seen	in	

extinction.	Its	length	

(160+	pc)	and	aspect	

ratio	(>300:1)	suggests	its	

formation	is	due	to	the	

global	spiral	potential	of	

the	Galaxy.		

Nessie’s	velocity	

gradient	exactly	
matches	the	global-

log	spiral	fit	to	the	

Scutum	Centaurus	

Arm	in	p-v	space
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3
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with tilt
Nessie	lies	within	

3	pc	of	the	

physical	Galactic	

midplane

(dashed	colored	

line),	at	d=3.1	kpc

Milky	Way	Bones:	Ultra-dense,	high	aspect	ratio	Nessie	
analogs	that	may	form	the	“Skeleton”	of	the	Milky	Way.	

Analogs	must	satisfy	quantitative	Bone	criteria	(Zucker+2015)

1

9

Filament	Venn	

Diagram:	Only	18%	of	
large-scale	filaments	share	

any	overlap	with	other	large-

scale	filament	catalogs

8
Size	Scale	Comparison	of	
Large-Scale	Filament	Catalogs:

Herschel	column	density	map	with	

filament	outlines	overlaid

10

Systematic	

offsets	in	column	

density	(top	left),	

temperature	(top	

right), scale	height	

(bottom	left)	and	

position	angle	

(bottom	right)	

among	different	

classes

5

Giant	Molecular	
Filaments:	70+	pc	
lower	density	filaments	

traced	mainly	by	13CO,	

with	typical	aspect	ratios	

between	5:1-10:1	

(Ragan+2014,	Abreu-

Vicente+2016)

6Large-Scale	Herschel	
Filaments:	Dense,	cold	
filaments	(aspect	ratios	>>10)	

chosen	through	visual	inspection	

of	Hi-GAL	images.		Confirmed	

velocity	contiguous	through	13CO	

GRS	data	(Wang+2015)

MST	Bones:	Filaments	created	by	

connecting	dense	BGPS	N2H+/HCO+	

sources	in	p-p-v	space	using	Minimum	

Spanning	Tree	algorithm.	Must	also	

satisfy	additional	Bone	criteria	based	on	

Zucker+2015	criteria	(Wang+2016)

7

catherine.zucker@cfa.harvard.edu

Zucker+2015

Ragan+2014

Goodman+2014

Goodman+2014

Nessie	Analog	from	Zucker+2015

visually, 10 of these candidates are within ≈10 km s−1 of the
Scutum–Centaurus and Norma Arms. We show these 10
candidates on a p–v diagram in Figure 2. In addition to showing
our bone candidates, we show several different predictions of
the positions of the Scutum–Centaurus and Norma Arms
toward the inner Galaxy in p–v space, from Dame & Thaddeus
(2011), Sanna et al. (2014), Shane (1972), and Vallée (2008).
The Shane (1972) fit should be taken with reservation at low
longitudes, as the HI observations terminated at l 22 ;= the fit
has been extrapolated to l 0= by Sato et al. (2014), under the
assumption that it must pass through the origin in the absence
of non-circular motion. We also include Scutum–Centaurus
and Norma 4 kpc fits from M. Reid & T. Dame (2015, in
preparation), derived from trigonometric parallax measure-
ments of high-mass star-forming regions taken as part of the
BeSSeL survey (Reid et al. 2014). M. Reid & T. Dame (2015,
in preparation) produce fits with (l b v, , ) loci that follow giant
molecular clouds that trace the arms, producing a rough log-
spiral approximation determined by trigonometric parallax
rather than an assumed Galactic rotation curve.

We emphasize that there is a significant amount of
discrepancy between the various log-spiral models, particularly
between the Sanna et al. (2014) or M. Reid & T. Dame (2015, in
preparation) fit to the Norma Arm and the Vallée (2008) fit to the
same arm. Compared to the former models, the Vallée (2008) fit
is inconsistent with CO observations and does not account for
expanding motion fixed at l 0 29.3 km s ,1= = - - obtained
from CO absorption spectra toward the Galactic center (Sanna
et al. 2014). In general, we also caution that the log-spiral fits
should be used as rough guides to delineate major spiral features

and that there is little evidence that the Milky Way actually
follows such a clean mathematical model. Scientists have
difficulty fitting log spirals to nearby face-on spiral galaxies
such as M31, a fact that underlines the monumental challenge of
inferring a similar model for the Milky Way while embedded in
the Galactic disk (see Carraro 2015). As a result, the unreliability
of the various log-spiral models was taken into account when
establishing the bone criteria, outlined in Section 2.3 below; in
particular, we note the leniency of criterion 4, which permits the
filaments to lie as much as 10 km s−1 from the global fit to any
Milky Way arm and still qualify as a bone.

