
i

 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miri
ad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad
 Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad

Miriad
Multichannel Image Reconstruction,

Image Analysis and Display

Users Guide

Bob Sault and Neil Killeen

19 Mar 2004

See http://www.atnf.csiro.au/computing/software/miriad

ii

Contents

Table of Contents i

1 General Information 1-1

2 The User Interface 2-1

2.1 Introduction . 2-1

2.2 The miriad Front-End . 2-1

2.3 MIRIAD on the World Wide Web . 2-5

2.4 Bug Reports and Giving Feedback . 2-5

2.5 Indirect Parameter Input . 2-7

2.6 Host Command-Line Interface . 2-7

2.7 Writing Shell Scripts . 2-9

3 Plotting Concepts 3-1

3.1 Introduction . 3-1

3.2 The ATNF Visualisation Suite . 3-1

3.3 Using X Windows . 3-1

3.4 PGPLOT Plotting Devices . 3-2

4 MIRIAD Datasets 4-1

4.1 Listing Datasets – PRTHD . 4-1

4.2 Inside Datasets . 4-1

4.3 Scratch Files . 4-2

4.4 MIRIAD Data Disks at Epping . 4-3

5 Visibility Data Concepts 5-1

5.1 MIRIAD Visibility File Format . 5-1

5.2 MIRIAD’s Calibration Model . 5-1

5.3 On-the-Fly Calibration Correction . 5-2

5.4 Channel Selection, Averaging and Doppler Correction – UV Linetypes 5-3

5.5 Selecting UV Data in MIRIAD . 5-5

iii

iv CONTENTS

5.6 Spectral Window Selection . 5-8

5.7 Selection and Multi-Source/Multi-Frequency Datasets . 5-9

5.8 Polarization/Stokes Handling (stokes and select) . 5-9

6 Image Data Concepts 6-1

6.1 Image Datasets . 6-1

6.2 Image Coordinate Systems . 6-1

6.3 Image Region of Interest (region) . 6-1

7 Reduction Strategies 7-1

8 Getting Data In and Out of MIRIAD 8-1

8.1 ATLOD: Reading RPFITS Files . 8-1

8.2 FITS Tapes and MIRIAD . 8-4

8.3 Reading Visibility FITS Files . 8-5

8.4 Writing Visibility FITS Files . 8-7

8.5 Reading and Writing FITS Images . 8-8

8.6 Archiving and Transporting MIRIAD Datasets . 8-8

9 Generating Dummy Visibility Data 9-1

9.1 Making a Fake Observation . 9-1

9.2 Generating Visibilities from a Model Image . 9-3

10 Flagging, Manipulating and Examining Visibility Data 10-1

10.1 Flagging Visibilities . 10-1

10.2 Other Flagging Tasks . 10-6

10.3 Listing Visibilities . 10-8

10.4 Copying, Concatenating and Averaging Visibility Datasets 10-9

10.5 Plotting Visibilities . 10-10

10.6 Examining Visibility Variables . 10-13

10.7 Modifying Visibility Datasets . 10-13

11 Calibration, the ATCA, and MIRIAD 11-1

11.1 Some Theory . 11-1

11.2 Calibration Methods . 11-2

11.3 Determining Calibration Solutions . 11-3

11.4 Determining Gains and Bandpass Functions – MFCAL . 11-4

11.5 Determining Gains and Polarimetric Properties – GPCAL 11-4

11.6 Copying Calibration Tables – GPCOPY . 11-6

CONTENTS v

11.7 Displaying Calibration Tables – GPPLT . 11-6

11.8 Deleting Calibration Tables – DELHD . 11-7

12 Calibration Strategies 12-1

12.1 Introduction . 12-1

12.2 Preparing your Data . 12-1

12.3 Calibration . 12-2

12.4 The Interpolation Process . 12-9

12.5 Combining Pre- and Post-August 1994 Data . 12-12

13 Imaging 13-1

13.1 Introduction . 13-1

13.2 Spectral Line Imaging Considerations . 13-2

13.3 Weighting . 13-2

13.4 Computation . 13-3

14 Image Deconvolution 14-1

14.1 Introduction . 14-1

14.2 Deconvolution with CLEAN . 14-2

14.3 Deconvolution with maximum entropy algorithms . 14-6

14.4 Multi-frequency deconvolution – MFCLEAN . 14-8

14.5 Other deconvolution tasks . 14-10

14.6 Restoring an image . 14-10

15 Self-Calibration 15-1

15.1 Computation . 15-2

16 Spectral Line Data Reduction 16-1

16.1 Velocities in MIRIAD . 16-1

16.2 ATCA Spectral Line Correlator Configurations . 16-2

16.3 Spectral Line Processing and RPFITS files . 16-2

16.4 Spectral Line Processing and FITS files . 16-2

16.5 Listing and Plotting Velocity Information . 16-3

16.6 Recomputing Velocity Information . 16-3

16.7 Setting the Rest Frequency . 16-4

16.8 Velocity Linetype . 16-4

16.9 Continuum Subtraction . 16-5

16.10Imaging and Image Velocity Definitions – INVERT and VELSW 16-8

vi CONTENTS

17 Displaying Images 17-1

17.1 Introduction . 17-1

17.2 The ATNF Visualisation Software . 17-1

17.3 PGPLOT Device Tasks . 17-1

18 Image Analysis 18-1

18.1 Image Statistics and Histograms . 18-1

18.2 Listing Image Values . 18-2

18.3 Source Fitting and Positions . 18-2

18.4 Copying, Reordering and Regridding Images . 18-4

18.5 Image Arithmetic – MATHS . 18-5

18.6 Smoothing Images . 18-7

18.7 Modifying Images by Models . 18-8

18.8 Polarimetric Analysis Tasks . 18-8

18.9 Miscellaneous Analysis Tasks . 18-11

19 Displaying Spectral Cubes 19-1

19.1 Introduction . 19-1

19.2 The ATNF Visualisation Software . 19-1

19.3 Displaying spectra only . 19-2

19.4 Overlaying spectra on images . 19-2

20 Analysing Spectral Cubes 20-1

20.1 Introduction . 20-1

20.2 Moment Analysis . 20-1

20.3 Smoothing the Velocity Axis . 20-2

20.4 Velplot . 20-2

20.5 Modelling galactic disks . 20-8

20.6 Zeeman Analysis . 20-10

21 Primary Beams and Mosaicing 21-1

21.1 Primary Beams and Primary Beam Correction . 21-1

21.2 Mosaicing . 21-2

21.3 Mosaicing Observing Strategies . 21-2

21.4 Visibility Processing . 21-3

21.5 Summary of Imaging Strategies . 21-4

21.6 The Joint Approach . 21-4

21.7 The Individual Approach . 21-10

CONTENTS vii

21.8 Combining Mosaics and Single Dish Data . 21-11

22 Reducing 12-mm ATCA observations 22-1

22.1 Loading data into MIRIAD: ATLOD . 22-1

22.2 Initial “fixes” to the data . 22-1

22.3 Calibration . 22-1

23 Reducing 3-mm ATCA observations 23-1

23.1 Differences at millimetre wavelengths . 23-1

23.2 Atmospheric opacity and system temperature at millimetre wavelengths 23-1

23.3 Loading data into MIRIAD: ATLOD . 23-2

23.4 Initial “fixes” to millimetre data . 23-2

23.5 Tracking errors . 23-3

23.6 Calibration . 23-4

23.6.1 Bandpass, gain and polarimetric calibration . 23-4

23.6.2 Absolute flux calibration: Flux boot-strapping using planets 23-4

23.7 Handling large spectral bandwidths . 23-6

24 ATCA Bin Mode Observations 24-1

24.1 ATCA Correlator Bin Modes . 24-1

24.2 High time resolution bin-mode observations . 24-1

24.3 Pulsar bin-mode observations . 24-1

24.4 Tasks Specific to Pulsar Bin-Mode Observations . 24-2

A Setting Up Your Account A-1

B Image Items B-1

C UV Variables C-1

D Preparing Your Data in AIPS D-1

E Using xmtv and xpanel E-1

E.1 Using xmtv . E-1

E.2 The Control Panel . E-2

F Glossary F-1

G Trouble Shooting G-1

G.1 CAVEATS . G-1

G.2 Error messages . G-1

viii CONTENTS

G.3 Command not found . G-2

G.4 Not a directory . G-2

Index I-1

Chapter 1

General Information

This manual is also available, in hypertext form, on the World Wide Web at

http://www.atnf.csiro.au/computing/software/miriad.

This also contains information on retrieving and installing MIRIAD.

This manual serves as a reference guide for the MIRIAD package. It is assumed that the reader has
some familiarity with the underlying operating system. Before proceeding further you need to read
Appendix A on how to set up your account in order to use MIRIAD.

The manual is split into two basic parts. The first part (Chapters 2 to 6) introduces you to the MIRIAD
package and its general concepts. The second part (Chapters 7 to 22), which uses a cookbook approach,
takes you through the steps of putting your data on the local disk and reducing them.

If this is your first encounter with the MIRIAD package, we recommend that you read through Chapters
2 and 4 carefully.

For those interested, an overview of some of the history and design decisions of MIRIAD, the ‘standard
reference’ is: Sault R.J., Teuben P.J., Wright M.C.H., 1995, “A retrospective view of Miriad” in Astro-
nomical Data Analysis Software and Systems IV, ed. R. Shaw, H.E. Payne, J.J.E. Hayes, ASP Conf.
Ser., 77, 433-436.

Please send any comments or suggestions to
miriad@atnf.csiro.au.

Recommended Reading

The following books tend to concentrate on the techniques of radio astronomy, and particularly radio
interferometry.

• Synthesis Imaging in Radio Astronomy II, G.B Taylor, C.L. Carilli, & R.A. Perley eds, Astronomical
Society of the Pacific Conference Series Volume 180.

• The Fourier Transform and its Applications, R.N. Bracewell.

• Interferometry and Synthesis in Radio Astronomy, A.R. Thompson, J.M. Moran & G.W. Swenson.

• Radio Astronomy, J.D. Kraus.

• Radiotelescopes, W.N. Christiansen & J.A. Högbom.

• Tools of Radio Astronomy, K. Rohlfs & T.L. Wilson.

1-1

1-2 CHAPTER 1. GENERAL INFORMATION

A general description of the science that can be done with radio telescopes is given in the following books.

• Galactic and Extragalactic Radio Astronomy, G.L. Verschuur & K.I. Kellermann eds.

• An Introduction to Radio Astronomy, B.F. Burke & F. Graham-Smith.

The following are more specific to the ATCA and the practicalities of observing and data reduction.

• Journal of Electrical and Electronics Engineering, Australia: Special Issue – The Australia Tele-
scope, Volume 12, Number 2, June 1992.

• Australia Telescope Compact Array User’s Guide
http://www.narrabri.atnf.csiro.au/observing/users guide/html/atug.html

A large amount of can be found on the ATNF web sites

http://www.atnf.csiro.au
http://www.narrabri.atnf.csiro.au

Acknowledgements

Most of this manual was written by Bob Sault (rsault@atnf.csiro.au) and Neil Killeen (nkilleen@atnf.csiro.au).
Other parts of this manual were written by Peter Teuben (teuben@astro.umd.edu – University of Mary-
land), Keith Jones (jones@galaxy.physics.uq.oz.au – University of Queensland) and Tom Oosterloo (oost-
erloo@nfra.nl – Netherlands Foundation for Research in Astronomy).

Chapter 2

The User Interface

2.1 Introduction

This chapter describes the user interfaces to MIRIAD. Each MIRIAD task has a number of param-
eters which can be specified. With some parameters, you must assign values to them when you run the
task. With other parameters, if they are not set, a default value will be used, which may or may not be
sufficient to run the task successfully.

There are two approaches to running tasks: the command-line approach and the front-end (or shell)
approach. With the command-line approach, you give the MIRIAD command directly at the system
prompt, in the same way as any other operating system command, such as ls. With the front-end ap-
proach, you interact with another program, which aids you in forming the command-line to a MIRIAD
task.

First we will describe the miriad front-end, then command-line interface will be discussed Finally we
discuss using scripts with MIRIAD.

If this is your first encounter with MIRIAD, we suggest you work your way through the examples
starting in the next section.

2.2 The miriad Front-End

For involved tasks, giving all the parameters are the hosts command line becomes far too cumbersome.
In this case, you can use the miriad front-end, which has a mentality somewhat similar to the AIPS
user interface. To invoke miriad, type:

% miriad

The usual system prompt will be replaced by the miriad% prompt:

miriad%

and miriad will read a keyword file, lastexit, with the values of all parameters saved when you last
exited miriad (see EXIT below). This file will be created/read in from your current working directory.

We shall now describe all miriad commands in more detail. A summary of the commands, and their
syntax, is given in Table 2.2 at the end of this section. Commands not known to miriad are simply
passed to your host operating system. This means standard commands, such as ls, are still usable and
valid.

2-1

2-2 CHAPTER 2. THE USER INTERFACE

INP, GO and TASK

To inspect the inputs of a task, as well as to select the task, e.g. histo type

miriad% inp histo

miriad will show the parameters of the task along with the values, if any, previously set. For example,
if, the first time you run miriad, you type:

miriad% inp histo

miriad will reply by writing

Task: histo

in =

region =

range =

nbin =

and will replace the miriad% prompt with a task prompt

histo%

indicating that you have chosen the task histo. You can also choose the task histo without using inp

by typing:

miriad% task histo

miriad will then replace the miriad% prompt with the histo% prompt, but the inputs will not be printed
out. Either way a parameter can be set with:

histo% in=gauss

Retyping:

histo% inp

will result in miriad replying:

Task: histo

in = gauss

region =

range =

nbin =

Tasks are run either by typing go taskname at the miriad% prompt (advisable only if you know you like
the inputs) or by typing go at the taskname% prompt. Thus, in the above example, typing:

histo% go

would result in the task histo running with in=gauss as the only assigned parameter (all the other
parameters would be set to their default values).

Any task can be run regardless of the chosen task, merely by typing:

2.2. THE MIRIAD FRONT-END 2-3

miriad% go itemize

miriad then executes the task itemize (using whatever input parameters it finds from the lastexit file
or a previous run) and changes the default task and prompt to:

itemize%

Generally miriad waits for the task to finish before it resumes. The -b can be used to tell the operating
system to put the task in the background, and allow miriad to be ready immediately for new commands.
However the output of the task just started may still return output to the terminal. You can start as
many jobs as the operating system will allow.

HELP

The help command is generally used to get information about a task. The general format of the command
is:

miriad% help [-w] taskname [-k keyword]

which will give you information about the keyword of the given task. If the -k keyword is omitted,
information is given about all parameters of the task. If the task is omitted, information is given about
the current task. For example:

miriad% help histo

will give you help information about the histogramming task, histo.

The -w flag causes output to be directed to the netscape web browser.

In addition to tasks, help will give you information about a few other select topics. These include
information on tasks in general (help tasks), on miriad itself (help miriad) as well as a number of
commonly used keywords (device, line, options, region, select, server, stokes).

By default, help information is sent to your terminal. However you can direct it to a web browser by setting
the MIRPAGER environment variable to either netscape or lynx. You can also set MIRPAGER
(or environment variable PAGER) to your favourite text paging program (the default is more, but you
may prefer less). Note that the web version of the documentation usually contains extra links to other
relevant material.

EXIT and QUIT

exit exits miriad, and, if any parameter values have been changed from the previous time you ran
miriad, all parameter values are saved in a keyword file lastexit. The parameter values from this file
are read in automatically when you next run miriad. quit exits miriad without saving the present
parameter values in lastexit. This command is useful if you have changed parameter values you do not
wish to save.

Command-Line Editing and ER

Miriad includes a reasonably sophisticated command-line editor. The up- and down-arrow keys allow
scrolling through the history of previous commands, and the left- and right-arrow keys allow cursor
motion within a line. Pressing the TAB key causes an attempt to perform file-name completion. Various
control keys allow extra editing. A summary is given in Table 2.1. For copious information, see the GNU
Readline library manual.

2-4 CHAPTER 2. THE USER INTERFACE

Table 2.1: miriad Command Line Editing Commands

Key Description

UpArrow Previous command
DownArrow Next command
LeftArrow Move cursor left
RightArrow Move cursor right
DEL Delete character to left of cursor
TAB File name completion
^TAB List possible completions
^A Move to beginning of line
^D Delete character underneath cursor
^E Move to end of line
^U Delete to beginning of line

The er command can be used to perform command-line editing on the current value of a parameter. It
also obeys the left- and right-arrow keys, the DEL key etc. For example, to edit the current value of the
parameter select, use:

miriad% er select

The er command is not as sophisticated as the normal command-line editor.

Interrupting a Task

Control-C can usually be used to interrupt the execution of a task, and revert back to the miriad shell.

UNSET

It is often convenient to assign the original default value to the parameter. This ‘assignment’ is accom-
plished with the command unset. For example, if the task histo had been run with inputs:

in = gauss

region =

range = 0,1

nbin = 10

but you wanted to run histo with the default for nbin, you would type:

histo% unset nbin

Multiple parameters can be unset on the same line. Thus, to assign both range and nbin to their default
values, you would type:

histo% unset range nbin

Then, typing:

histo% inp

will result in miriad replying

2.3. MIRIAD ON THE WORLD WIDE WEB 2-5

Task: histo

in = gauss

region =

range =

nbin =

SAVE and LOAD

As noted above, when you exit miriad, all your inputs will be saved in the keyword file lastexit.
However, you can save and reload your current parameters at any time. The command save writes the
current parameter values to a keyword file (taskname.def if the task taskname has been selected) or to
a user-specified file. The parameter settings in this keyword file (or a user-specified file) can be retrieved
using the command load. Note that save writes out all parameter values, not just those for the specific
task chosen. Example:

histo% save

histo% save histo1.pars

In the first case the parameters are saved in a file histo.def, in the second case they are saved in a
user-specified file histo1.pars.

