THZ FIELD GENERATION AND MANIPULATION BY COHERENT CONTROL OVER PHONON-POLARITONS

T. Feurer, Joshua C. Vaughan, Nikolay S. Stoyanov, David W. Ward, Keith A. Nelson

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Mixed polar lattice vibrational and electromagnetic modes, called phonon-polaritons, which propagate at light-like speeds through their host crystals are unique and powerful sources of THz radiation. One way to excite them is by non-resonant impulsive stimulated Raman scattering using femtosecond laser pulses. New techniques in spatiotemporal imaging and spatiotemporal and spatial-only femtosecond pulse shaping and structuring of crystal materials have been developed to enable versatile spatiotemporal coherent control over the propagating phonon-polaritons and thereby over the associated THz fields.

Here we present experimental demonstrations of coherent control over phononpolaritons and the associated THz fields by employing spatial-only, temporal-only, and spatiotemporal pulse shaping to steer, focus, and amplify the propagating THz fields. In addition, we show that spatial-only control allows for the generation of specific excitation profiles, including circular excitation geometries that lead to focusing and increased peak amplitude/intensity levels. The polariton host crystals may be uniform or may be patterned into waveguide, resonator, polaritonic bandgap, and other structures. The capabilities enable multiplexed solid-state THz signal generation, signal propagation among specified addresses, signal manipulation, and signal readout, all without loss of bandwidth.

Applications of our results include programmable generation of user-defined THz waveforms, nonlinear THz frequency spectroscopy, and THz-bandwidth signal processing applications.