2.3. Establishing “Bone” Criteria

After narrowing down our list to 10 filaments with kinematic
structure consistent with existing spiral arm models, we
develop a set of criteria for an object to be called a “bone”:

1. Largely continuous mid-infrared extinction feature
2. Parallel to the Galactic plane, to within 30°
3. Within 20 pc of the physical Galactic mid-plane, assum-

ing a flat galaxy
4. Within 10 km s−1 of the global-log spiral fit to any Milky

Way arm
5. No abrupt shifts in velocity (of more than 3 km s−1 per

10 pc) within extinction feature
6. Projected aspect ratio �50:1.

The names and coordinates for the 10 bone-candidate
filaments, along with their average LSR velocities, the number
of bone criteria they satisfy, and a “quality rating,” are listed in

Figure 7. Top: position–position analysis of filament 5 as it compares to the larger feature, GMF20.0–17.9 (Ragan et al. 2014), of which filament 5 is a subset. In
green, we overlay the GRS CO13 integrated intensity contours that define GMF20.0–17.9, and we box the region corresponding to filament 5 in yellow. In red, we
show a path that connects the Ragan et al. (2014) IRDCs and traces filament 5. Bottom: position–velocity analysis of filament 5, as it compares to GMF20.0–17.9. We
show the results of extracting a slice (from a CO13 GRS FITS cube) along the red path in the top panel, which runs through the Ragan et al. (2014) IRDCs and our
filament 5. As seen inside the yellow boxed region in the bottom panel, the section of the path that corresponds to filament 5 is remarkably kinematically contiguous,
with velocities ranging between 45 and 49 km s−1. In contrast, Ragan et al. (2014) group the 37 km s−1 emission at x = 0 pc with the 50 km s−1 emission at
x = 115 pc and connect these two points with a straight line on a longitude–velocity diagram (green line in lower p–v panel).
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“Nessie”	seen	in	

extinction.	Its	length	

(160+	pc)	and	aspect	
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visually, 10 of these candidates are within ≈10 km s−1 of the
Scutum–Centaurus and Norma Arms. We show these 10
candidates on a p–v diagram in Figure 2. In addition to showing
our bone candidates, we show several different predictions of
the positions of the Scutum–Centaurus and Norma Arms
toward the inner Galaxy in p–v space, from Dame & Thaddeus
(2011), Sanna et al. (2014), Shane (1972), and Vallée (2008).
The Shane (1972) fit should be taken with reservation at low
longitudes, as the HI observations terminated at l 22 ;= the fit
has been extrapolated to l 0= by Sato et al. (2014), under the
assumption that it must pass through the origin in the absence
of non-circular motion. We also include Scutum–Centaurus
and Norma 4 kpc fits from M. Reid & T. Dame (2015, in
preparation), derived from trigonometric parallax measure-
ments of high-mass star-forming regions taken as part of the
BeSSeL survey (Reid et al. 2014). M. Reid & T. Dame (2015,
in preparation) produce fits with (l b v, , ) loci that follow giant
molecular clouds that trace the arms, producing a rough log-
spiral approximation determined by trigonometric parallax
rather than an assumed Galactic rotation curve.

We emphasize that there is a significant amount of
discrepancy between the various log-spiral models, particularly
between the Sanna et al. (2014) or M. Reid & T. Dame (2015, in
preparation) fit to the Norma Arm and the Vallée (2008) fit to the
same arm. Compared to the former models, the Vallée (2008) fit
is inconsistent with CO observations and does not account for
expanding motion fixed at l 0 29.3 km s ,1= = - - obtained
from CO absorption spectra toward the Galactic center (Sanna
et al. 2014). In general, we also caution that the log-spiral fits
should be used as rough guides to delineate major spiral features

and that there is little evidence that the Milky Way actually
follows such a clean mathematical model. Scientists have
difficulty fitting log spirals to nearby face-on spiral galaxies
such as M31, a fact that underlines the monumental challenge of
inferring a similar model for the Milky Way while embedded in
the Galactic disk (see Carraro 2015). As a result, the unreliability
of the various log-spiral models was taken into account when
establishing the bone criteria, outlined in Section 2.3 below; in
particular, we note the leniency of criterion 4, which permits the
filaments to lie as much as 10 km s−1 from the global fit to any
Milky Way arm and still qualify as a bone.