TPUT and TGET

When you invoke a task, miriad saves all the parameters associated with this task in a keyword file, in
the directory given by the MIRDEF environment variable (if MIRDEF is not set, the current directory
will be used). The parameters will be saved in a file with name tasname.def. Additionally you can force
parameters to be saved using ‘tput taskname’. If the taskname is omitted, the parameters for the current
task are saved. The tget command is used to retrieve the parameters at a later stage. For example, to
save and then restore parameters, use

miriad% tput histo

histo% tget histo

tput and tget normally expect the keyword files to be in the directory given by the MIRDEF environ-
ment variable. This is unlike lastexit and the save and load commands, which expect the keyword
files to be in the current directory. The -l flag to tput and tget changes them to write/read the keyword
file from the current directory.

2.3 MIRIAD on the World Wide Web

A hypertext version of this manual, as well as other MIRIAD information, is available on the World
Wide Web. Its URL is

http://www.atnf.csiro.au/computing/software/miriad

2.4 Bug Reports and Giving Feedback

Needless to say, MIRIAD is not perfect. The mirbug command can be used if you encounter a bug,
have a question about a task, or have a suggestion. The format of the command is

% mirbug taskname

2-6 CHAPTER 2. THE USER INTERFACE

Table 2.2: Miriad shell command overview

Command Syntax Comments
= key = value assignment (see also SET)
cd cd directory change directory
er er key command line editing of a parameter.
exit exit exit miriad, and save parameters in lastexit
go go [-b] [taskname] start up task
help help [taskname] [-k key] on line help on task
inp inp [taskname] overview inputs
source source cmdfile read commands from a command file
load load [keyfile] load task parameters from keyword file
quit quit quit miriad, and does not save lastexit
save save [keyfile] save task parameters to keyfile
set set key value assigment
setenv setenv var value set an environment variable
task task taskname set new default taskname
tget tget [-l] [taskname] load parameters for a particular task
tput tput [-l] [taskname] save parameters for a particular task
unset unset key1 key2 unset variables (blank them)
unsetenv unsetenv var unset an environment variable
view view [taskname] edit task parameters in a keyfile

Table 2.3: Miriad Environment Variables

Environment Variable Comments
VISUAL Editor for editing keyword files and bug reports.
EDITOR Editor for editing keyword files and bug reports.
MIRPAGER Web browser or pager for reading help documents
PAGER Pager for reading documents
MIRDEF Directory for keyword files
TMPDIR Directory for scratch files (see Section 4.3).

2.5. INDIRECT PARAMETER INPUT 2-7

Here taskname is the task in question. Use the name “general” if the bug report is not about a specific
task. The mirbug command places you in an editor (given by the EDITOR environment variable), with
a template of a bug report, which includes the parameters most recently used for that task. After you
finish editing the template, mirbug mails the report.

2.5 Indirect Parameter Input

It is possible that the length of a parameter value can become large (indeed quite huge). In this case, it
is convenient to store the parameter value in a file and then to use the file name in place of the parameter
value.

To do this, the file name should be preceded by an ‘at’ sign (@). For example, assuming the file name

contains the text chicyg , then

% histo in=@name

is equivalent to

% histo in=chicyg

These @ files can be nested, and multiple @ files can appear on a line (separated by commas). Indeed an
@ file and other parameter values can be intermixed, separated by commas.

The @ file can contain many lines. An end-of-line is treated like a comma.

As mentioned before in Section 2.6, parameter input can also be made easier by using the -f flag when
MIRIAD commands are given directly from the shell.

2.6 Host Command-Line Interface

MIRIAD tasks can always be run by specifying their parameters on the host command line. A param-
eter is specified by equating its keyword to its value. For example, out=gauss sets the parameter out to
the ‘value’ gauss. As an example, we shall first create an image dataset, gauss, with the task imgen. At
the system prompt type

% imgen out=gauss

In this case, default values are used for all parameters, other than out. The names of all parameters, and
their default values, are described in a help file (see below) which is always available on line.

Next, we will run a histogram task, histo, with the input image dataset gauss that we just created:

% histo in=gauss

Several parameters can be given on the command line, separated by spaces. Often a parameter value
consists of several numbers and/or strings. These values should be separated by commas. For example:

% histo in=gauss range=0,1 nbins=10

Strings will often be file names. These are the names used by the host computer, and so they should
obey the file-naming rules of the computer. Some tasks support wildcard expansion for file names.

Whether strings are in lower or upper case is usually significant. That is,

% histo in=gaus

2-8 CHAPTER 2. THE USER INTERFACE

is very different to

% HISTO IN=GAUS

Generally lower case is preferred.

A parameter value cannot contain a space. Often a parameter value will be composed of one or more
strings out of a fixed set. In this case, the strings can be abbreviated to the minimum number of characters
required for uniqueness.

The host’s shell may try to interpret special characters in your commands – most notably the UNIX shells
treat asterisks and brackets as special. This will often result in the host shell issuing cryptic messages
and failing to invoke the MIRIAD task. For example, giving the command

% histo in=gaus*

will probably result in

No match.

Similarly

% histo in=gaus region=quarter(1)

will result in

Badly placed ()’s.

You can avoid this by escaping the special character or quoting the text containing the special characters.
For example:

% histo in=gaus "region=quarter(1)"

The command-line interface is quite appropriate for tasks that take relatively few parameters, or in shell
scripts. However, it is cumbersome when a task has many parameters. Here the use of a keyword file
comes in handy:

Keyword files are files containing parameter=value pairs, one per line, and can be created with an editor
(most front-ends to be discussed in the next sections create such .def files by themselves) and passed
to a MIRIAD task using the -f command line switch, or flag. Hence the previous example would be
equivalent to:

% histo -f histo.def

where the file histo.def would contain:

in=gaus

region=quarter(1)

Unknown keywords are simply ignored (though you will get a warning). The file should not use the same
keyword twice. As parameter values do not go through the host’s shell, special characters do not need to
be escaped or quoted.

Help on a MIRIAD task can be obtained on the host command line with the command mirhelp.
Example:

% mirhelp histo

2.7. WRITING SHELL SCRIPTS 2-9

This will provide description of the task parameters and their default values.

The mirhelp command can be used to save help on a MIRIAD task as a text file, or to get a print-out
of a help file. In UNIX, you would use the normal shell output redirection and piping. For example, to
redirect the help on task histo to a file histo.hlp, use:

% mirhelp histo > histo.hlp

Alternately, to print out this help file, use

% mirhelp histo | lw80

where lw80 is your favourite print command.

2.7 Writing Shell Scripts

As MIRIAD commands can be invoked directly from the command line, scripts and command pro-
cedures to run a sequence of MIRIAD commands can be developed using the normal host’s facilities.
This is a somewhat advanced topic – you will probably want to be familiar with the shell scripts and
MIRIAD before you attempt to develop your own script.

There are numerous books written of shell programming or the like – a manual like this cannot be
expected to cover the subject in the depth that these books go into. Instead a simple annotated example
will be given using the C-Shell commonly used on UNIX systems. To aid description, line numbers are
given on the left side of each line (these line numbers are not part of the shell script).

1: #!/bin/csh

2:

3: # Delete any datasets called "multi.uv".

4:

5: rm -rf multi.uv

6:

7: fits in=MULTI.UV op=uvin out=multi.uv

8:

9: foreach srcnam (1934-638 0823-500 vela)

10: uvaver vis=multi.uv "select=source(${srcnam})" out=${srcnam}.uv

11: end

12:

13: mfcal vis=1934-638.uv interval=10 refant=3

14: gpcal vis=1934-638.uv interval=10 options=xyvary refant=3

15: gpcopy vis=1934-638.uv out=0823-500.uv

16:

17: gpcal vis=0823-500.uv interval=10 \

18: options=nopol,xyvary,qusolve refant=3

19:

20: gpboot vis=0834-500.uv cal=1934-638.uv

21: uvplt vis=0823-500 stokes=i,q,u,v axis=real,imag device=0823.ps/ps

22:

23: lpr 0823.ps

• Line 1: C-shell scripts must always start with the rather cryptic #!/bin/csh. This allows the
system to determine the appropriate interpreter for the script (i.e. the C-shell).

• Line 3: Comments are introduced by a hash character.

• Line 5: Delete a MIRIAD dataset called multi.uv. The r flag (recursive) is needed to delete a
directory (which is how MIRIAD stores a dataset). The f (force) flags causes rm to not complain
if it fails.

2-10 CHAPTER 2. THE USER INTERFACE

• Line 7: Execute the MIRIAD task fits. This reads a visibility FITS disk file (MULTI.UV), and
saves it as a MIRIAD dataset (multi.uv).

• Lines 9 and 11: This is the C-shell’s equivalent of a DO-loop. The values listed inside the brackets
(source names in this instance) are progressively assigned to the control variable of the loop (srcnam
here). The net result is that this loop will be executed three times, with srcnam being successively
set to 1934-638, 0823-500 and vela. The “things” inside the brackets are separate by spaces –
the C-shell generally likes spaces to separate different components of a command.

• Line 10: The body of the loop. The uvaver command will be executed three times. The shell
substitutes the string ${srcnam} with the current value of the srcnam variable. Thus the select

parameter being successively set with source(1934-638), source(0823-500) and source(vela)

on the three times through the loop. The output dataset of the command also changes. Note that
the select parameter is quoted ("select=. . . "). This is as brackets (()) are special to the shell.
Quoting them prevents this interpretation. Note however that the ${srcnam} is still treated as
special, even though it is in quotes (software does not have to be consistent!).

• Lines 13-15: Execute various MIRIAD commands on data-sets produced by line 10.

• Lines 17-18: Yet another command. However this one was too long to fit on one line. In the C-shell,
a line can be continued onto the next by ending it with a backslash.

• Lines 20 and 21: More of the same. Generate a postscript output file, 0823.ps, using task uvplt.

• Line 23: Spool this postscript file to the laser printer.

On UNIX systems, after having developed a script, you will need to change the “file mode” of the script
to indicate that the script is executable. For example, to mark the shell script calibrate as executable,
use the UNIX command

% chmod +x calibrate

Chapter 3

Plotting Concepts

3.1 Introduction

Display software for MIRIAD data falls into two main camps – those that are part of the ATNF
Visualisation Suite (not strictly part of MIRIAD) and those that use a PGPLOT device (line plots
plus some image display capability). Generally the Visualisation suite is better for interactive work and
the PGPLOT software is better for quantitative work. This chapter will give an overview of using the
PGPLOT software.

Historically there is a third camp – the “TV” software. There is only one useful task left which uses this
software, and so the “TV” software will be describedwith that task.

3.2 The ATNF Visualisation Suite

The ATNF Visualisation suite is a set of X-windows-based interactive tools which can display a wide vari-
ety of images and cubes – in particular MIRIAD’s image format. You select images, display options, etc,
via pull-down menus (rather than setting parameter values). More details can be found in the on-line doc-
umentation available on the ATNF web pages (http://www.atnf.csiro.au/computing/software/visualisation/)
or in a gzipped postscript document on the ATNF ftp server (vizdoc.ps.gz under pub/software/sutra,
which is also available through the ATNF web pages).

See Appendix A to set-up your account to use the visualisation software.

To run a tool, type the program name, no arguments are required. You do not need to be running the
miriad front-end to use the tools.

3.3 Using X Windows

The ATNF Visualisation software and some of the PGPLOT devices work via X-windows. For these
to work, you must ensure that you have setup your environment to allow communication with your X
server. In particular

• You should be working at a workstation running X windows!

• You do not need to run the display tasks on the same computer as the X-windows server. However
if you are running on a different machine, then you will need to tell the display software which
machine is running your X server. To do this, issue the command

% setenv DISPLAY localhost:0

3-1

3-2 CHAPTER 3. PLOTTING CONCEPTS

to the machine you are running MIRIAD tasks on. Here localhost is the name of the host machine
running X windows. Normally this will be you local workstation.

• X windows has a simple security feature to prevent arbitrary people drawing plots on your screen.
To authorise a particular machine to send commands to your X server, you will need to issue the
command

% xhost +remotehost

to your local host. Here remotehost is the name of the host machine that you want to grant
permission to. For MIRIAD applications, this will be the host you are running the plotting task
on.

3.4 PGPLOT Plotting Devices

Tasks which use the PGPLOT software are always use the device keyword allow you to select a plotting
device. Only a brief review of PGPLOT, from a users prospective, is given here. A more complete
description, both for users and programmers, can be found in the PGPLOT manual.

PGPLOT devices are specified in the standard PGPLOT manner, namely

device=name/type

The name part either gives a device name (usually for graphics devices) or a file name (usually for
hardcopy devices, such as postscript printers). In the case of a file name, any normal file name can
be given. However if it contains a / character, then the entire file name should be enclosed in double
quotes ("). Once a file has been created, you will generally have to issue operating system commands to
spool this to the appropriate output plotter, etc. The name part can often be left blank – it defaults to
something sensible. The most common case where you do not let it default is when you are specifying a
disk plot file.

The type part tells PGPLOT what sort of graphics or hardcopy device is being used. Minimum match is
used. Some possible types are:

xs This is a re-sizable and persistent X window.

xw This is a transient X window.

xd This is the pgdisp X windows server (deprecated).

ps Postscript. PGPLOT will write the plot as a disk file in postscript form. At ATNF sites, you can
print this postscript file with the command:

% lp filename

vps Vertical postscript. The only difference between this and ps, is that vps generates a plot in portrait
mode, whereas ps is in landscape mode.

cps Colour postscript in landscape mode.

vcps Colour postscript in portrait mode.

null The null device. Useful for debugging when you do not have a display.

re A VT100 with RETROgraphics card.

v603 A V603 terminal.

krm3 A Kermit 3 IBM-PC terminal emulator.

tek A TEK 4010 compatible terminal (or window).

3.4. PGPLOT PLOTTING DEVICES 3-3

Examples of PGPLOT devices are:

• device=4/xs directs output to the persistent X window number 4 (you can have many of these
windows)

• device=/xw directs output to the transient X window.

• device=plot.ps/ps create a postscript plot file called plot.ps

• device=/tek assumes you are working at a Tektronix 4014 terminal. Graphics output is directed
to your terminal.

Another useful pseudo-PGPLOT device is ?. This causes a complete list of PGPLOT types to be printed,
and then the task will prompt you to give a PGPLOT device.

When plotting in an X window, you must meet the conditions which allow PGPLOT to communicate
with your X server.

PGPLOT has two X windows servers, and as of PGPLOT V5.0, one of which (pgdisp) is deprecated. The
PGPLOT device types /xs and /xd are now mediated by a server (called pgxwin server). This server
is automatically started whenever either of these devices is invoked. The /xs windows are permanent
and resizable whereas the fixed size /xw windows disappear as the application terminates. This server
allows multiple windows and you can choose to write to whichever one you like (see above example). The
resources for these windows are managed through the standard X windows resource file.

The deprecated server, pgdisp, which creates a resizable persistent X window is started by hand with a
command such as

% pgdisp &

from a workstation window (usually the console window). This window is written to with the keyword
device, see below). This window can be used for line graphics as well as grey scales. By default, the
pgdisp window only has 16 colour levels, which is insufficient for most image display applications, but
fine for line graphics.

If you start it up with the command

% pgdisp -lineColors 128 &

then the window will be allocated 128 colours which is sufficient for imaging applications. This window
is much slower than the windows mediated by the pgxwin server. In addition you can only have one.

3-4 CHAPTER 3. PLOTTING CONCEPTS

Chapter 4

MIRIAD Datasets

4.1 Listing Datasets – PRTHD

MIRIAD uses the term ‘dataset’ to refer to an image, a cube or a set of visibility data. A MIRIAD
dataset is made from a host-system directory, i.e., the host operating system sees a ‘directory’ whenever
MIRIAD sees a ‘dataset’.

The task prthd provides an astronomical summary of a dataset. For visibility datasets, it will tell you
the number of visibilities, the number of spectral-channels, the number of spectral-windows (IFs), the
polarisations present and some information about frequencies. Note that if the visibility dataset contains
multiple source or frequencies, it will only give you information about the source and frequency of the
first record. For images, prthd will give dimension and axis information, minimum and maximum, etc.
The input to prthd is the dataset name via the keyword in.

PRTHD
in=gauss Input dataset.

4.2 Inside Datasets

Generally the user does not need to understand much about the internal structure of a dataset. A
dataset contains several kinds of data, called ‘items’, . Items can be quite small (e.g. a single number),
intermediate in size (e.g. the history item, use to store history information), or very large (e.g. the
image item in an image dataset, which is used to store the pixel data, or the visdata item in a visibility
dataset, which contains the correlations). Large items are stored as a host system file, whereas all small
items are stored in a common file which is rather inappropriately called header. Indeed, there are a
number of instances where the word “header” is used where “item” or “small item” would be a more
appropriate description.

The implementation of datasets as directories does complicate some manipulations of your datasets,
since your favourite image, etc, is not just a file anymore. On the other hand, as the host system sees a
MIRIAD dataset as a normal directory, all the usual host commands to manipulate directories can be
used. On UNIX a -r switch often has to be used with the command, to indicate that the operation is to
be applied ‘recursively’ (i.e. to all files in the directory). For example, to delete a dataset, use

% rm -r dataset

If you have aliased rm to prompt you before deleting a file (as is common in a number of the standard
login scripts at Epping), you will be prompted before deleting each individual file within a dataset. This
can become somewhat tedious, so you might want to make another alias to delete without prompting.
For example, insert

4-1

4-2 CHAPTER 4. MIRIAD DATASETS

alias rrm ’rm’

in your .cshrc file. Similarly to copy a dataset, you would use

% cp -r dataset1 dataset2

Generally the user is insulated from this internal organisation of a dataset and can always think of them
as a whole. However there are a few MIRIAD utilities to manipulate at the item level. These tasks
do not contain any astronomical knowledge. Consequently they may seem somewhat crude. These tasks
include:

• itemize: List the items in a dataset.

• delhd: Delete an item from a dataset.

