An Interferometric Frequency Comb Generator

R. Kimberk, C.E. Tong, H. Gibson, T.R. Hunter, S. Paine, R.W. Wilson, and R. Blundell.

Harvard Smithsonian Center for Astrophysics 60, Garden Street Cambridge, MA 02138

Abstract

We have developed a scheme for generating a comb of frequencies, covering the microwave to millimeter spectral range, using a single diode laser coupled to an optical interferometer and photodetector. Frequency modulating the laser by modulating the laser bias current at a frequency of 2.15 GHz, we have observed signal output in a comb that extends beyond the 40th harmonic of the fundamental modulation. The linewidth of the electrical output is too narrow to be measured using an HP 8563E spectrum analyzer with a resolution bandwidth of 1 Hz. We have also compared the phase stability of the multiplied output with output from a classical diode frequency multiplier and believe that a phase stable output can be generated. Finally, we have developed analytical and numerical models that suggest that our scheme may be used for frequency generation through the submillimeter.