2.3. Establishing “Bone” Criteria

After narrowing down our list to 10 filaments with kinematic
structure consistent with existing spiral arm models, we
develop a set of criteria for an object to be called a “bone”:

1. Largely continuous mid-infrared extinction feature
2. Parallel to the Galactic plane, to within 30°
3. Within 20 pc of the physical Galactic mid-plane, assum-

ing a flat galaxy
4. Within 10 km s−1 of the global-log spiral fit to any Milky

Way arm
5. No abrupt shifts in velocity (of more than 3 km s−1 per

10 pc) within extinction feature
6. Projected aspect ratio �50:1.

The names and coordinates for the 10 bone-candidate
filaments, along with their average LSR velocities, the number
of bone criteria they satisfy, and a “quality rating,” are listed in

Figure 7. Top: position–position analysis of filament 5 as it compares to the larger feature, GMF20.0–17.9 (Ragan et al. 2014), of which filament 5 is a subset. In
green, we overlay the GRS CO13 integrated intensity contours that define GMF20.0–17.9, and we box the region corresponding to filament 5 in yellow. In red, we
show a path that connects the Ragan et al. (2014) IRDCs and traces filament 5. Bottom: position–velocity analysis of filament 5, as it compares to GMF20.0–17.9. We
show the results of extracting a slice (from a CO13 GRS FITS cube) along the red path in the top panel, which runs through the Ragan et al. (2014) IRDCs and our
filament 5. As seen inside the yellow boxed region in the bottom panel, the section of the path that corresponds to filament 5 is remarkably kinematically contiguous,
with velocities ranging between 45 and 49 km s−1. In contrast, Ragan et al. (2014) group the 37 km s−1 emission at x = 0 pc with the 50 km s−1 emission at
x = 115 pc and connect these two points with a straight line on a longitude–velocity diagram (green line in lower p–v panel).
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visually, 10 of these candidates are within ≈10 km s−1 of the
Scutum–Centaurus and Norma Arms. We show these 10
candidates on a p–v diagram in Figure 2. In addition to showing
our bone candidates, we show several different predictions of
the positions of the Scutum–Centaurus and Norma Arms
toward the inner Galaxy in p–v space, from Dame & Thaddeus
(2011), Sanna et al. (2014), Shane (1972), and Vallée (2008).
The Shane (1972) fit should be taken with reservation at low
longitudes, as the HI observations terminated at l 22 ;= the fit
has been extrapolated to l 0= by Sato et al. (2014), under the
assumption that it must pass through the origin in the absence
of non-circular motion. We also include Scutum–Centaurus
and Norma 4 kpc fits from M. Reid & T. Dame (2015, in
preparation), derived from trigonometric parallax measure-
ments of high-mass star-forming regions taken as part of the
BeSSeL survey (Reid et al. 2014). M. Reid & T. Dame (2015,
in preparation) produce fits with (l b v, , ) loci that follow giant
molecular clouds that trace the arms, producing a rough log-
spiral approximation determined by trigonometric parallax
rather than an assumed Galactic rotation curve.

We emphasize that there is a significant amount of
discrepancy between the various log-spiral models, particularly
between the Sanna et al. (2014) or M. Reid & T. Dame (2015, in
preparation) fit to the Norma Arm and the Vallée (2008) fit to the
same arm. Compared to the former models, the Vallée (2008) fit
is inconsistent with CO observations and does not account for
expanding motion fixed at l 0 29.3 km s ,1= = - - obtained
from CO absorption spectra toward the Galactic center (Sanna
et al. 2014). In general, we also caution that the log-spiral fits
should be used as rough guides to delineate major spiral features

and that there is little evidence that the Milky Way actually
follows such a clean mathematical model. Scientists have
difficulty fitting log spirals to nearby face-on spiral galaxies
such as M31, a fact that underlines the monumental challenge of
inferring a similar model for the Milky Way while embedded in
the Galactic disk (see Carraro 2015). As a result, the unreliability
of the various log-spiral models was taken into account when
establishing the bone criteria, outlined in Section 2.3 below; in
particular, we note the leniency of criterion 4, which permits the
filaments to lie as much as 10 km s−1 from the global fit to any
Milky Way arm and still qualify as a bone.