• puthd: Add an item which consists of a single-value to a dataset.

• copyhd: Copy an item from one dataset to another.

• gethd: Print the value of an item. This is most useful in scripts.

Note the rather inappropriate use of ‘hd’ in the preceding names, where something suggesting items
(rather than header) would have been more appropriate.

As an example, consider the itemize task, which lists the items in a dataset. For the test image dataset,
gauss (created with imgen in Chapter 2) itemize will tell us of the following items:

% itemize in=gauss

Itemize: version 1.1 4-mar-91

naxis = 2

naxis1 = 256

naxis2 = 256

crpix1 = 129

crpix2 = 129

cdelt1 = -4.848137e-06

cdelt2 = 4.848137e-06

crval1 = 0

crval2 = 0

history (text data, 38 elements)

image (real data, 65536 elements)

Here the item naxis consists of a single integer, having the value of 2. The item image is a larger item
(being the pixel data) consisting of 65536 (256× 256) real numbers.

Note for images that many items have FITS-like names (although they are lower case, and the units can
be different from the FITS standard). A list of the items in an image and visibility dataset are given in
Appendices B and C.

4.3 Scratch Files

Some MIRIAD tasks create scratch files to hold temporary results. These files do not show up in
directory listings, but they do take up real space (these files are guaranteed to be deleted if a task dies).
MIRIAD will place these scratch files in the directory pointed to by the environment variable TMPDIR.
If this is not set, the current default directory is used.

4.4. MIRIAD DATA DISKS AT EPPING 4-3

4.4 MIRIAD Data Disks at Epping

As datasets are normal directories, they can be created wherever you can create directories. Though it
is possible to create them in your home directory, given the quotas enforced on home directories you are
unlikely to be able to store much data there.

Epping users can use the /DATA disks (shared with AIPS users) to store their data for a few days to a
few weeks. To do so, you should create a directory /DATA/host_x/username, where host_x is a machine
name and a number (e.g. ATLAS_1) and username is your login name. For example

% mkdir /DATA/ATLAS_1/rsault

creates a directory for rsault on the first data disk of machine atlas.

All the disks attached to all the different workstations are accessible from any machine. That is, the disks
are cross-mounted between the computers. However there is a right way and a wrong way to use this
cross-mounting – there is a large network penalty (particularly to write) to a remote disk. For example,
there is a large overhead if you write to a disk attached to APUS when you are logged into CARINA.
The penalty is smaller if you read from a network mounted disk, but is still substantial. In general you
should attempt to keep your data on the disks of one workstation, and use that workstation for all your
compute and I/O intensive work.

There are two sorts of disks – public and bookable. Public disks can be used by anyone at anytime.
However their contents may be automatically cleared at 5:00 am on Mondays. The bookable disks provide
a private allocation of disk space, which is not subject to destruction on Monday morning. Note, however,
when your booking has expired, your data can be deleted from a bookable disk without warning. Disks
can be booked by e-mailing ‘bookings’.

4-4 CHAPTER 4. MIRIAD DATASETS

Chapter 5

Visibility Data Concepts

5.1 MIRIAD Visibility File Format

A visibility dataset in MIRIAD logically consists of two parts – a stream of variables and calibration
tables. The stream of variables consists of parameters that are known at the time of the observation.
They describe the changing state of the telescope. Variables include the observing frequency, the observ-
ing centre, the source name, (u, v) coordinates, the baseline number, the polarisation parameter being
measured, and the actual measured correlations. The calibration tables are parameters that are derived
after the observation. They are usually deduced from observations of a calibrator. Generally, MIRIAD
tasks give a higher level view of the internals of a dataset, but it can be useful sometimes to examine these
building blocks of the dataset. A list of all the variables and calibration tables is given in Appendix C.

Because source names, frequencies, observing centre etc., are stored as variables, MIRIAD does not
distinguish between a single-source file and a file with multiple sources or frequencies, or a mosaiced
observation. For example, a visibility dataset containing multiple sources does not differ structurally
from one containing a single source. However, the variables source, ra and dec will change several
times within a dataset which contains multiple sources, whereas they would remain constant in a dataset
with only a single source.

5.2 MIRIAD’s Calibration Model

MIRIAD’s suite of calibration tasks generally produce or use items which contain the relevant cali-
bration tables and parameters. The tasks to manipulate these calibration tables generally have names
start with gp, though there are a few exceptions such as selfcal and mfcal. The calibration parameters
are antenna-based ones, with the calibration data being used to derive a model of the response of each
antenna. The response of an antenna to radiation is modelled by four sets of parameters:

• Antenna gains. These are complex-valued gains which vary with time, but not frequency. These are
predominantly atmospheric in origin, though there is a significant instrumental component (the two
cannot be distinguished readily). MIRIAD stores these in the gains item of a visibility dataset.

• Delay factors. These are antenna-based parameters which give a time delay, which will probably
be a sum of atmospheric and instrumental components. This term is assumed to vary with time,
but not frequency. It is stored in the gains item.

• Antenna bandpass functions. These are complex-valued gains modelling the instrumental bandpass.
These vary with frequency but not with time. These are largely instrumental in origin. These are
stored in the bandpass item (and some associated items).

• Antenna leakages. These are complex-valued terms (which do not vary with time or frequency)
which model the leakage of one polarisation into another. These are entirely instrumental in origin.

5-1

5-2 CHAPTER 5. VISIBILITY DATA CONCEPTS

Current experience suggests that leakages may vary moderately with frequency. These are stored
in the leakage item.

Ignoring leakage (which is discussed in too much detail in Chapter 12), we model the composite gain
function of an antenna (representing both atmospheric and instrumental terms) as

g(t)gP1(ν) exp(i2πτ(t)(ν − ν0))

Here g(t) is the frequency-independent part of the antenna gain, gP (ν) is the bandpass function, τ(t) is
a delay term. The delay is calculated with respect to a reference frequency, ν0. For dual polarisation
systems the two polarisation bands are assumed to have independent gains and band passes, although
the delay is common.

Note that MIRIAD datasets cannot contain more than one set of calibration tables – you cannot have
multiple versions of calibration tables. Running a calibration task twice will result in the first calibration
table being overwritten. This may be inconvenient if the dataset has two sets of data that need to be
calibrated separately.

5.3 On-the-Fly Calibration Correction

Many tasks will apply calibration corrections ‘on-the-fly’. This means that often there is no need to form
a calibrated dataset. Normally this calibration correction step is performed by default. However, the
correction stage can be disabled using some fairly standard switches in the options parameter. These
switches are:

nocal: Do not apply antenna gain and delay corrections.

nopol: Do not apply polarisation leakage corrections.

nopass: Do not apply bandpass function corrections.

For example, to disable gain and bandpass correction in uvspec, use:

% uvspec options=nopass,nocal

It is always possible to form a calibrated dataset by using either of the visibility copying tasks (uvcat
or uvaver). Whether or not you choose to do this may be often a matter of personal taste. However
there are three VERY important situations where you should form a calibrated copy of your dataset (i.e.
where ‘on-the-fly’ calibration is inadequate).

• A still significant, but decreasing, number of tasks do not perform ‘on-the-fly’ calibration. Tasks
which do apply calibration corrections will invariably have nocal, nopol and nopass options.
Additionally all tasks which are performing ‘on-the-fly’ calibration will issue messages when they
are performing these steps.

• Many MIRIAD tasks allow ‘on-the-fly’ averaging of spectral channels (using the line parameter
with a width greater than 1 – see section 5.4) in addition to bandpass correction. However the tech-
nique used when simultaneously bandpass correcting and averaging is only approximately correct.
For arcane reasons, rather than applying the bandpass and then averaging the channels, the tasks
correct the average of the channels with the average of the bandpass. This can be significantly in
error if the bandpass functions vary significantly over the range of channels being averaged. Tasks
performing this dubious operation issue warning messages to alert you of your possible folly. If this
is a real problem, then it is best to form a copy of the bandpass-corrected data, and then use these
corrected data for channel averaging.

5.4. CHANNEL SELECTION, AVERAGING AND DOPPLER CORRECTION – UV LINETYPES5-3

• The self-calibration tasks produce gain tables in the same format as the calibration tables derived
from observations of calibrators. Thus if you self-calibrate a dataset containing you initial cali-
bration, you will overwrite your initial calibration – a generally undesirable step. Additionally the
self-calibration tasks do not apply some calibration corrections (e.g. bandpass and sometimes leak-
age corrections). Generally it is best to self-calibrate a dataset which has had the initial calibration
applied.

5.4 Channel Selection, Averaging and Doppler Correction – UV
Linetypes

Many MIRIAD tasks support on-the-fly selection and averaging of the channels to be processed. How-
ever, before launching into a description of this, we will review some MIRIAD history. MIRIAD
was originally designed for a telescope which simultaneously measured both spectral and continuum data
using separate correlators. Spectral data are generally narrowband, and the frequencies are defined to
high precision. Doppler tracking is often employed. Continuum, or wideband, data have a much larger
bandwidth, and frequency tolerances are not as great.‘Channel-0’ data (data formed by averaging all
spectral channels together) are also treated as continuum data.

For ATCA use, there is no real distinction between wideband (continuum) and spectral data, and the
MIRIAD distinction is not really relevant. All ATCA data (even channel-0 data) are treated as spectral
data.

All the same, a MIRIAD visibility dataset can, in principle, contain multiple spectral and wideband
correlators. The spectral data is described by a set of ‘spectral windows’ (‘IFs’ or ‘IF channels’ in
AIPS terminology); each window consists of a number of channels separated by a fixed increment in sky
frequency (though this increment can vary with time). Similarly there can be several measured wideband
correlations, simply called wideband channels.

It is quite common, when analysing, plotting or mapping visibility data, that you will want to perform
some averaging and selection of the desired channels, and you might wish to examine either the spectral
or the wideband data. For the spectral data, if the channel number does not correspond reasonably
directly with velocity (e.g. if Doppler tracking was not used), then it might be desirable to resample the
spectral data at equal increments in velocity.

The ability to select a range of wideband or spectral channels, to perform averaging, and to resample
in velocity is provided by the ‘line’ parameter – also called the linetype. If your data contain multiple
spectral windows, you should also refer to Section 5.6 for more information on spectral channel selection.

The linetype parameter consists of a string followed by up to four numbers. Defaults will be used for any
trailing part of the linetype specification that is missing. The string can be one of:

channel This gives raw or averaged spectral channels. This is generally the default if spectral data are
present. As all ATCA data are treated as spectral data, this will be the most commonly used
linetype.

wide This gives raw or averaged wideband (continuum) data. This is the default if only wideband data
are present. Probably this will be of no interest to ATCA users.

velocity This gives spectral data, that have been resampled at equal increments in radio velocity (or
equivalently frequency). The resampling operation is a weighted average of spectral channels. See
Section 16.8 for more information.

felocity This is like velocity, but allows the velocity parameters to be given using the optical defi-
nition. Note, however, that the resampling operation is still in equal increments in frequency (or,
equivalently, radio velocity). Because of the difference between the radio and optical velocity def-
initions, equal increments in radio velocity are not quite equal in optical velocity, and visa versa.
The velocity increment that you give is used as the optical velocity increment of the first channel.

5-4 CHAPTER 5. VISIBILITY DATA CONCEPTS

The accompanying four numbers are used to specify the range of input channels selected and averaged
to produce the output channels. The four numbers are:

nchan, start, width, step

For channel and wide linetypes, start, width and step are channel numbers (channels are numbered from
1 to N), whereas for velocity and felocity linetypes these values are in km s−1 (the velocity is relative
to the rest frame – usually LSR). These values are

nchan The number of output channels produced. Generally it defaults to the maximum number of
channels that can be produced from the input data. A value of zero can also be used to give you
the default.

start For channel and wide linetypes, the start value is the first input channel to be selected. For
velocity and felocity linetypes, start is the centre velocity of the first output channel to be
formed. The default value is 1 channel.

width This value determines the width of the selected channels. For channel and wide linetypes, this
gives the number of input channels to average together to produce a single output channel. For
velocity and felocity linetypes, this gives the velocity width (in km s−1) of the output channels.
The default value is again 1 channel.

step This parameter gives the increment between channels. For channel and wide linetypes, this gives
the increment between selected input channels. For velocity and felocity linetype this gives the
velocity increment between the output channels. This defaults to the same value as width.

For example

line=channel,10

selects 10 output channels, being input spectral channels 1 to 10. Similarly

line=channel,10,8,1,2

again selects 10 output channels, starting at input spectral channel 8, and skipping every second input
channel. If you wanted to average together every pair of channels (rather than skipping it), you would
use something like

line=channel,10,8,2,2

Finally a linetype of:

line=velocity,10,1.5,1.0,3.0

would return 10 ‘velocity’ channels with velocities centred at 1.5, 4.5, 7.5, etc. km s−1. Each channel
would have a width of 1 km s−1.

When using velocity, felocity or channel linetypes on datasets with multiple spectral windows,
window selection, as described in the following sections, may be useful.

Some tasks require two linetypes, the first being the linetype of the data, and the second the linetype of
a single reference channel (see e.g. invert). When specifying a reference linetype, you do not give the
nchan (it is always 1) or step (it makes no sense for a single channel).

5.5. SELECTING UV DATA IN MIRIAD 5-5

5.5 Selecting UV Data in MIRIAD

It is common to wish to process only a subset of the possible visibility data. In MIRIAD, the visibility
data to be selected are usually specified by one parameter – the select keyword. This parameter is
constructed from a number of subcommands, each subcommand selecting or rejecting visibility data
which satisfies some condition. The subcommands, which can be abbreviated to uniqueness, are as
follows:

time(t1,t2) This selects visibilities observed between times t1 and t2. Times are given in UT. The second
time (t2) is optional. If missing, it is assumed to be 24 hours after t1.

The time is composed of a date and ‘time-of-day’ portions, either of which can be omitted (but not
both at the same time!). When the date is omitted, then the selection matches data, for the given
time-of-day, regardless of the day. This is most useful for files containing only a single day’s data.
When the time-of-day is omitted, then 00:00 is assumed.

The times t1 and t2 are given in the form:

yymmmdd.fff

or

yymmmdd:hh:mm:ss.s

Here yy is the year, mmm are the first three letters of the month’s name, dd is the day of the month,
fff is a fraction of a day, hh is the hour (24-hour clock), mm are the minutes, and ss.s are seconds
and fractions of a second. The ‘time-of-day’ portion can be abbreviated. For example, the seconds
part can be omitted. Indeed (provided a date is given) the ‘time-of-day’ portion can be totally
omitted if desired.

Note that only a two-digit year is given. These two digits give a year in the century 1940 – 2040.

For example:

90jan12:12:30

is 12:30 on 12 January, 1990, whereas

78jun03.5

is midday on 3 June, 1978, and finally

00apr01

is April Fools Day in the year 2000.

To give some examples:

select=time(91jan05:10:50,91jan05:17:20)

will select data observed on 5th January, 1991, between 10:50 UT to 17:20 UT.

The form where no date is given:

select=time(10:50,17:20)

will select data observed on any day between 10:50 and 17:20.

To give an example where only one time is given, the following

select=time(91jan03)

will select all data observed on 3rd January, 1991. This form is only useful for a file containing
several days of data.

5-6 CHAPTER 5. VISIBILITY DATA CONCEPTS

antennae(a1,a2,...)(b1,b2...) This selects according to the antennas and baseline. Here a1,a2,... is a list
of antennas to select. The second list, b1,b2,... is optional. If present, only baselines corresponding
to the antennas pair (a1,b1), (a1,b2), ..., (a2,b1), ..., etc are selected. For example, to select all
visibilities using antennas 1 or 3, use

select=antennae(1,3)

To select all visibilities using baselines with antennas 1 and 2, or 3 and 2, use

select=antennae(1,3)(2)

uvrange(uvmin,uvmax) This selects visibilities whose u−v radius is in the range uvmin to uvmax. If only
one value is given, then uvmin is taken as zero. The units of uvmin and uvmax are kilowavelengths.

uvnrange(uvmin,uvmax) This is the same as the uvrange subcommand, except that the units are
nanoseconds.

visibility(n1,n2) This selects visibilities numbered n1 to n2 inclusive.

increment(inc) This selects only every inc’th visibility.

ra(hh:mm:ss1,hh:mm:ss2) Select visibility data within a particular range of right ascension. Right as-
cension is given in hh:mm:ss format, or as decimal hours.

dec(dd:mm:ss1,dd:mm:ss2) Select visibility data within a particular range of declination. Declination is
given in dd:mm:ss format, or as decimal degrees.

dra(p1,p2) For data files containing several pointing centres, this selects visibilities whose pointing centre
is offset, in RA, from the main pointing centre, by between p1 and p2 arcseconds.

ddec(p1,p2) For data files containing several pointing centres, this selects visibilities whose pointing
centre is offset, in DEC, from the main pointing centre, by between p1 and p2 arcseconds.

pointing(p1,p2) For data files containing rms pointing error data, this selects visibilities with the rms
pointing error in the range p1 to p2 arcseconds. If only one number is given, p1 is taken as 0. The
rms pointing error of a visibility is taken as the maximum of the rms azimuth and rms elevation
pointing errors of the two antennas.

source(srcnam1,srcnam2,...) For data files which contain multiple sources, this selects data according
to source name. Several source names can be given, separated by commas. The source name can
include an asterisk, which acts as a wildcard.

frequency(loval,hival) This selects data according to the sky frequency of the first channel. The loval
and hival values give the permissible range, in GHz, of frequencies to accept. If only a single value
is given, then this is used as a mid-frequency, and frequencies within a tolerance of 1% are accepted.

amplitude(x,y) Any correlation, where the amplitude is between x and y, is processed. If only one value
is given, it is assumed to be x, and y is assumed to be infinity.

window(w1,w2,...) This can be used when the dataset contains multiple spectral windows (or IF bands
in AIPS terminology). This is discussed in Section 5.6.

shadow(d) This selects data that would be shadowed by an antenna of diameter d meters. If d is zero,
then the actual diameter of the antennas (if known) is used. If some data is shadowed, it is advisable
to use an antenna diameter value greater than the physical antenna size (e.g. 20% larger).

auto This selects auto-correlation data only. So the negated form (-auto) selects cross-correlation data
only.

on This is intended for use with beam switched single dish observations, and selects based on the ‘on’
variable in the visibility dataset. The ‘on’ variable indicates whether the telescope is pointing on
or off source.

5.5. SELECTING UV DATA IN MIRIAD 5-7

bin(n1,n2) This selects visibilities whose pulsar bin number is in the range n1 to n2 inclusive. If n2 is
omitted, just bin n1 is selected.

polarization(a,b,c,...) This selects based on the polarization/Stokes type of the visibility. The possible
values for a,b,c, etc. are mnemonics for the polarization type, as discussed in Section 5.8.

or This is discussed below.

As noted before, all subcommand names can be abbreviated to the minimum number of characters needed
to keep them unambiguous (minimum match).

Each subcommand can be prefixed with a plus or minus sign (+ or -). A plus sign means to select the
data given by the following subcommand, whereas a minus sign means to discard the data. If neither a
plus nor a minus sign is present, a plus sign is assumed. For example

select=uvrange(0,10)

means to select all visibilities between 0 and 10 kilowavelengths, whereas

select=-uvrange(0,10)

selects all data except visibilities between 0 and 10 kilowavelengths.

Several subcommands can be combined on the same line, separated by commas. When combining several
subcommands of different types, the visibility must be selected by all the subcommands to be accepted
(a logical AND). When combining several subcommands of the same type, then the visibility is accepted
if it is selected after sequentially examining each of the subcommands (a logical OR). For example:

select=uvrange(0,10),uvrange(20,30)

selects data with a u−v radius in the intervals 0 to 10 kilowavelengths as well as 20 to 30 kilowavelengths.
The following uses a ‘select then discard’ approach to selecting the same u − v ranges as above:

select=uvrange(0,30),-uvrange(10,20)

The following selects the same u − v ranges, but only for the baseline between antennas 1 and 3.

select=uvrange(0,10),uvrange(20,30),antennae(1)(3)

The following selects all baselines, with the exception of 1-2, 5-7 and 6-7:

select=-antennae(1)(2),-antennae(5,6)(7)

Another way of combining subcommands, is with the or subcommand. This allows you to OR together
two ‘clauses’ of selection commands. For example, to select spectral windows 1 and 2 for the times 0:00
to 1:00, and spectral windows 4 and 5 for times 2:00 to 3:00, use:

select=time(0:00,1:00),window(1,2),or

time(2:00,3:00),window(4,5)

By combining the various subcommands and the or subcommand, quite complex selection criteria can
be developed. For complex selections, an @ file (as described in Section 2.5) may be preferred.

For example, consider a file, select.data, containing the text:

time(1:00,2:00),window(1,2),or

time(2:00,3:00),window(1,2),-uvrange(50,100),-antennae(1)(3),or

time(3:00,4:00),window(1,2,3,4)

5-8 CHAPTER 5. VISIBILITY DATA CONCEPTS

Then

select=@select.data

will use windows 1 and 2 for time 1:00 to 2:00, and windows 1, 2, 3 and 4 for times 3:00 to 4:00. For
time 2:00 to 3:00, it uses windows 1 and 2, but omits data for baseline 1-3 which has a u− v range of 50
to 100 kilowavelengths.

There are a few limitations on the use of amplitude, polarization and window selection. Some of these
limitations are mentioned in following sections, whereas others are not. Few of these limitations affect
normal practice, and the selection software will inform you if there is an problem.

5.6 Spectral Window Selection

A MIRIAD visibility dataset can contain simultaneous observations at multiple spectral bands, or
spectral windows. These are called ‘IF-bands’ in AIPS. When there are multiple spectral windows,
channels are still numbered from 1 to N , where channel 1 is the first channel of the first spectral window,
and channel N is the last channel of the last spectral window. That is, channel numbering takes no
regard of spectral window boundaries.

When there are multiple spectral windows, it is often convenient to be able to select based on the spectral
window, rather than a channel range. This is achieved with select=window, which selects data from a
set of spectral windows. The general form is

select=window(w1,w2,...)

where w1, w2, etc, are spectral window numbers. For example, selecting the data from spectral windows
1, 2 and 3 would be achieved with

select=window(1,2,3)

Spectral window selection and velocity/felocity linetypes are quite complementary. The different
spectral windows might correspond to different spectral lines with different rest frequencies, and so it
is desirable to select only a subset of spectral windows (those corresponding to a given spectral line) in
forming the output velocity channels.

Spectral window selection is not particularly complementary to channel linetype processing – both select
a range of input channels. When line=channel and select=window are used together, the total apparent
number of input channels is equal to the number of channels in the selected spectral windows, and the
start channel number of the line parameter is relative to the first selected spectral window. For example,
if there are multiple spectral windows, then

select=window(2)

line=channel,1

would select just the first channel of the second spectral window. Similarly

select=window(2)

line=channel,10,8,1,2

would select 10 channels, being every second channel starting at the 8th channel of the second spectral
window.

There are some restrictions on the use of spectral window selection.

• For channel linetype, the selected spectral windows must be contiguous. For example, you cannot
select just windows 1 and 3. This restriction is relaxed by some tasks, most notably uvcat.

5.7. SELECTION AND MULTI-SOURCE/MULTI-FREQUENCY DATASETS 5-9

• For channel linetype, window selection cannot be used with or selection.

• For velocity/felocity linetype, if both window and or selections are used, then there should be a
window selection within each or clause. Additionally only one of the or clauses should be satisfiable
for a given visibility. For example, consider the following:

select=time(0:00,1:00),window(1,2),or

time(0:00,2:00),window(3,4)

Here data in the times 0:00 to 1:00 could have been selected by either of the two clauses. There is
no guarantee as to which of the two window subcommands will be used during this time interval.

5.7 Selection and Multi-Source/Multi-Frequency Datasets

Having no distinction between single- and multi-source files has the advantage that all visibility tasks
can manipulate any visibility dataset. However manipulating a dataset with, say, several sources can
require more care on the part of the user. For example, it rarely makes sense to make an image using
data from several sources. Generally the user is given reasonable flexibility to perform whatever s/he
deems appropriate – but this has some disadvantages. For example, consider determining calibration for
an observation where the calibrator (a point source) and the program source are within the one dataset.
In deriving the antenna gains, you would want to select only the data from the calibrator, whereas when
imaging you would select only the data from the program source. The visibility selection mechanism (see
Section 5.5) handles this situation. But to forget to select the appropriate data (calibrating with data
including the program source, or imaging including the calibrator) would result in a mess.

Thus, for example, if the calibrator was 0823− 500, and the program source was vela, one would use

select=source(0823-500)

and

select=source(vela)

to select the appropriate source.

The selection criteria most appropriate for datasets containing multiple sources, frequencies and mosaiced
pointing centres are source, frequency, window, ra, dec, dra and ddec.

Other examples of using the select keyword are given below:

SELECT

select=window(2) Select only data from the 2nd IF
select=freq(4.74) Select data where the frequency of the first

channel is 4.74 GHz (±1%)
select=ra(05:30,06:00) Select visibilities with RA between 5:50 and 6:00

hours.
select=dra(0),ddec(0) Select data from only the central pointing (delta

RA and DEC of 0) of a mosaiced observation.
select=source(vela) Take data for source vela only
select=window(2),freq(4.74) Select data from the 2nd IF where its frequency

is 4.74 GHz.

5.8 Polarization/Stokes Handling (stokes and select)

The visibility datasets possibly contain correlations for different polarizations and Stokes parameters.
There are two basic ways that polarization characteristics can be measured: firstly, two orthogonal feeds

5-10 CHAPTER 5. VISIBILITY DATA CONCEPTS

can be present on the antennas, and the four different polarization correlations from a baseline can be
taken and recorded. Alternatively only one feed may be present, which can be rotated, or there are not
enough correlators to calculate all four polarization correlations simultaneously. The first approach,
used by the ATCA, allows all polarization parameters to be measured simultaneously. The second
forces a ‘time-sharing’ approach, where the feed or correlator must be switched between measuring one
polarization to another. With the four simultaneous measurements, it is possible to convert a visibility
from raw polarization parameter to a Stokes parameter. With the time-shared mode, this is not directly
possible. These two different scenarios mean that two very different suites of software are needed to
obtain Stokes parameters.

In MIRIAD, each different polarization/Stokes measurement is treated as a separate visibility (this
differs from the AIPS approach – which does not really support the time-shared approach to polarization
measurement). So if a baseline measures four simultaneous polarization correlations, then four ‘visibilities’
will be produced for this baseline, per integration interval. In this case, each visibility will be tagged
(with a u − v variable pol) to indicate the polarization type.

There are two ways the user can determine which polarizations he or she wants to process, either with
the select parameter, or with the stokes parameter.

The select approach selects visibilities purely on the basis of their polarization or Stokes parameter. It is
a normal part of the u−v selection process, as described in the previous section. The select mechanism
cannot convert from raw polarization parameters to Stokes parameters. It just selects visibilities, in the
file, based on their polarization. The general form is:

select=polarization(a,b,c,...)

where a,b,c etc can be one of the mnemonics

• For Stokes parameters: i, q, u, v

• For circular polarization parameters: rr, ll, rl, lr

• For linear polarization parameters: xx, yy, xy and yx

Using the stokes approach is superficially similar, in that it causes only certain polarization/Stokes
parameters to be processed. However, with the stokes approach, the software can perform conversion
between raw polarizations and Stokes parameters if required. It also insists that all the requested polar-
ization/Stokes parameters are calculable, at a given time, before it will allow any of them to be processed.
For example, if the user requests Stokes I and V, and the dataset contains linear polarization data, then
all four of xx, yy, xy and yx polarizations must be present for I and V to be returned.

The general form of the stokes approach is:

stokes=a,b,c,...

where a,b,c etc, can be one of the mnemonics given above (i, q, u, v, rr, ll etc).

The stokes can also take the values ii, qq and uu:

• Mnemonic ii returns Stokes-I given the assumption that the source is unpolarised. For example
MIRIAD would not return any data if you requested stokes=i and the dataset contains only, say,
xx (xx is not Stokes-I for a polarised source). How if you requested stokes=ii in this situation, the
xx data would be passed through, because you have told MIRIAD that the source is unpolarised.
Many tasks use stokes=ii as their default.

• Mnemonic qq and uu returns Stokes-Q and Stokes-U given the assumption that the parallactic angle
is 0. These quantities are rarely of astronomical interest, but they are useful to investigate some
instrumental effects.

5.8. POLARIZATION/STOKES HANDLING (STOKES AND SELECT) 5-11

The select mechanism is usually used for time-shared polarization measurements, whereas the stokes

mechanism is usually used where there are simultaneous measurements. However this is not a hard and
fast rule. The two approaches generally cannot be used at the same time. Some tasks will prohibit the
use of the select approach altogether (they will give error messages if you attempt to), whereas others
are more lenient. The rules which determine whether you can or cannot use the select approach are
quite arcane and can be file dependent. Check the documentation for each task, especially if both select

and stokes parameters are present. If polarization selection is not allowed, then increment selection
will also be prohibited (due to some arcane quirk).

5-12 CHAPTER 5. VISIBILITY DATA CONCEPTS

Chapter 6

Image Data Concepts

6.1 Image Datasets

Most of the items which are used to build up an image follow a FITS-like convention. For example the
number of axes in an image is given by the naxis item, whereas the number of pixels along each axis is
given by item naxisi. Three exceptions are the image, mask and history item. The image item contains
the pixel data, stored as floating point numbers. The mask item, if present, contains a bit-mask used for
pixel blanking – MIRIAD does not use magic value blanking like AIPS. Finally the history item
contains a text file describing the history of the dataset.

A complete list of the items that are potentially contained within an image dataset is given in Appendix B.

6.2 Image Coordinate Systems

MIRIAD correctly handles a variety of image coordinate systems (the mapping between pixel and
physical coordinates) in a correct fashion. The coordinates (and their description within the dataset) are
treated in a fashion similar to AIPS (see Eric Greisen’s AIPS memo No. 27, “Non-linear coordinate
systems in AIPS”).

6.3 Image Region of Interest (region)

Most image-related tasks can process a subset of the pixels in an input image. Depending on the task,
the selected pixels may either be a fairly arbitrary region, or only a regular subimage of the input image.

The task parameter, region, which gives the region-of-interest consists of a combination of subcommands.
Each subcommand specifies either a subregion or the units of the coordinates used in subsequent sub-
commands.

The subregions selected by multiple subcommands are effectively ‘OR-ed’ together to form the overall
region. That is, the overall region selected is the ‘union’ (not intersection) of the subregions.

For comparatively simple regions, combining subcommands is quite adequate. However for complex
regions, a cursor-based program, cgcurs, may be the most convenient for generating the subcommands.

Region specification is composed of one or more of the following subcommands. Each subcommand can
be abbreviated to uniqueness, and subcommands are separated by a comma.

images(z1,z2) This selects the image planes z1 to z2 inclusive. z2 is optional, defaulting to the same
value as z1.

6-1

6-2 CHAPTER 6. IMAGE DATA CONCEPTS

quarter(z1,z2) This is somewhat like the images command, except that it selects only the central
quarter of each plane. Both z1 and z2 are optional.

box(xmin,ymin,xmax,ymax)(z1,z2) This subcommand selects the pixels within a box whose corners are
xmin, ymin,xmax and ymax. z1 and z2 are optional, and are the same as in the image subcommand.
If the (z1,z2) part is missing, a default is used (generally all planes are selected).

polygon(x0,y0,x1,y1,x2,y2,...)(z1,z2) This gives the vertices of a polygon.

box(xmin,ymin,xmax,ymax)

is equivalent to

poly(xmin,ymin,xmax,ymin,xmax,ymax,xmin,ymax).

z1 and z2 are the same as with the images and boxes subcommands.

mask(name) This selects pixels according to the mask given by the mask item in the dataset name.

The units used for the coordinates are controlled by the following subcommands:

abspixel Subsequent coordinates are given as absolute pixel values (i.e. values ranging from 1 to
NAXISi - see prthd or itemize). This affects image coordinates and the coordinates along the
third dimension. This is also the default.

relpixel Subsequent image coordinates are relative to the reference pixel, as defined by the header of
the map of interest. Use prthd to see the reference pixel is (CRPIXi).

relcenter Subsequent image coordinates are relative to the central pixel of the image. This is somewhat
like the relpixel command, but used the image centre, rather than the reference pixel.

arcsec Subsequent image coordinates are given in arcseconds, and are relative to the reference pixel of
the map of interest.

kms Subsequent coordinates in the third dimension are given in km s−1.

For example, to specify a 21× 21 region, centred on the reference pixel, use:

region=relpix,box(-10,-10,10,10)

or to give a 10× 10 region in the lower left corner of the image, use

region=box(1,1,10,10)

If there are multiple maps in the file, use

region=box(1,1,10,10)(1,2)

to select the first 2 maps.

The region-of-interest specifications can become rather involved, when complex regions are used. As with
visibility data selection, @ files (see Section 2.5) are a convenient way to store these.

There are some warnings for those accustomed to the select visibility data selection method:

• The subcommands of a region of interest are logically OR’ed together, whereas in the visibility data
selection it is a logically AND. For u − v select the logical OR must be explicitly given by use of
the or subcommand.

• The subcommands do not allow a plus or minus prefix, like the visibility data selection does.

Chapter 7

Reduction Strategies

Here we give an overview of the reduction process, and review some of the basic decisions that you will
have to make during the reduction of the data. We now consider some questions that you should ask
yourself before the reduction process.

• Is this observation more than a single-pointing, continuum experiment? Hopefully the answer to this
is obvious! This manual contains special chapters addressing the reduction of spectral line (Chap-
ter 16), mosaic (Chapter 21) and pulsar-bin mode (Chapter 24) observations. You are encouraged
to review appropriate chapters before you start reducing your data.

• Will I want to deconvolve my images? Deconvolution is the process of removing artifacts due to
the incomplete sampling in the u − v plane. You will want to deconvolve for observations where
the source is stronger than a few times the noise limit. That is, unless you are doing a detection
experiment, you are likely to want to deconvolve. Deconvolution is addressed in Chapter 14.

• Will I want to self-calibrate the data? Self-calibration is the process of determining the antenna-
based gain function from the source itself. For this to be possible, your signal needs to be about 5 to
10 times stronger than the thermal noise when integrated over the self-calibration solution interval
(typically 15 seconds to 5 minutes). For the ATCA in continuum mode, this means a source which
contains at least 100 to 200 mJy in most baselines. Self-calibration is discussed in Chapter 15.

• As I have a continuum experiment, do I want to use multi-frequency techniques? Even in continuum
mode, the ATCA produces multiple channels of data. As the fractional bandwidth can be quite
significant, you may be making a significant approximation if you average all these channels into
a single channel (the so-called ‘channel-0’ dataset). The result will be poorer u − v coverage and
bandwidth smearing. If you are interested in high dynamic range imaging, or if a good beam is
important, and you are observing at 21, 13 and possibly 6 cm, then it is best not to average your
data into a single channel. Rather you can calibrate and form a single image directly using the
multichannel data. This practise is known as multi-frequency synthesis.

Multi-frequency synthesis can be taken a few steps further with the ATCA. As two IFs can be
measured simultaneously, these two IFs can be combined in the imaging stage to further enhance
both sensitivity and u − v coverage. As the ATCA can frequency switch rapidly, it is possible to
time share between different frequency settings. This involves a trade-off between tangential and
radial u − v gaps.

• Should I average my data in time or frequency? The reason to average your data is to reduce you
disk consumption and to increase the speed of the various processing programs. If these practical
considerations are important, you may consider averaging your data in time and frequency. In this
case, you probably want to do this as early as possible in the reduction process – after the initial
flagging.