2.3. Establishing “Bone” Criteria

After narrowing down our list to 10 filaments with kinematic
structure consistent with existing spiral arm models, we
develop a set of criteria for an object to be called a “bone”:

1. Largely continuous mid-infrared extinction feature
2. Parallel to the Galactic plane, to within 30°
3. Within 20 pc of the physical Galactic mid-plane, assum-

ing a flat galaxy
4. Within 10 km s−1 of the global-log spiral fit to any Milky

Way arm
5. No abrupt shifts in velocity (of more than 3 km s−1 per

10 pc) within extinction feature
6. Projected aspect ratio �50:1.

The names and coordinates for the 10 bone-candidate
filaments, along with their average LSR velocities, the number
of bone criteria they satisfy, and a “quality rating,” are listed in

Figure 7. Top: position–position analysis of filament 5 as it compares to the larger feature, GMF20.0–17.9 (Ragan et al. 2014), of which filament 5 is a subset. In
green, we overlay the GRS CO13 integrated intensity contours that define GMF20.0–17.9, and we box the region corresponding to filament 5 in yellow. In red, we
show a path that connects the Ragan et al. (2014) IRDCs and traces filament 5. Bottom: position–velocity analysis of filament 5, as it compares to GMF20.0–17.9. We
show the results of extracting a slice (from a CO13 GRS FITS cube) along the red path in the top panel, which runs through the Ragan et al. (2014) IRDCs and our
filament 5. As seen inside the yellow boxed region in the bottom panel, the section of the path that corresponds to filament 5 is remarkably kinematically contiguous,
with velocities ranging between 45 and 49 km s−1. In contrast, Ragan et al. (2014) group the 37 km s−1 emission at x = 0 pc with the 50 km s−1 emission at
x = 115 pc and connect these two points with a straight line on a longitude–velocity diagram (green line in lower p–v panel).
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visually, 10 of these candidates are within ≈10 km s−1 of the
Scutum–Centaurus and Norma Arms. We show these 10
candidates on a p–v diagram in Figure 2. In addition to showing
our bone candidates, we show several different predictions of
the positions of the Scutum–Centaurus and Norma Arms
toward the inner Galaxy in p–v space, from Dame & Thaddeus
(2011), Sanna et al. (2014), Shane (1972), and Vallée (2008).
The Shane (1972) fit should be taken with reservation at low
longitudes, as the HI observations terminated at l 22 ;= the fit
has been extrapolated to l 0= by Sato et al. (2014), under the
assumption that it must pass through the origin in the absence
of non-circular motion. We also include Scutum–Centaurus
and Norma 4 kpc fits from M. Reid & T. Dame (2015, in
preparation), derived from trigonometric parallax measure-
ments of high-mass star-forming regions taken as part of the
BeSSeL survey (Reid et al. 2014). M. Reid & T. Dame (2015,
in preparation) produce fits with (l b v, , ) loci that follow giant
molecular clouds that trace the arms, producing a rough log-
spiral approximation determined by trigonometric parallax
rather than an assumed Galactic rotation curve.

We emphasize that there is a significant amount of
discrepancy between the various log-spiral models, particularly
between the Sanna et al. (2014) or M. Reid & T. Dame (2015, in
preparation) fit to the Norma Arm and the Vallée (2008) fit to the
same arm. Compared to the former models, the Vallée (2008) fit
is inconsistent with CO observations and does not account for
expanding motion fixed at l 0 29.3 km s ,1= = - - obtained
from CO absorption spectra toward the Galactic center (Sanna
et al. 2014). In general, we also caution that the log-spiral fits
should be used as rough guides to delineate major spiral features

and that there is little evidence that the Milky Way actually
follows such a clean mathematical model. Scientists have
difficulty fitting log spirals to nearby face-on spiral galaxies
such as M31, a fact that underlines the monumental challenge of
inferring a similar model for the Milky Way while embedded in
the Galactic disk (see Carraro 2015). As a result, the unreliability
of the various log-spiral models was taken into account when
establishing the bone criteria, outlined in Section 2.3 below; in
particular, we note the leniency of criterion 4, which permits the
filaments to lie as much as 10 km s−1 from the global fit to any
Milky Way arm and still qualify as a bone.