Frequency averaging is generally only applicable for continuum experiments and only if you are
not going to be doing multi-frequency synthesis. You might also think twice about averaging if

7-1

7-2 CHAPTER 7. REDUCTION STRATEGIES

interference was a problem during the observation. You may have to go back and do some more
flagging later.

Averaging in time can be performed when observing with short arrays (i.e. when the 6 km antenna
is not used). A conservative rule is that you should not average longer than 90/d seconds, where
d is the array length in km. If you observe with a short array and are not interested in long
baselines for the program source, you probably still want to use antenna 6 when determining the
initial calibration. Despite this, d is the array length of interest for the program source, not the
calibrators. Nor should you average for longer than the antenna-gain solution interval (unless you
have finished calibrating, and are not going to self-calibrate). If you have a strong source, and the
phase stability is poor, you should not average in time.

Both averaging in frequency and time are performed by uvaver (see Section 10.4).

Figure 7.1 gives a flow chart of the normal steps involved in reduction of ATCA data. Note that this is
somewhat abbreviated by necessity – additional flow-charts in subsequent chapters give more detail and
describe some of the variations.

We will now consider each step in the flow-chart in turn.

1. Data from the ATCA is written in “RPFITS” format – an ATNF-specific format – and a special
task (atlod) is needed to read it. Loading your data into MIRIAD is described in Chapter 8.

2. Data editing (flagging) can be very time consuming, especially if you do are affected by interference.
The MIRIAD flagging tasks are described in Chapter 10.

3. The actual calibration steps can be the most confusing steps, as there are a large variety of paths
that can be followed. Only the most frequently trodden paths are described in Chapter 12.

4. The task invert takes a visibility dataset and forms either a single image or an image cube (for
spectral-line observations). It also produces a point-spread function (dirty beam), ready for decon-
volution. See Chapter 13

5. The main deconvolution tasks are clean, maxen and mfclean. Task clean, which is the most
commonly used, attempts to decompose your image into a number of delta functions. It can be
slow for images with a large amount of extended emission. An alternative to clean is maxen,
a maximum entropy-based deconvolution task. It tends to be less robust and more difficult to
run correctly. A third alternative is mfclean. This is a derivative of the CLEAN algorithm, and
simultaneously determines a flux density and spectral index image. It is only appropriate for multi-
frequency synthesis experiments when more than one observing band has been used.

The deconvolution tasks are described in Chapter 14.

6. As noted above, self-calibration is useful for determining antenna gains directly from a strong
program source. It is described in Chapter 15.

7. The deconvolution tasks produce an output image that is in units of flux density per pixel. That
is, the outputs are CLEAN component images. Task restor converts these to flux density per
CLEAN beam, and adds back the residuals. This is covered in Chapter 14.

8. At last, you are ready to display and think about your images!

7-3

Miriad

ATLOD

Flagging

Analysis

INVERT

Calibration

RESTOR

SELFCAL

Display and

CLEAN
MFCLEAN

MAXEN

Chapter 8

Chapter 10

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 14

Chapter 17-19

Figure 7.1: ATCA Data Reduction Strategy

7-4 CHAPTER 7. REDUCTION STRATEGIES

Chapter 8

Getting Data In and Out of
MIRIAD

8.1 ATLOD: Reading RPFITS Files

ATCA data will be initially in RPFITS format. This needs to be converted to MIRIAD’s format, by
task atlod, before any further processing can be done. We will discuss the various input parameters to
MIRIAD atlod.

• The in parameter gives the name of the input UNIX file, or files, to load. Many files can be given,
and wildcards are supported.

RPFITS files are commonly archived on CDROMs: a CDROM appears much like a disk to the
operating system, and atlod can load RPFITS files directly off these. To use a CDROM drive, first
check that the drive is not in use (an orange light flashing). On Solaris to load a CDROM, press
the Open/Close on the front of the drive, place the CDROM in and again press the Open/Close
button. After about 10 seconds, the operating system will mount the CDROM, and it can be
accessed. CDROMs written at the ATCA will have the RPFITS data in the directory

/cdrom/cdromx/DATA

where x is 0 for the first drive of a machine, 1 for the second, etc (you can do a directory listing to
see what you have – its like a normal file system!). You can set the in parameter to the RPFITS
files in this directory. For example, to select all files belonging to project C561 (assuming you are
using the first CDROM drive), use

in=/cdrom/cdrom0/DATA/*.C561

When you are done with a CDROM drive you eject it with the Solaris UNIX command

eject cdrom

(the Open/Close button will not work).

RPFITS files are (or at least were once) commonlywritten to exabyte tapes. Unlike otherMIRIAD
tasks, atlod can read exabytes directly. In this case you should use the physical device name as
the input name. This is usually displayed on the exabyte drive. On the Epping Solaris systems,
the device name is usually /dev/rmt/0lbn or similar (this is the so-called non-rewinding, raw, BSD
compatibility interface). On older Solaris systems, it may be /dev/nrst4 or something similar
(non-rewinding, raw interface).

An alternative to directly reading from exabyte is to load the data to disk with the Unix commands
ansiread or ansitape, which are available on a number of the ATNF systems. See the UNIX man

pages for more information.

8-1

8-2 CHAPTER 8. GETTING DATA IN AND OUT OF MIRIAD

• The out parameter gives the name of the output MIRIAD visibility dataset. There is no default.

• The options parameter gives miscellaneous processing options. thatfairly It is important to Several
values can be given, separated by commas. As loading RPFITS data can be time-consuming
(particularly when loading from exabyte), and as the right options for atlod can save considerable
disk space, it is sensible to spend a few moments thinking about the correct options to use. A few
sets of permutations of the options will be appropriate with most observations. These include:

– For continuum: options=birdie,xycorr or options=birdie,reweight,xycorr. See below
for a discussion on whether to use reweight or not.

– For non-polarimetric line: options=birdie or options=birdie,compress or options=birdie,hanning
or options=birdie,compress,hanning. See Section 16.3 for more on using atlod with spec-
tral line data and Section 24.2 for high time resolution bin-mode data.

Possibilities options are:

birdie: The ATCA suffers from self-interference at frequencies which are a multiple of 128 MHz.
The birdie option flags out the channels affected by this self-interference. This option is
strongly recommended.

Additionally, in the 33 channel/128 MHz mode, the birdie option also discards some edge
channels and every other channel. This operation does not incur a sensitivity penalty, as
correlator channels are not independent in this mode. The net result is that the output
consists of either 13 or 14 good channels.

xycorr: In polarimetric correlator configurations, the ATCA makes an on-line measurement of the
phase difference between the X and Y channels. Although it is generally only a few degrees
(assuming the observation was correctly set-up), this phase difference should be corrected when
doing polarimetric work. Since a hardware upgrade in November 1992, the recommendation
has been that the on-line measurements should be applied, without averaging, using the xycorr
option in atlod. For data prior to November 1992 – seek expert advise.

reweight: In the 33 channel/128 MHz mode, a Gibbs phenomena (see Albert Bos in the Indirect
Imaging proceedings) affects the ATCA. This introduces a non-closing error into the data.
The effect is moderately subtle, and is not significant for dynamic ranges of less than about
500. The ‘reweight’ option reweights the visibility spectrum in the lag domain to eliminate
this problem.

This option is recommended for high dynamic range work (more than about 500). However,
the option also reduces the effectiveness of the birdie option to reject self-interference. This
can be a significant effect for 20cm continuum observations, where the usual observing band
straddles the 1408 MHz birdie. Particularly at 20cm, the reweight option is not recommended
where dynamic ranges of less than 500 are expected.

compress: Normally the correlation data are stored as 32-bit floating point numbers. Alternatively,
the compress switch can be used to instruct atlod to store the correlations as 16-bit integers,
with a scale factor associated with each spectrum. This approximately halves the disk space
occupied by a dataset, and so may be very advantageous for large spectral-line observations.

hanning: Hanning smooth the data, and discard every second channel. This can be useful for
spectral line experiments. Task atlod will refuse to Hanning smooth data with 33 channels
or less.

bary: Use the barycentre (often called heliocentre and usually used for extra-galactic work) as
the rest frame when calculating velocity information. The default is to compute velocity
information relative to the LSR frame (which is usually used for Galactic work).

hires This option may be appropriate for observations using the ATCA’s high time resolution bin
mode. See Chapter 24 for more information.

opcorr: This option corrects the visibility data for atmospheric opacity. It is since October 2003
that there is sufficient information in the visibility dataset to allow this. This options should not
be used for 3mm data. Generally it is relevant for 12mm observations only. See Sections 22.1
and 23.4 for more information.

8.1. ATLOD: READING RPFITS FILES 8-3

samcorr: Correct the measured visibilities for bad sampler statistics. Normally the samplers adjust
their various threshold levels to ensure optimal operation. However various transients can
cause the sampler levels to be wrong. All is not lost – you can correct the data for the
imperfect sampler levels after the fact. Use the samcorr (sampler-correct) option for this, and
is the recommended approach for data observed before December 1993. Since December 1993,
sampler correction has been done automatically on-line. For this data, the samcorr option is
(quietly) ignored.

relax: This option is generally not recommended. Normally atlod flags data if it has not previously
read the appropriate calibration record or if the information in the calibration record suggest
the data are bad. Although calibration records generally precede the data, there are some
instances when this is not the case, and the data are still good. In this case, the relax option
causes atlod to be more lenient, and not flag the data.

unflag: Normally atlod will discard a visibility record (i.e. not write it to disk) if all the data in
it are flagged bad. Flagging usually indicates that there was significant reason to suspect the
data – for example the telescope was not on source or was off-line, etc. The unflag option
causes all data to be saved to disk, although flagged data is still marked as such. This option
is generally not recommended, although the disk-space penalty for using it is often modest.

noauto and nocross cause atlod to discard any autocorrelation or cross-correlation data respec-
tively. Its fairly unlikely that you will want to discard the cross-correlation data!

noif: When there are multiple frequency bands being observed simultaneously, MIRIAD nor-
mally maps the frequency bands to its spectral windows (IF axis in AIPS terminology), and
writes them out in a single record. Alternatively, using the noif switch causes atlod to
write the simultaneous frequencies as sequential records, making it appear somewhat like a
frequency-switch. You will need to use the noif option if you have two spectral windows which
sample different polarization parameters.

nopflag: If at least one polarization of a set of 2 or 4 polarimetric spectra are bad, atlod normally
flags all of the polarizations. With this option only the nominally bad spectrum is flagged.

• nscans gives two numbers which are the number of scans to skip over (before processing), and the
number of scans to save. The default is to save all scans.

• nfiles, like nscans, gives two numbers, which are the number of files to skip and process. This
parameter is only really useful when reading from exabyte. The default is to process the first file
only. Note, however, that the mechanism used to skip files is rather inefficient. If you wish to skip a
large number of files, you should do this with the Unix command mt. A complication is that every
RPFITS file appears as three files to mt – so you will want to skip three times as many tape files
as RPFITS files. For example, to skip 10 RPFITS files, you would use the Unix command

mt -f /dev/nrst4 fsf 30

See the Unix man page on mt for more information.

Typical inputs for atlod are given below.

ATLOD

in=/dev/nrst0 Input is either exabyte name
in=92-06-10 2110.C159 or RPFIT file.
out=0823.uv Output visibility data set.
options=birdie,reweight,xycorr Normal continuum mode options, or
options=birdie,hanning,compress possible spectral line options.
nfiles=0,3 Skip 0, then read 3 files.
nscans Unset to save all scans

MIRIAD’s atlod saves a number of on-line measurements as visibility variables. These measurements
may by helpful in analysing and flagging the data. They can be plotted and listed with task varplt (see
Section 10.6). These on-line parameter, and its MIRIAD variable name, are described below.

8-4 CHAPTER 8. GETTING DATA IN AND OUT OF MIRIAD

xyphase: This is the on-line measurement of the XY phase. It is important to examine this measurement
if you are doing polarimetry.

xyamp: This is the amplitude of the correlation between the X and Y polarization channel of a given
antenna.

xsampler, ysampler: These variables give the sampler statistics for the
MMX and Y polarization channels. There are three numbers per antenna per IF, which reflect the
sampler levels. They should have values of 17.3, 50 and 17.3. Thus for six antennas, the xsampler

variable will consist of 18 numbers per IF.

xtsys, ytsys: These give the system temperature, in Kelvin, for the X and Y polarization channels.
Unfortunately MIRIAD tasks were originally developed around a single polarization model of a
telescope, and so most tasks that concern themselves with system temperature do not handle dual
polarization systems. The partial workaround used in MIRIAD has been to store the geomet-
ric mean of the X and Y system temperatures in the variable systemp. It is this variable that
MIRIAD tasks use when they need to use the system temperature value.

axisrms, axismax: These give the antenna rms and maximum tracking errors in a particular cycle. The
units are arcseconds.

airtemp,pressmb,relhumid,wind,winddir: These give various meterological measurements at the ob-
servatory as a function of time.

8.2 FITS Tapes and MIRIAD

MIRIAD has a single task, fits, to read and write FITS files – both visibility and image data. One
significant shortcoming of fits is that it cannot work directly from a tape device – the FITS file must
be on disk. The MIRIAD utility, tpcp, is needed to copy FITS files between disk and tape, whereas
the UNIX command mt might been needed to position the tape. See the appropriate MIRIAD help or
UNIX man pages on these commands. However, to copy from tape to disk, one would use

% tpcp device fits-file

Here device is the tape device. Typically it is something like /dev/nrst0. Note that you should always
use the “raw, non-rewinding devices” – that is devices whose names start with nr. The output is fits-file.

To write a FITS file to tape, use

% tpcp -b 2880 fits-file device

This causes an unblocked FITS file to be written (record length of 2880 bytes).

To move the tape to the end-of-tape, use

% mt -f device eom

To skip forward n files, use

% mt -f device fsf n

and to rewind, use

% mt -f device rewind

8.3. READING VISIBILITY FITS FILES 8-5

8.3 Reading Visibility FITS Files

For visibility data, the current version of fits can cope with both single- and multi-source files, with
single or multiple antenna configurations (earlier versions of fits were more limited). Flagging (FG)
tables are copied (if present), but the flagging specified by these tables is not performed. An additional
MIRIAD task, fgflag (see Section 10.2), must be invoked to apply the flagging tables. Task fits does
not read or use AIPS calibration tables (SN, CL, BP, and BL). Consequently if you want to preserve
your AIPS calibration, you will need to apply the relevant tables with AIPS SPLIT before writing the
FITS file.

fits can handle linearly and circularly polarized correlations, as well as correlations that have been
converted to Stokes parameters. In addition, it knows that the ATCA produces linearly polarized data.
Because AIPS does not handle linear polarizations well, it is common practice to label the linear polar-
izations of ATCA data as if they were circular. If fits finds data from the ATCA which is nominally
circularly polarized, it issues a warning, and relabels the correlations as linearly polarized.

Alternately, you could correct the polarization labelling explicitly within AIPS by changing the reference
value of the Stokes axis to −5. Do this with PUTHEAD. It is necessary to do this after SPLIT because it
puts them back to circulars !

AIPS/PUTHEAD

keyword = ’crval2’ Select the Stokes axis
keyvalue=-5 Change to -5 (XX)

By default the AIPS task to write FITS files, FITTP, writes to the directory /DATA/FITS. This directory
has a time-destroy limit of 1 day. Alternately you can set up an environment variable to direct FITTP

to write the FITS file to any directory. For example, after setting the environment variable MYAREA with
the UNIX command

% setenv MYAREA /DATA/ATLAS_1/miriad/rsault

you can direct FITTP to write into this directory, by setting the OUTFILE adverb appropriately. For
example:

> OUTFILE = ’MYAREA:MYUV.FITS’

will direct FITTP to write a FITS file MYUV.FITS in /DATA/ATLAS_1/miriad/rsault.

A quick way to set an environment variable to the current working directory is with the pwd command:

% setenv MYAREA ‘pwd‘

Note that the environment variable name must be in upper case, though the directory name itself need
not be.

MIRIAD handles only the new binary table format (donewtab=1 in FITTP). Typical inputs to AIPS
FITTP are:

AIPS/FITTP
doall=-1 One file at a time
outfile=’myarea:0823.fits’ Specify area and file name or
outfile=’0823.fits’ default to /DATA/FITS directory
dostokes=-1 No conversions
dotable=1 MIRIAD understands FITS tables
dotwo=-1 Single precision adequate
donewtab=1 Only the new tables can be handled
format=3 Floating point FITS. Values of 1 or 2 also OK

8-6 CHAPTER 8. GETTING DATA IN AND OUT OF MIRIAD

Using format=1 (16-bit integers) for visibility datasets with many channels will result in an output
MIRIAD dataset in compressed format. It also produces a much smaller FITS file – which may be
important if disk space is low. Note that FITS data compression is different from MIRIAD and AIPS
data compression. FITS compression uses one scale factor for the entire dataset, whereas MIRIAD and
AIPS compression uses one scale factor per visibility record.

In most cases converting the FITS file to MIRIAD format is straightforward. Apart from the op

parameter, which indicates the operation to be performed by fits (op=uvin is used to read in a visibility
FITS file), you need only supply the names of an input FITS and output MIRIAD dataset. Note that
MIRIAD follows the case conventions of the host operating system. Thus, under Unix, MIRIAD is
case sensitive, and so you must give the FITS file name in the correct case. As it has most likely come
from AIPS, the file name will usually be in upper case.

For spectral line observations, the velocity reference frame used in MIRIAD (and some other velocity
information) must be set when the visibility dataset is created. The default is to extract the appropriate
information from the FITS file. Alternatively, the velocity parameter can be used to override or alter
the velocity information given in the FITS file. See Chapter 16 for more information.

FITS
in=$MYAREA/0823.FITS Re-use your environment variable
in=/DATA/FITS/0823.FITS or give AIPS default directory; get case right
op=uvin Read in visibility data
out=0823.uv MIRIAD dataset name
velocity=lsr Compute info for LSR velocities, for

spectral line observations.

Leave everything else unset. Once fits has run to completion, you should see the new directory con-
taining the ‘items’ describing your visibility data.

Information Missing or Incorrect in FITS Files

fits knows enough about the ATCA and a select group of other telescopes to provide some nominal
values for parameters that FITS does not store – for example a system temperature of 50 K and a
system gain of 13 Jy/K are stored with ATCA data. fits also attempts to estimate the integration time.
Unfortunately given the information present in a FITS file, this integration time estimate is little better
than an educated guess. Task fits gives a message informing you of the values it is using. If you know
better values for system temperature, integration time, etc, than those guessed by fits, you may wish
to correct the stored values. This is largely so that any noise estimates produced by later tasks are in
more meaningful units. You can correct these with the task puthd. Task puthd writes an item into the
visibility dataset, which overrides the value of a visibility variable with the same name. The following
three parameter boxes show the inputs to puthd to correct the system temperature to 80 K, the system
gain to 11 Jy/K and the integration time to 15 seconds.

PUTHD

in=0823.uv/systemp Parameter is dataset name followed by ‘systemp’
value=80.0 Set to 80 K. Express it as a real number.

PUTHD
in=0823.uv/jyperk Parameter is dataset name followed by ‘jyperk’
value=11.0 Set to 11 Jy/K. Express it as a real number.

PUTHD
in=0823.uv/inttime Parameter is dataset name followed by ‘inttime’
value=15.0 Set to 15 sec. Express it as a real number.

8.4. WRITING VISIBILITY FITS FILES 8-7

AIPS FITS files from the ATCA sometimes contain other flaws which MIRIAD issues warnings about
– these can usually be safely ignored. These flaws include visibilities with zero weight, incorrect apparent
RA and DEC and circular polarizations from the ATCA.

AIPS Frequency Bugs

There are a number of bugs in AIPS which result in inconsistent or incorrect frequency information in the
FITS file. These frequency bugs tend to become apparent when using two simultaneous IFs, particularly
when the IFs are in different sidebands, or if one of the IFs is discarded at some stage. After reading
with fits, it is strongly encouraged that you examine the frequencies that MIRIAD determines from
the FITS file. Indeed it would be best if you checked these before writing a FITS file in AIPS, though
this is more difficult because the frequency information is spread rather widely in AIPS. In MIRIAD,
the easiest way to examine the frequency information is with task uvindex (see Section 10.3).

Errors in the FITS file frequency definition may affect the u − v coordinates, and so may affect the
RA/DEC scales on any images that might be produced from faulty visibility datasets.

One fairly innocuous AIPS frequency bug is that the bandwidth of ‘channel 0’ datasets can be wrong.
Leaving this uncorrected will invalidate error estimates generated by MIRIAD tasks – which is not a
major problem if you ignore these anyway!

Another, more serious, problem is that two locations in the FITS file give the “reference frequency” – the
header and the antenna table. In principle these should agree. However there are instances when they
will differ. Task fits will issue a warning when this happens, and will use the antenna table reference
frequency as the true reference frequency. In some cases this will be the correct frequency. In others it
will not.

There are two approaches to fixing the errors in the frequency definitions – either correct them in
MIRIAD (using puthd and uvputhd) after reading the FITS file, or in AIPS (using PUTHEAD and
TABED) before writing the FITS file. Which you will use will depend on your familiarity with the AIPS
and MIRIAD visibility dataset structures and the complexity of your dataset (how many frequencies,
etc), and where the bug occurred (are the u− v coordinates correct?). It is best to seek help, both to fix
your data, and to aid tracking down the AIPS bugs.

Time and FITS Files

The time stored in a MIRIAD visibility dataset is nominally UT1 (although the difference between
UT1 and UTC is not significant for the purposes of MIRIAD). As MIRIAD relies on correct time
in a number of calculations (e.g. computing the parallactic angle needed in polarization calibration and
conversion, computing velocity information in fits and uvredo and recomputing u− v coordinates done
by uvedit), task fits does its best to convert the time into UT1. fits will give you messages about
any time adjustments it makes.

When a FITS file contains multiple antenna tables, the times stored in the FITS file have usually been
offset from the true time by the AIPS task DBCON. Task fits assumes that such an offset has been
added, and corrects for it.

8.4 Writing Visibility FITS Files

Task fits can also be used to write a visibility FITS file. In addition to the keywords used when
reading visibility datasets, fits uses keywords select, stokes and options to control extra processing
performed on the visibilities.

Unfortunately fits is more sophisticated at reading FITS files than writing – note the following caveats
carefully.

8-8 CHAPTER 8. GETTING DATA IN AND OUT OF MIRIAD

• fits can cope with only a single pointing of a single source, with a single frequency setup and single
antenna array configuration (note that, unlike earlier versions, fits writes an antenna table). fits
does quite limited checks to see if these conditions are met, and quite happily will use the relevant
parameters of the first record.

• fits assumes that the data are a single IF band, with a constant frequency increment between
channels. If presented with multiple spectral windows (multiple IFs), an average frequency and
increment will be used. This is very undesirable. If you do this, fits will issue warnings about
frequencies deviating from linearity. These warnings should be taken seriously. To avoid this, use
the select or line parameters to force fits to write out a single spectral window.

• fits does not save MIRIAD calibration tables. However fits does give you the option of applying
the calibration, as it writes out the data (see the options keyword).

• MIRIAD allows you flexibility in the choice of polarization correlations that you can write out.
On-the-fly polarization conversion can be performed. However AIPS will refuse to read in a number
of the possibilities that MIRIAD allows. In particular, AIPS UVLOD refuses to load visibility data
where there are three different sorts of polarization correlations (rather than the more usual 1, 2 or
4 sorts).

Typical inputs follow:

FITS
in=0823.uv Name of input MIRIAD dataset.
op=uvout Write out a visibility FITS file.
out=0823.FITS Output FITS file – probably upper case for AIPS.
select Select appropriate data.
stokes=i,q,u,v Select appropriate polarizations.
option Leave unset to apply calibration,
options=nopol,nocal,nopass or turn off all calibration.

8.5 Reading and Writing FITS Images

Task fits can be used to read and write FITS images. The operation for fits (keyword op) is now xyin

(read in a FITS image) or xyout (write out a FITS image). For images that are partially blanked, fits
correctly converts between the MIRIAD-style blanking mask, and FITS-style magic value blanking.
When reading a FITS image, CLEAN component (CC) tables are ignored.

8.6 Archiving and Transporting MIRIAD Datasets

As MIRIAD datasets are written in a machine-independent format (the bits stored on disk to represent
a particular value are independent of the host system, whether it be a VAX, Sun or Cray, for example),
no translation is needed when transporting datasets between unlike architectures.

Instead of relying on any special tasks to write tapes for archiving or transport, MIRIAD relies on the
facilities of the host system. Probably the most convenient archiving format is tar. This is universally
supported on UNIX machines, and is quite common on VAX/VMS machines.

The two most common commands used with tar are to copy to and from tape. To copy to tape, use

% tar -cvf device datasets

where device is a tape device name such as /dev/nrst0 (the non-rewinding, raw interface, i.e. device
names starting with nr), and datasets is a list of datasets and files to copy to tape (If a dataset, or
directory, name is given, tar works recursively, copying all the contents of this directory). These can
include wildcards. For example, to copy all datasets and files from the current directory to /dev/nrst0,
use

8.6. ARCHIVING AND TRANSPORTING MIRIAD DATASETS 8-9

tar -cvf /dev/nrst0 *

To retrieve data from tape, use the tar command

% tar -xvf device

Multiple tar files can be stored on the one tape so that you do not overwrite old data. Again the UNIX
mt command can be used to manipulate the tape position.

See the man pages on the tar and mt commands for more information.

8-10 CHAPTER 8. GETTING DATA IN AND OUT OF MIRIAD

Chapter 9

Generating Dummy Visibility Data

9.1 Making a Fake Observation

The MIRIAD task uvgen can be used to simulate a variety of observing modes. Additionally it can
simulate a number of systematic and random errors and non-ideal effects that a synthesis instrument will
typically suffer.

Simulating a telescope approximately, let alone in some detail, requires a good many parameters. uvgen
takes an appreciable number of parameters and input files to describe the telescope, correlator and source.
Fortunately keyword and set-up files for some common situations exist (e.g. simulating the ATCA and
VLA). Also the defaults are usually sensible.

Some inputs to uvgen, and typical values for the ATCA, are given below. Note that these are not the
default values.

UVGEN
source= Source description file – see help file.
ant= Antenna location file – see help file.
baseunit=-51.02 Basic antenna increment (15m) in nanosec,

for coorinates in a topocentric system.
corr=0,1,0,104 Correlator model – see help file.
spectra= Spectral line model – see help file.
ellim=12 Telescope elevation limit.
telescop=atca Telescope name – see help file.
stokes=xx,yy,xy,yx ATCA measures linear polarisations.
lat=-30 Latitude of Narrabri.
radec= Source RA and declination, in hours and degrees.
systemp=50 Typical receivers have a Tsys of 50 K
pbfwhm= Primary beam size? Varies with frequency
leakage=2 Typical polarisation leakage
jyperk=12.7 System gain is about 12.7 Jy/K
pnoise= Rms antenna phase variation
gnoise= Rms antenna amplitude gain variation

These typical values for the ATCA, and also the VLA, can be found in in ‘keyword’ files, found in the
$MIRCAT directory.

Telescope Keyword Files
$MIRCAT/uvgen.def.atca Typical uvgen parameters for the ATCA
$MIRCAT/uvgen.def.vla Typical uvgen parameters for the VLA

The parameters in these files can be loaded from within the miriad shell using the source command.

9-1

9-2 CHAPTER 9. GENERATING DUMMY VISIBILITY DATA

For example, to load typical parameters for the ATCA, use

miriad% source $MIRCAT/uvgen.def.atca

By leaving some of uvgen’s parameters unset (e.g. leakage, systemp, pbfwhm) you get an idealised
telescope (no polarisation leakage, no receiver noise, no primary beam effects). Additionally there is no
reason why you cannot request an ATCA-like telescope to produce Stokes I or circular polarisations!

The source and antenna description files are described in the help for uvgen, as are a number of other
parameters needed in the simulation process. There are, however, a collection of description files for
common situations. These are all kept in the $MIRCAT directory.

Source Description File
File Description

no.source Nothing! No source at all
point.source A 1 Jy unpolarised point source, at field centre
poff.source A point source offset from the field centre
qpoint.source A 1% linearly polarised point source
spiral.source A spiral

Antenna Description File
File Description

h75.ant ATCA configuration H75
h168.ant ATCA configuration H168
h214.ant ATCA configuration H214
0.122.ant ATCA configuration 0.122A
ew214.ant ATCA configuration EW214
ew352.ant ATCA configuration EW352
ew367.ant ATCA configuration EW367
0.375.ant ATCA configuration 0.375
0.75a.ant ATCA configuration 0.75A
0.75b.ant ATCA configuration 0.75B
0.75c.ant ATCA configuration 0.75C
0.75d.ant ATCA configuration 0.75D
1.5a.ant ATCA configuration 1.5A
1.5b.ant ATCA configuration 1.5B
1.5c.ant ATCA configuration 1.5C
1.5d.ant ATCA configuration 1.5D
3.0a.ant ATCA configuration 3.0A or 6.0A
3.0b.ant ATCA configuration 3.0B or 6.0B
3.0c.ant ATCA configuration 3.0C or 6.0C
3.0d.ant ATCA configuration 3.0D or 6.0D
vla_a.ant VLA configuration A
vla_b.ant VLA configuration B
vla_c.ant VLA configuration C
vla_d.ant VLA configuration D

Given the various standard keyword and description files kept in the $MIRCAT directory, it is not particu-
larly difficult to set up the inputs to uvgen. For example, to simulate the ‘spiral’ source using configuration
3.0A, in a continuum mode, you would give the following commands to the miriad front-end:

miriad% source $MIRCAT/uvgen.def.atca

miriad% source = $MIRCAT/spiral.source

miriad% ant = $MIRCAT/3.0a.ant

miriad% inp uvgen

and then set or unset other parameters as desired.

9.2. GENERATING VISIBILITIES FROM A MODEL IMAGE 9-3

If you wish to model a particular telescope, the task telepar contains a database of telescope character-
istics.

For models which are more complex than those that can be readily simulated with uvgen, one approach is
to generate the visibilities are the appropriate u− v tracks, and then to use the task uvmodel to compute
the visibilities, on those tracks, of a particular image model.

9.2 Generating Visibilities from a Model Image

If you just want to generate visibilities corresponding to a particular model image, and do not care
whether they follow realistic tracks in the uv plane, then im2uv may suit you. Task im2uv simply Fourier
transforms an image (whose units should be Jy/pixel) and writes this transform into a visibility dataset.
So you end up with visibilities sampled on a rectangular grid. The task attempts to produce a visibility
dataset which looks reasonably valid, but the output does have some odd characteristics (e.g. all output
visibilities consists of a single baseline, measured at the same time!!).

IM2UV
model= Name of the input model image.
out= Name of the output visibility dataset.
region= Only pixels within the region are used

to generate the model visibilities.
select= Normal visibility selection. Only visibilities

obeying the selection criteria are stored. Only
uvrange selection is currently honoured.

9-4 CHAPTER 9. GENERATING DUMMY VISIBILITY DATA

Chapter 10

Flagging, Manipulating and
Examining Visibility Data

10.1 Flagging Visibilities

In MIRIAD, flagging a correlation means you set a bit in a mask. There are no explicit weights like
in AIPS or ascii flagging tables. When you list visibilities with uvlist (see below), flagged correlations
are indicated by an asterisk to the right of the phase.

There are three main flagging tasks in MIRIAD:

• blflag – a plot-based interactive flagger. This normally plots one baseline at a time, with a variety
of possible axes (e.g. time against amplitude), and you click on bad data to flag it out. This is
similar to tha AIPS IBLED task.

• tvflag – a “TV”-based, interactive flagger. This displays one baseline at a time on a “TV” display,
with the axes of the display being channel number and time. You select regions of bad data in the
display. This is similar to AIPS task SPFLG.

• uvflag – a non-interactive general flagger, where you specify the data to be flagged by the select

keyword. This is like the AIPS task UVFLG.

There are a number of other flagging tasks which occupy some niche which are described in the next
section.

Although there is some personal taste involved, a recommended scheme for flagging is as follows:

• For 20 and 13 cm observations it is strongly recommended that you start the flagging process with
tvflag. Narrowband interference is common at the wavelengths, and tvflag is a good tool at
finding and flagging this interference. tvflag is conveniently performed on a multi-source file,
straight after the data are loaded into MIRIAD. NOTE: one shortcoming of tvflag is that it
ignores any calibration tables that happen to be present in a dataset.

• Using blflag is generally quick compared to tvflag, and some forms of bad data are more apparent
with blflag. However, bad data is not that apparent when attempting to use it with datasets
containing multiple sources. So we recommend that you split the data into single source datasets
(using uvsplit) before using blflag. Using blflag is recommended even if you use have already
use tvflag on you data, because blflag is relatively quick and painless.

• Normally blflag will apply any calibration tables to the data before generating its plot. Thus it is
just as useful after calibration as before. It is useful to look at calibrators using blflag both before
and after solving for calibration parameters. With the program source, you will probably only use
blflag after you are happy with the calibration.

10-1

10-2 CHAPTER 10. FLAGGING, MANIPULATING AND EXAMINING VISIBILITY DATA

Interactive Flagging – BLFLAG

The task blflag plots visibility data (usually baseline at a time, with axes such as amplitude, phase,
real part, imaginary part, time, etc), and allows the user to interactively flag that data.

The user positions the plot cursor, and uses the mouse buttons or single keyboard characters to perform
an operation. The interactive commands are as follows:

Left-Button: Pressing the left mouse button flags the nearest visibility.

Right-Button: Pressing the right mouse button causes blflag to precede to the next baseline (or to finish
up, if all baselines have been cycled through).

Carriage-return: This gives a brief help message.

a: Flag nearest visibility (same as left mouse button).

c: Clear the flagging for this baseline, and redraw plot.

h: Give help (same as carriage return).

p: Define a polygonal region, and flag visibilities within this region. You define the vertices of the polygon
by moving the cursor and then hitting the left mouse button (or a). You finish defining the polygon
by hitting the right mouse button (or x). You can delete vertices with the middle mouse button
(or d).

q: Abort completely. This exist without apply the flagging.

r: Redraw plot.

x: Move to next baseline (same as right mouse button).

The inputs to blflag are straightforward.

• vis: The name of the visibility data-set to be flagged.

• device: The PGPLOT device to use for plotting. This needs to be an interactive device.

• line: This gives the normal linetype parameter (see Section 5.4). blflag averages together all the
selected channels before plotting it. The default is to use all channels. If you flag a data point on
a plot, you flag all selected channels.

• stokes: Polarization/Stokes selection – see Section 5.8. If several are given, these are averaged
together before plotting. So normally you only select one. The default is ‘ii’. If you flag a point,
you flag all polarizations (even if you did not select that polarization).

• axis: This gives two values, being the X and Y axes of the plot. Possible values are time, lst,
uvdistance (

√
u2 + v2), hangle (hour angle), amplitude, phase, real and imaginary. The default is

time vs amplitude.

• options: The options keyword give extra processing options. These include:

nobase Normally blflag plots each baseline separately, and cycles over all baselines. The nobase

option allows all baselines to be displayed simultaneously. This is particularly useful for point
sources or when the visibilities are purely noise-like.

noapply This causes the flagging operations not to be actually applied to the dataset.

selgen This option generates a text file, blflag.select. This file contains visibility data selection
commands to select the flagged data.

The inputs are normally very simple:

10.1. FLAGGING VISIBILITIES 10-3

BLFLAG
vis=vela.line Specify visibility dataset.
device=/xs Specify an interactive PGPLOT device.
stokes Defaults to ‘ii’.
line Defaults to all channels.
axis Defaults to time vs amplitude.
select Defaults to selecting all data.