2.3. Establishing “Bone” Criteria

After narrowing down our list to 10 filaments with kinematic
structure consistent with existing spiral arm models, we
develop a set of criteria for an object to be called a “bone”:

1. Largely continuous mid-infrared extinction feature
2. Parallel to the Galactic plane, to within 30°
3. Within 20 pc of the physical Galactic mid-plane, assum-

ing a flat galaxy
4. Within 10 km s−1 of the global-log spiral fit to any Milky

Way arm
5. No abrupt shifts in velocity (of more than 3 km s−1 per

10 pc) within extinction feature
6. Projected aspect ratio �50:1.

The names and coordinates for the 10 bone-candidate
filaments, along with their average LSR velocities, the number
of bone criteria they satisfy, and a “quality rating,” are listed in

Figure 7. Top: position–position analysis of filament 5 as it compares to the larger feature, GMF20.0–17.9 (Ragan et al. 2014), of which filament 5 is a subset. In
green, we overlay the GRS CO13 integrated intensity contours that define GMF20.0–17.9, and we box the region corresponding to filament 5 in yellow. In red, we
show a path that connects the Ragan et al. (2014) IRDCs and traces filament 5. Bottom: position–velocity analysis of filament 5, as it compares to GMF20.0–17.9. We
show the results of extracting a slice (from a CO13 GRS FITS cube) along the red path in the top panel, which runs through the Ragan et al. (2014) IRDCs and our
filament 5. As seen inside the yellow boxed region in the bottom panel, the section of the path that corresponds to filament 5 is remarkably kinematically contiguous,
with velocities ranging between 45 and 49 km s−1. In contrast, Ragan et al. (2014) group the 37 km s−1 emission at x = 0 pc with the 50 km s−1 emission at
x = 115 pc and connect these two points with a straight line on a longitude–velocity diagram (green line in lower p–v panel).
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with	typical	aspect	ratios	

between	5:1-10:1	

(Ragan+2014,	Abreu-

Vicente+2016)

6Large-Scale	Herschel	
Filaments:	Dense,	cold	
filaments	(aspect	ratios	>>10)	

chosen	through	visual	inspection	

of	Hi-GAL	images.		Confirmed	

velocity	contiguous	through	13CO	

GRS	data	(Wang+2015)

MST	Bones:	Filaments	created	by	

connecting	dense	BGPS	N2H+/HCO+	

sources	in	p-p-v	space	using	Minimum	

Spanning	Tree	algorithm.	Must	also	

satisfy	additional	Bone	criteria	based	on	

Zucker+2015	criteria	(Wang+2016)
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catherine.zucker@cfa.harvard.edu

Zucker+2015

Ragan+2014

Goodman+2014

Goodman+2014

Nessie	Analog	from	Zucker+2015

visually, 10 of these candidates are within ≈10 km s−1 of the
Scutum–Centaurus and Norma Arms. We show these 10
candidates on a p–v diagram in Figure 2. In addition to showing
our bone candidates, we show several different predictions of
the positions of the Scutum–Centaurus and Norma Arms
toward the inner Galaxy in p–v space, from Dame & Thaddeus
(2011), Sanna et al. (2014), Shane (1972), and Vallée (2008).
The Shane (1972) fit should be taken with reservation at low
longitudes, as the HI observations terminated at l 22 ;= the fit
has been extrapolated to l 0= by Sato et al. (2014), under the
assumption that it must pass through the origin in the absence
of non-circular motion. We also include Scutum–Centaurus
and Norma 4 kpc fits from M. Reid & T. Dame (2015, in
preparation), derived from trigonometric parallax measure-
ments of high-mass star-forming regions taken as part of the
BeSSeL survey (Reid et al. 2014). M. Reid & T. Dame (2015,
in preparation) produce fits with (l b v, , ) loci that follow giant
molecular clouds that trace the arms, producing a rough log-
spiral approximation determined by trigonometric parallax
rather than an assumed Galactic rotation curve.