For a point source (e.g. calibrator), a particularly useful way of flagging, at least after initial calibration, is
to plot the “scatter diagram” – real vs imaginary parts of the visibility, with all baselines simultaneously.
This should show points scattered around the true flux of the source. An arc in such a plot indicates
poor phase stability. Typical inputs in this mode are

BLFLAG

vis=cal.uv Specify visibility dataset.
device=/xs Specify an interactive PGPLOT device.
stokes Defaults to ‘ii’.
line Defaults to all channels.
axis=real,imag Plot real vs imaginary.
opptions=nobase Plot all baselines simultaneously.

Interactive Channel/Baseline Flagging – TVFLAG

The task tvflag is akin to the AIPS SPFLG: it displays, on a TV device, one baseline at a time,
the amplitude or phase (or amplitude or phase difference from a running average computed over some
time). Task tvflag will cycle over the set of baselines present, displaying each one, and giving you the
opportunity to flag each baseline.

Task tvflag is the last useful remnant of the “TV” suite of software (an old package of display software
within MIRIAD), which uses two X-windows based tools, xmtv and xpanel, for displaying. You will
need to start up these tools before using tvflag. To start these, use commands

% xmtv &

% xpanel &

in a terminal window of your local workstation (which need not be the machine that you are running
tvflag on). To use these, you first have to ensure that you are correctly setup to use X-windows programs
– see Chapter 3 for more information on using X-windows. Using xmtv and xpanel is simple enough
when you can run them on your local workstation. If you have to run xmtv and xpanel from a compute
server (e.g. the situation in Narrabri, when using kaputar via an NT workstation), then there can be
problems arising from multiple users attempting to allocate a given TCP/IP port. See Appendix E for
more information.

The input parameters to tvflag are pretty straightforward. We mention only the more useful ones:

• vis: The name of the visibility data-set to be flagged.

• server: The TV server parameter. This may seem a rather redundant parameter. It is a parameter
of the form

xmtv@host

Here host is the host name of the workstation running xmtv and xpanel For example

server=xmtv@tucana

indicates that xmtv and xpanel are running on the machine tucana. There is no default to this
parameter, however a value of xmtv@localhost will be adequate when you are running tvflag,
xmtv and xpanel all on the one machine.

10-4 CHAPTER 10. FLAGGING, MANIPULATING AND EXAMINING VISIBILITY DATA

• select: The usual visibility data selection parameter. One of tvflag’s odd characteristics is in its
handling of different polarizations. Task tvflag can deal with only a single polarization per run.
If it finds that the input data-set contains several polarizations, it will average these together when
forming its display. While unusual, this is moderately useful. Assuming the data-set contains all
four linear polarizations,

select=pol(xx,yy)

will produce a Stokes-I display. On the other hand, no selection (i.e. allowing tvflag to average
XX, Y Y , XY and Y X) will produce a quantity which is not physically meaningful, but will still
allow you to make a quick check for interference and outliers.

• line: The normal visibility linetype parameter. Task tvflag does not support spectral averaging.

• mode: This determines the quantity to be displayed. Possibilities are amplitude, phase, real and
imaginary.

• taver: This gives a time interval used for the running mean calculation when displaying in “DIFF”
mode (see below). This parameter takes two values, both in minutes. The first gives the maximum
amount of time in an averaging interval, whereas the second gives the time gap between records
which causes an averaging interval to be ended. The default is 5 minutes for both of these.

Typical inputs are:

TVFLAG

vis=vela.line Specify visibility dataset
server=xmtv@lupus Specify TV server
mode=amp Display amplitude
tvchan Unset is channel 1 else specify
range Unset for intensity auto-scale
tvcorn Unset to centre the image
line Unset for all channels
taver Controls the computation of the

running mean for the DIFF command.

After invoking tvflag, a control panel will pop up and a baseline of data will be displayed on the TV.
The display shows channels along the x-direction and time along the y-direction. A gap in time in the
data is shown by a dark gap. A wedge is displayed both above and to the right of the data. The top wedge
is the data averaged over time, whereas the wedge to the right is the data averaged over the channels.

You now perform flagging operations by pressing “buttons” on the control panel. We review the meaning
of some of the buttons:

• SELECT, SLCT CHAN and SLCT TIME: The first thing that you will normally do is to select some set
of data, with one of the three “select” buttons. SELECT selects a rectangular region on the display
(i.e. some range of times and channels), whereas SLCT CHAN selects all times for a particular range
of channels, and SLCT TIME selects all channels for a particular range of times. After pressing the
appropriate “select” button,

– move the mouse so that the cursor is at one corner of the region to be selected,

– depress the left mouse button,

– drag the cursor to the other corner of the region to be selected,

– release the mouse button.

• FLAGOOD and FLAGBAD: Having selected some set of data with the previous commands, this data
can be either flagged as good or bad with the FLAGOOD and FLAGBAD buttons respectively.

• UNDO: The undo button causes the last flagging command to be undone and discarded.

10.1. FLAGGING VISIBILITIES 10-5

• RESCALE: The rescale button changes the display scaling, so that the data occupies the full greyscale
or colour range. If you have some bad data which has an extremely high amplitude, for example,
you will want to flag this and then rescale the display range so that you can see the detail in the
remaining data.

• DIFF: The “diff” button causes a running mean to be subtracted off the data.

• EXIT, QUIT and ABORT: The “exit” button causes the next baseline to be loaded. The “quit”
button also causes the next baseline to be loaded, but discards any flagging commands performed
on the current baseline. Normally tvflag will terminate when it has gone through all the baselines.
It is only at this stage that it applies the flagging operations to the actual data-set. Alternately
the “abort” button causes tvflag to terminate at any time, and not to apply any of the flagging
operations to the data-set.

• LIST: This button lists the flagging operations that have been performed to the current baseline.

• VALUE: This button allows you to find the value of pixels on the display. It is somewhat cumbersome
– after pressing the “value” button, you move the mouse cursor to the pixel of interest, and press
the [F3] function key. You continue to move the cursor and press [F3] until you have exhausted
the pixels of interest. Then press [F6] to return back to tvflag’s normal mode.

There are other buttons on the control panel – but we do not suggest that you use these. They reproduce
(rather crudely) buttons on the TV display window. The useful buttons on the TV display are:

• Panner: Pressing this pops up a window that allows you to pan around the displayed image, and
to fiddle the colour lookup table. The panner window that it pops up has one of two states – pan

and fiddle.

• Luts: This allows you to select a colour lookup table from a small number of palettes.

• + and -: These allow you to zoom in and out. For mysterious reasons, these buttons are disabled
when the Panner window is in the fiddle state.

• Reset: Reset the zooming, the lookup tables, etc.

• Resize: This allows the size of the display window to be toggled between full-screen and a more
modest size.

• Quit: Hopefully its use is obvious enough!

One shortcoming of tvflag is that it averages the data in time so that it will fit on the display. Unfortu-
nately full time resolution display cannot be recovered. To display the data at full time resolution, you
may need to select the data in chunks (with select=time()).

General MIRIAD Flagging – UVFLAG

In uvflag, you use the standard selection keywords to select visibilities, or parts of visibilities for flagging.
The main keywords are select and line. uvflag can also be used to unflag correlations, and to list the
correlations that meet the selection criteria without actually flagging the data. There is a keyword, edge,
that provides a way to select the same group of channels in spectral-windows (IFs). This cannot be done
with the standard line and select keywords owing to the way spectral-windows are stored (for more
information, issue the command help windows). Read the uvflag help file if you need this facility. It is
unlikely that you will.

The following example flags some correlations between 1 and 2 hours on all days involving all baselines
with antenna 6 in channel 25 for all polarizations and spectral-window (IF) 1.

10-6 CHAPTER 10. FLAGGING, MANIPULATING AND EXAMINING VISIBILITY DATA

UVFLAG
vis=vela.line Specify visibility dataset
select=ant(6),time(1:00,2:00),win(1) Select correlations
line=channel,1,25,1 Select channel
edge
flagval=flag Flag selected correlations
options=brief Summarise what happened

or
options=noapply Summarise what could happen
log Unset to report information to screen

10.2 Other Flagging Tasks

AIPS Flagging and MIRIAD– FGFLAG

If you flag in AIPS, the flagging information will enter MIRIAD, via FITS files, in two possible forms:

• As flagging (FG) tables (generally only multi-source files).

• As negated visibility weights (both single- and multi-source files).

While MIRIAD’s fits task flags correlations which have negative weights, it does not apply any flagging
tables. Instead it copies across the flagging tables, and includes them within the MIRIAD dataset.
If you wish to use this flagging information, it is essential that you then apply the appropriate flagging
tables. The task to do this job is fgflag. Its inputs are pretty simple – typical inputs are:

FGFLAG
vis=vela.line Specify visibility dataset
select Extra selection – normally unset
fgflag Table version. Default is highest version.

Note some caveats:

• The flagging tables written by fits cannot be copied to another MIRIAD dataset. Additionally
they are ignored by all MIRIAD tasks, save fgflag.

• Task fits does not copy across information which distinguishes correlations by polarisation. If one
polarisation is flagged in the FG table, all polarisations will be flagged by fgflag.

Flagging Near a Set-Up Change – QVACK

Another handy task is qvack (derivative of the AIPS task quack and so named for obscure reasons) for
flagging a number of correlations after the observing set-up has changed (i.e., the source changed, the
pointing centre changed, or the frequency changed). For example, it might be used if some evil-minded
child turned on the family microwave oven for 30 seconds every time s/he saw the antennas start to move.
If you were observing at 13 cm, here is how to get rid of such data. Getting rid of the child would be the
best long-term solution.

QVACK
vis=multi.uv Specify visibility dataset
select=freq(2.699,2.829) Select correlations in this range
interval=0.5 Flag data for 30 s after change
force Unset
mode=source Flag when source changes

10.2. OTHER FLAGGING TASKS 10-7

qvack also has a keyword called force. This can be used if the observing setup has not changed, but
you still wish to periodically flag some data. For example, you may have split out your observation and
so you are left with a file with no observing change, but with a distinct “scan” based regularity. This
keyword lets you flag some data after a certain time has elapsed.

Flagging Based on a Template – UVAFLAG

Often it is convenient to edit one visibility dataset (“the template”), and then to apply the flagging from
this to another. For example, forming and flagging a “channel-0” dataset might be less painful than
flagging a huge spectral line dataset. Or you might want to flag a calibrated dataset and then apply this
to the raw data. The task that can do these sorts of operations if uvaflag – it matches visibilities in the
template and the input, and flags those visibilities in the input that are flagged in the template.

The template dataset should be a subset of the dataset being flagged, and the order of the records in the
two datasets should be the same. Normally correlations in the template and the input are matched by
comparing time, polarisation, baseline and frequency. However options nopol and nofreq can turn off
the matching of polarisation and frequency. Typical inputs might be:

UVAFLAG
vis=multi.uv Dataset to be flagged.
tvis=multi.chan0 Template dataset, say a channel-0 one.
options=nofreq Do not match on frequency,

i.e. ignore the frequency in multi.chan0

Flagging a Sector of Data – UVSECTOR

The task uvsector flags a set of visibilities based on their u−v position angle. To understand the utility
of this, consider the samples measured in the u − v plane at a particular time instant. For an east-west
array (i.e. the ATCA) the samples will lie on a spoke of an ellipse. If there is a glitch an a particular
time, the bad data will cause a stripe pattern in the resultant image which is at right angles to the spoke.
The position angle of the stripe can be used to determine the u − v plane position angle of the glitch.
From this you could determine the offending time and then flag the appropriate data. Task uvsector

performs these operations for you.

Task uvsector will flag a sector of visibility data with a given u−v position angle (or hour angle). While
you can give the position angle of the sector to be flagged directly (via the angle parameter), it is more
convenient to indicate the position angle indirectly via the stripe direction in an image. How do you
specify a stripe direction? You do this by specifying a long, thin region in a image. Normally you will
generate the region by using cgcurs (see Section 17.3 for more information on cgcurs). With cgcurs,
you display a greyscale of the image, and then use a cursor to selection a long, thin, region containing
the crest of a single stripe. The selected region is then written into a text file, cgcurs.region. While
this may be a rather odd way to define a direction, it allows uvsector to use the interactive facilities of
cgcurs.

Typical inputs to use cgcurs are

CGCURS
in=vela.icln Input image (probably CLEANed).
type=grey Greyscale plot.
range= Set the range to highlight the stripes.
device=/xs PGPLOT device – Xwindows here.
options=region Define a region of interest.

The width of the sector that uvsector flags is given as a angle (in degrees) via the width parameter.
Remember that 1 degree is equivalent to 4 minutes of observing time, so do not set it to any value larger
than you need. Normally you would set this to a few degrees, based on your confidence in the accuracy
of the stripe direction. The default is 5 degrees.

10-8 CHAPTER 10. FLAGGING, MANIPULATING AND EXAMINING VISIBILITY DATA

As uvsector flags a sector, if your input visibility data-set contains multiple configurations, data within
that sector for all configurations will be flagged by default. Generally this is not what you are likely to
want. If you know which configuration contains the bad data, you can use the select keyword to ensure
just that configuration is affected. Selecting by time is probably the easiest.

The breadth of a stripe also contains useful information – a glitch in just the short baselines will cause
a broad stripe, whereas a glitch in just the long baselines will cause a narrow stripe separation. A glitch
in just one baseline will give a two dimensional sinusoid. Given the separation between stripes, you
could make an approximate calculation of the corresponding u − v radius of the bad data. For a stripe
separation (crest to crest) of x arcseconds, the corresponding u − v radius is

r =
206

x
kilowavelengths

You may then use select=uvrange so that only data at the appropriate u − v radius is flagged. For
example if the crest-to-crest separation is 20 arcsec, we might flag data only with spacings of 10 ± 2
kilowavelengths.

UVSECTOR
vis=vela.uv Visibility data to be flagged.
angle Leave unset if defining position

angle by a stripe direction.
in=vela.icln The image containing stripes,

used only for its coordinate information.
region=@cgcurs.region A long, thin, region along the crest

of a stripe.
width=3 Flag data over 3 degrees (12 minutes of time)
select Leave unset to flag all data in the sector,

or
select=uvrange(8,12) Flag data within the sector and between 8 to 12

kilolambda.

10.3 Listing Visibilities

1. The task prthd summarizes some basic information about your visibility dataset (it also summarizes
images). It only reads the first few records of the data, so if you have multiple frequency setups or
sources, it will only report the first setting. It will tell you the number of visibilities, the number
of spectral-channels, the number of spectral-windows (IFs), the polarizations present and some
information about frequencies. Output can be directed to a log file (the terminal is the default),
and either a brief or full listing can be given (the default is the full listing). Several inputs can be
given (wildcards are supported).

2. The task uvindex scans through the visibility dataset and reports changes in the source, point-
ing centre, number of spectral-channels, observing frequency, and polarization. Thus, it builds a
description of your observation for general reference. Give the visibility dataset name with the
keyword vis. The output can be directed to a text file for printing via the keyword log.

3. The task uvlist can be used to list the values of the correlations. The generic MIRIAD key-
word options is used to control exactly what is listed (see the help file). The standard keywords
select and line are used to select the desired visibility data and the desired part of the spectrum,
respectively. Here is an example.

10.4. COPYING, CONCATENATING AND AVERAGING VISIBILITY DATASETS 10-9

UVLIST
vis=vela.uv Specify visibility dataset
options=data,brief Lists correlations (this is the default)

or
options=spectra,brief Lists info. about the spectral-windows
select=pol(xx),ant(1) List XX correlation for all

baselines involving antenna 1
line=channel,1,128,1,1 List data for channel 128 only
recnum=100 List 100 records
log=xx.txt Write results to this text file or

leave unset to write to standard output

10.4 Copying, Concatenating and Averaging Visibility Datasets

MIRIAD contains a single task, uvaver, which copies, concatenates and averages data (both in fre-
quency and in time). It can also apply calibration corrections and perform Stokes conversion.

The inputs are all fairly self-explanatory – see the help file for more information. The default behaviour
is to copy all the data, applying calibration corrections as it goes. If some averaging is being performed,
vector averaging is normally used both for time and frequency. However an option (options=ampscalar)
switches the behaviour so that amplitude-scalar averaging is used for time averaging. Vector averaging
is always used when averaging in frequency.

A brief summary of the inputs are:

• vis: a list of the input visibility datasets. Several can be given. Wildcards are supported.

• out: The name of the output visibility dataset. The output will be the concatenation of all the
selected input data. No default.

• select: The standard visibility data selection parameter. See Section 5.5. The default is to select
all data.

• stokes: The standard parameter to determine Stokes conversion. The default is to copy the
polarizations or Stokes parameters as is (no conversion). See Section 5.8.

• interval: Time averaging interval, in minutes. The default is to perform no time averaging.

• line: The standard line parameter, which dictates channel selection and frequency averaging in
multi-channel datasets. The default is to copy all channels unaveraged. See Section 5.4.

• options: Extra processing options. The nocal, nopass and nopol options are used to disable
correcting for antenna gains, bandpass functions and polarization leakage (see Section 5.3).

There are also three options to determine the sort of averaging to be performed. Possible options
are vector, scalar and scavec. Note these options only affect the averaging in time. Vector
averaging is always use when averaging in frequency.

– “Vector” averaging is just a straightforward average of the complex-values visibility data. This
is the optimum thing to do if the data are corrupted by just Gaussian noise. However it is
common for the data to be affected by fast-varying phase fluctuations. While the amplitude
of the data are good before averaging, a plain vector average will result in some decorrelation.

– “Scalar” averaging avoids this by using the average amplitude for the amplitude of the output
quantity (the phase of the output is still the phase determined by vector averaging). The
problem with scalar averaging is that it results in a noise bias when the signal-to-noise ratio
is small (less than a few) – you should not use scalar averaging in this regime.