We emphasize that there is a significant amount of
discrepancy between the various log-spiral models, particularly
between the Sanna et al. (2014) or M. Reid & T. Dame (2015, in
preparation) fit to the Norma Arm and the Vallée (2008) fit to the
same arm. Compared to the former models, the Vallée (2008) fit
is inconsistent with CO observations and does not account for
expanding motion fixed at l 0 29.3 km s ,1= = - - obtained
from CO absorption spectra toward the Galactic center (Sanna
et al. 2014). In general, we also caution that the log-spiral fits
should be used as rough guides to delineate major spiral features

and that there is little evidence that the Milky Way actually
follows such a clean mathematical model. Scientists have
difficulty fitting log spirals to nearby face-on spiral galaxies
such as M31, a fact that underlines the monumental challenge of
inferring a similar model for the Milky Way while embedded in
the Galactic disk (see Carraro 2015). As a result, the unreliability
of the various log-spiral models was taken into account when
establishing the bone criteria, outlined in Section 2.3 below; in
particular, we note the leniency of criterion 4, which permits the
filaments to lie as much as 10 km s−1 from the global fit to any
Milky Way arm and still qualify as a bone.

2.3. Establishing “Bone” Criteria

After narrowing down our list to 10 filaments with kinematic
structure consistent with existing spiral arm models, we
develop a set of criteria for an object to be called a “bone”:

1. Largely continuous mid-infrared extinction feature
2. Parallel to the Galactic plane, to within 30°
3. Within 20 pc of the physical Galactic mid-plane, assum-

ing a flat galaxy
4. Within 10 km s−1 of the global-log spiral fit to any Milky

Way arm
5. No abrupt shifts in velocity (of more than 3 km s−1 per

10 pc) within extinction feature
6. Projected aspect ratio �50:1.

The names and coordinates for the 10 bone-candidate
filaments, along with their average LSR velocities, the number
of bone criteria they satisfy, and a “quality rating,” are listed in

Figure 7. Top: position–position analysis of filament 5 as it compares to the larger feature, GMF20.0–17.9 (Ragan et al. 2014), of which filament 5 is a subset. In
green, we overlay the GRS CO13 integrated intensity contours that define GMF20.0–17.9, and we box the region corresponding to filament 5 in yellow. In red, we
show a path that connects the Ragan et al. (2014) IRDCs and traces filament 5. Bottom: position–velocity analysis of filament 5, as it compares to GMF20.0–17.9. We
show the results of extracting a slice (from a CO13 GRS FITS cube) along the red path in the top panel, which runs through the Ragan et al. (2014) IRDCs and our
filament 5. As seen inside the yellow boxed region in the bottom panel, the section of the path that corresponds to filament 5 is remarkably kinematically contiguous,
with velocities ranging between 45 and 49 km s−1. In contrast, Ragan et al. (2014) group the 37 km s−1 emission at x = 0 pc with the 50 km s−1 emission at
x = 115 pc and connect these two points with a straight line on a longitude–velocity diagram (green line in lower p–v panel).
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“Bones” are most likely to trace structure in/of the Galaxy’s plane. 
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figure, by M. Borkin, reproduced from Goodman 2012, “Principles of High-Dimensional Data Visualization in Astronomy”

John Tukey
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).

In
te

ns
ity

 le
ve

l

Local max

Local max

Local max

Merge

Merge

Le
af

Le
af

Le
af

B
ra

nc
h

Tr
un

k

Test level

Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set8 can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees’9

were proposed as a way to characterize clouds’ hierarchical structure

using 2D maps of column density. With this early 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p–p–v) data cube into
an easily visualized representation called a ‘dendrogram’10. Although
well developed in other data-intensive fields11,12, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘merger trees’ are being used with increasing frequency13.

Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local max-
ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation
possible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branches’ to not
cross, which eliminates dimensional information on the x axis while
preserving all information about connectivity and hierarchy.
Numbered ‘billiard ball’ labels in the figures let the reader match
features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (sv) and luminosity
(L). The volumes can have any shape, and in other work14 we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Mlum 5 X13COL13CO, where X13CO 5 8.0 3 1020 cm2 K21 km21 s
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, aobs 5 5sv

2R/GMlum.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where aobs , 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p–p–v space where self-
gravity is significant. As aobs only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields16, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to 13CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Tmb (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x–y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position–position–velocity (p–p–v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (20.5 km s21) to back (8 km s21).
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.
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Bottom panel: Red=column density from Herschel, green=70 micron data from Herschel, and blue= 8 micron data 
image courtesy of Cara Battersby
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