– For cases where phase stability is poor, and the signal-to-noise ratio on the parallel-hand
correlations (XX and Y Y) is good, but the signal-to-noise ratio on the cross-hand correlations
(XY and Y X is poor, uvaver provides the scavec options. This performs scalar averaging
on the parallel-hand correlations, and vector averaging on the cross-hand correlations.

10-10 CHAPTER 10. FLAGGING, MANIPULATING AND EXAMINING VISIBILITY DATA

For example, the inputs below show how to form a channel 0 dataset from a data set with two spectral
windows (IFs), each with 33 channels (selecting the middle 25 channels from each window). The two
spectral windows are essentially treated as 66 contiguous channels. Thus, we must use the line keyword
to select channels 4 to 28, and then channels 37 to 61. uvaver will correclty maintain the dual window
status (use prthd to verify this).

UVAVER

vis=vela.uv Input dual window 33 channel dataset
out=vela.uv.0 Output channel 0 dataset
line=channel,2,4,25,33 Average channels 4 to 28 in each window

10.5 Plotting Visibilities

1. You may tire of all this listing of numbers, and would prefer to make some plots. The task uvplt

provides a variety of choices when plotting visibilities, and ancillary information associated with
the visibilities. It has rather a lot of inputs, so read the help file first for the details. We discuss
some of the keywords below and then give a couple of examples.

• vis specifies the visibility datasets to plot. It can take multiple dataset names, each separated
by a comma, and wildcard expansion (via an asterisk) of file names is supported.

• line and select are the standard visibility selection keywords. The default for the line

parameter is the first channel, so be careful if you are plotting a dataset with many channels;
you would need to explicitly select the channels you require, especially as in multi-channel
datasets the first few channels are either rubbish or flagged. The default for select is all the
data.

• Select the desired polarization or Stokes parameter with stokes. Conversions from linear (or
circular) polarizations to Stokes parameters are supported. You can have any combination
that you like on one plot, but they will all be plotted with the same symbol. This generally
does not matter as any signal will make the distinctions clear and colours are used on devices
that support it.

• axis is used to tell uvplt what to plot on each axis. You can put any of the allowed choices
(see the help file) on either of the axes. For example, you could set axis=imag,real to plot
the imaginary part of the visibility on the x-axis, and the real part on the y-axis. Such a plot
is very useful to examine calibrator data. The default is to plot visibility amplitude versus
time.

• xrange and yrange specify the plot ranges for the x- and y-axes. If they are unset, the
plot(s) are auto-scaled. Generally, each of these keywords takes two values. However, if the
corresponding axis is time, then you must specify eight values; a day, hour, minute and second
for the start and stop times.

• You can average the plotted quantities in time by setting average in minutes (but see the
options keyword for exceptions to this unit). Baselines and polarizations are averaged sepa-
rately (unless options=avall), but channels are not – they are all lumped in together.

The complex visibilities are vector averaged by default, and the real quantities are scalar
averaged by default. For example, if you ask for an averaged amplitude or phase, the real and
imaginary parts of the visibilities are averaged, and then the amplitude or phase formed. If
you ask for, say, u versus time, u is scalar averaged. You can override the vector averaging by
setting options=scalar; a scalar averaged amplitude is useful if the phase is winding rapidly.
A scalar averaged phase is pretty meaningless under most conditions.

Averaged points are plotted with filled-in circles rather than dots, unless options=dots.

• If you plot, say, amplitude or phase versus time, you may find the application of Hanning
smoothing useful to knock off the rough edges, rather than applying box-car smoothing (which
is what you get when you average in time). Set hann to an odd number.

• If you do not want to see all the selected points, you can set inc to plot every incth point
that would normally have been selected. For example, it is useful for plotting u versus v. Be

10.5. PLOTTING VISIBILITIES 10-11

careful of a value of inc that divides exactly into the number of baselines in time-ordered data
(you end up seeing the same baselines over and over).

• uvplt has a vast complement of options. They are all described in the help file. We will
mention a few of them here.

Like most of the visibility tasks, it has nocal, nopol and nopass to turn off the calibration
tables, which, by default, are applied if they exist. MIRIAD will tell you when it applies
any calibration table.

By default, uvplt puts each baseline on a separate sub-plot on the page (see nxy below).
Setting options=nobase means that all baselines go on the same plot.

options=scalar instructs uvplt to do scalar averaging in time.

On occasion, you may not wish to time average baselines or polarizations separately. Setting
options=avall instructs uvplt to average together everything that is to be plotted on a
separate sub-plot.

options=rms instructs uvplt to plot error bars on any time-averaged quantities. However,
note that error bars are not yet implemented for vector averaging.

By default, if you plot many sub-plots (one for each baseline), all the sub-plots are dis-
played with the same axis ranges, which encompass the data on all the sub-plots. Setting
options=xind or options=yind (or both) scales that axis on each sub-plot independently.

uvplt has an interactive mode invoked by setting options=inter. This gives you a chance
to redraw the plot with different axis ranges, without having to read all the data in again.
This option also prompts you for a new plot device, so that following display and range
refinement on your workstation, you can them make a hard copy without re-running uvplt.

• Select the PGPLOT device to plot on with a command such as device=/xs (plot on local
X-window) or device=amp.plt/ps (write plot to a PostScript file called ‘amp.plt’).

• Specify the number of sub-plots in the x- and y-directions with a command such as nxy=4,3.

The following example plots u versus v, and −u versus −v, selecting channels at the start, middle
and end of a band of 32 channels (so that the u− v coverage benefit obtained across the band can
be seen).

UVPLT
vis=vela*.uv Specify visibility dataset(s)
line=channel,3,2,1,15 Plot channels 2,17,32
select Leave unset for all data
stokes=xx u − v coverage same for all polarizations
axis=uc,vc Plot u − v and conjugate u − v plane
xrange Auto-scale
yrange Auto-scale
average No averaging
hann No Hanning
inc=1 Plot every point
options=nobase All baselines on one plot
device=/xs Plot on local X-window
nxy=1 One sub-plot only please
size Default character sizes

The next example shows how to plot a scatter diagram (real vs imaginary) from a single-channel
dataset for the Q, U and V . polarizations, with all baselines plotted on the one plot. This is a quite
useful plot to make of calibrated calibrator data. Because you are asking for Stokes parameters, it
is assumed that a calibration has been made (the calibration tables will be applied by uvplt and a
reminder issued) or that you converted to Stokes parameters along the way (e.g. with the AIPS
task ATLOD or with uvaver).

10-12 CHAPTER 10. FLAGGING, MANIPULATING AND EXAMINING VISIBILITY DATA

UVPLT
vis=vela.uv Specify visibility dataset
line Plot the first channel only
select Leave unset for all data
stokes=q,u,v Select Stokes Q, U and V
axis=real,imag Is the default
xrange Auto-scale
yrange Auto-scale
hann No Hanning
inc Plot all points
options=nobase Scalar averaging
device=/xs Plot on local X-window
nxy=1 1 plot per page
size Default character sizes

2. Task closure is another useful plotting task. It is most useful for plotting the closure phases of
point sources. The closure phase of an object is the sum of the baseline phases around a triangle.
For example, for antennas 1, 2 and 3 we measure three baseline phases φ12, φ23 and φ31. It can be
shown that the closure phase, which is the sum of these three baseline phases

φclosure = φ12 + φ23 + φ31

will be independent of any antenna-based gain errors (atmosphere and instrumental). This quantity
will not be affected by MIRIAD’s antenna calibration process. Additionally for a point source
(or any source with 180 degree rotational symmetry) the closure phase should be zero. Plotting the
closure phase of a calibrator is thus a way of checking the quality of the data. If the closure phase
is large, the data are probably bad, or there is some calibration error that is not accounted for in
MIRIAD’s antenna-based model.

Task closure plots averages of closure phases (actually it averages together triple products and
then takes the phase of this). The averages are taken over the the different correlator channels and
polarizations, and optionally over time.

The inputs to closure are simple enough. See the help file for more information. Typical inputs
to closure are:

CLOSURE
vis=vela*.uv Specify visibility dataset(s)
line= Set the channels of interest.
select Leave unset for all data
stokes=xx Closure phase for XX
yrange Auto-scale
options=notrip Plot all closure phases on one plot
device=/xs Plot on local X-window
nxy=1 One sub-plot only please

3. If you are working with spectral data (line or continuum) you may want to look at some spectra. Use
task uvspec for this. The inputs to uvspec are pretty much self-explanatory. Here is an example
of how to plot the spectra (phase) of the XX and Y Y correlations averaged over 15 minutes for all
baselines involving antenna 1 with all calibration turned off. uvspec makes a new sub-plot every
time it begins a new averaging interval. Assuming that there are five antennas in this dataset, we
have arranged for each baseline to occupy one column of the plot page with time increasing down
the page.

10.6. EXAMINING VISIBILITY VARIABLES 10-13

UVSPEC
vis=vela.line Specify visibility dataset
select=ant(1) Baselines involving antenna 1
line Unset for all channels
stokes=xx,yy XX and Y Y correlations
interval=15 15 minute averages
options=nocal,nopol,nopass Turn off calibration,
axis=freq,phase Plot phase versus frequency
yrange=-185,185 Specify y-range for plot
device=/xs Plot on local X-window
nxy=5,6 6 time intervals in y directions

10.6 Examining Visibility Variables

There are a variety of variables associated with the dataset that you may like to examine. For example,
you may like to plot the system temperature as a function of time; it is usually stored as a variable (the
visibilities are variables too). A list of standard visibility variables is given in Appendix C. Some of
these variables are specific to the BIMA interferometer (Hat Creek), and so may be absent, or have no
relevance to ATCA data.

The task varlist will tell you the names of the variables in your dataset. It will also tell you their data
types (ascii, double precision, single precision and integer) and lengths.

After finding out the name of the variable of interest, you can plot it with varplt. The following example
plots the on-line XY phase differences, stored in the variable xyphase (which will be present if you used
atlod in MIRIAD). You can also use varplt to write the variable’s values to a text file with the
standard log keyword.

VARPLT
vis=vela.line Specify visibility dataset
device=/xs Plot on local X-window
log=var.txt Write values to text file
xaxis=time Put variable time on x-axis
yaxis=xyphase Put variable xyphase on y-axis
nxy=3,2 One sub-plot per antenna
xrange Unset for auto-scale
yrange Unset for auto-scale
options Leave unset

10.7 Modifying Visibility Datasets

The task uvedit allows you to apply some specific sorts of corrections or modifications to your visibility
dataset. For example, there may be a clock error that needs fixing, or the antenna coordinates were
wrong so that u and v need to be recomputed, or the phase centre was wrong requiring a phase rotation
and u and v recomputation. Note that any data not selected are copied to the output dataset unchanged.

The following example changes the RA phase centre by 10 seconds of time and also corrects a delay error
of -3 ns on antenna 2 (by adding a phase gradient across the band). uvedit has the option to turn off
the recomputation of u and v which might otherwise be done (options=nouv). This can be useful for
say, entering a delay change (which does not need u and v to be recomputed) because MIRIAD does
not compute u and v as accurately as the on-line ephemeris routines.

10-14 CHAPTER 10. FLAGGING, MANIPULATING AND EXAMINING VISIBILITY DATA

UVEDIT
vis=multi.uv Input visibility dataset
source=0823-500 Specify source; unset means all
antpos No change to antenna coordinates
dantpos
ra=10 Move RA phase centre
dec No change to DEC
time No clock offset
delay=0,-3,0,0,0,0 Delay error on antenna 2
out=multi corr.uv Output visibility dataset
options Do the works

The task uvredo also ‘edits’ a visibility dataset. Unlike uvedit, however, it only modifies ancillary data
in the dataset that are derivate from other information. For example, it can recompute the sky feed angle
(“chi”) and velocity information.

Chapter 11

Calibration, the ATCA, and
MIRIAD

11.1 Some Theory

Much of the theory here has been borrowed from the memo ‘AT Polarisation Calibration’ (AT Memo
39.3/015). See that memo for more details. A more detailed description of polarimetric interferometry
can be found in Hamaker, Bregman & Sault (1996) and Sault, Hamaker & Bregman (1996) (A&AS 117,
137 and A&AS 117, 149).

Recall from Chapter 5 that MIRIAD models a feed as having a composite gain of

g(t)gP (ν) exp(i2πτ(t)(ν − ν0))

where g(t) is a time variable complex number (often loosely called the antenna gain), gP (ν) is the bandpass
function, and τ is a time-varying delay term.

Additionally, we have to consider the response of the feeds to polarised emission. Whether a feed is
linearly or circularly polarised, its instantaneous response to a signal is a linear combination of two of the
four Stokes parameters that describe the wave. In the equatorial frame of the source, ideal linear feeds
respond according to

XX = I + Q

Y Y = I − Q

XY = U + iV

Y X = U − iV,

where the X and Y feeds are at position angles 0 and 90◦, respectively. Perfect circular feeds respond
according to

RR = I + V

LL = I − V

RL = Q + iU

LR = Q − iU

These equations show immediately why it is harder to calibrate an instrument with linear feeds, such as
the ATCA, compared with an instrument with circular feeds, such as the VLA. In the latter case, one can

11-1

11-2 CHAPTER 11. CALIBRATION, THE ATCA, AND MIRIAD

make the excellent assumption that the calibrators, which are used to determine the antenna gains, are
not circularly polarised. Thus, the RR and LL visibilities are a direct measure of I, for which we have
a good model (i.e. a point source of known flux density). Consequently they can be used to calibrate
the gains with time. On the other hand, it is not necessarily a good assumption that a calibrator is not
linearly polarised, so that XX and Y Y correlations cannot always be used as a direct measure of I.

In addition, for ‘alt-az’ telescopes, the feeds rotate with respect to the equatorial frame. This causes the
actual response of ideal linearly polarised feeds to vary with the angle between the “sky” and the feed –
χ (which varies with time, although non-linearly), according to

XX = I + Q cos(2χ) + U sin(2χ)

Y Y = I − Q cos(2χ) − U sin(2χ)

XY = iV − Q sin(2χ) + U cos(2χ)

Y X = −iV − Q sin(2χ) + U cos(2χ)

So far we have assumed that the feeds are ideal. This is never the case, and their departure from the ideal
can be characterised by leakage terms. Dx is the leakage of the y component of the electric field into the
X feed, and Dy is the leakage of the x component of the electric field into the Y feed. Another way of
thinking of them is the combination of the ellipticity and error in the position angle of the polarisation
ellipses of each feed.

Incorporating these leakage terms results in fairly gory equations – see Hamaker, Bregman & Sault (1996)
and Sault, Hamaker & Bregman (1996) (A&AS 117, 137 and A&AS 117, 149) for more details.

11.2 Calibration Methods

There are two distinct calibration situations with the ATCA, depending on whether the correlator con-
figuration produced all four polarisation products (XX, Y Y , XY and Y X) or just two (XX and Y Y).
The former is done in continuum mode and in some spectral line modes, whereas the latter is true of
other spectral line modes.

Calibration of Data with XX, Y Y , XY and Y X

If all four polarisation products are measured, a full polarimetric calibration is possible. We generally
solve for the leakage terms, the gains, a bandpass function and calibrator Q and U .

In the solution process, we must consider the time variability of the various parameters. The gains vary
fairly rapidly with time, and we typically solve for them every hour or so, with the assumption that they
are steady over a solution interval of a few minutes – the calibrator scan. On the other hand, the leakage
terms are assumed to be steady over the entire length of the observation. Our experience so far appears
to support this. The bandpass function and the calibrator Q and U can also be assumed to remain
unchanged during an observation. It is not possible to solve for a calibrators V (circularly polarised flux
density) However, a calibrator’s V is unlikely to be significant (< 0.1 %).

If the calibrator is weakly polarised (< 5%), one quantity that it is difficult to solve for is the absolute
XY phase, absolute feed alignment and absolute feed ellipticity. Generally these quantities on the
reference antenna has to be either assumed, or measured, or derived from observations of a strongly
polarised calibrator. Unfortunately most calibrators are only weakly polarised. Fortunately, however, the
alignment and ellipticity errors are small (assuming Faraday rotation is negligible). Additionally, since
November 1992, the ATCA makes a good measurement of the absolute XY phase (accurate to a few
degrees). If we assume that the absolute alignment and ellipticity errors of the reference antenna are
zero and that the XY phase measurements are accurate, a “polarisation position angle calibrator” is not
needed.

11.3. DETERMINING CALIBRATION SOLUTIONS 11-3

The recommended strategy for calibrating ATCA data is thus to observe a primary flux density cali-
brator, normally 1934-638, as well as a secondary phase calibrator close to the source. For polarimetric
observations, as the polarisation of 1934-638 is known (in fact it is < 0.2%), and the flux density is
strong, it is possible to derive polarisation leakages from it given only a short observation (5-10 minutes).
If you have good parallactic angle coverage of the secondary, it is possible to simultaneously determine
the polarisation leakages as well as Q and U for the secondary (“good parallactic angle coverage” means
at least 5 observations spread over a parallactic angle range of 100◦). This will be the normal case for a 12
hour observation of one source. Alternatively if there is poor parallactic angle coverage of the secondary
(e.g. resulting from snapshot observations), the instrumental polarisation derived from 1934-638 can be
used, and the Q and U of the secondary can still be determined.

The above strategy differs from that in the previous version of this guide. This is as prior to November
1992, the hardware to measure the XY phase produced unreliable results, particularly at 20 and 13 cm.
Thus an observation of a strongly polarised calibrator was strongly advisable to determine XY phase. The
strategy used for calibrating data prior to November 1992 will be somewhat different to that presented
here.

Calibration of Data with XX and Y Y Only

Calibrating data containing XX and Y Y is somewhat simpler. You have insufficient information to solve
for instrumental polarisation and the calibrator Q and U . You have no choice but to assume that these
are zero. This means that we can skip a number of steps in the calibration process.

All these assumptions will result in some error in the calibration – this is fundamentally unavoidable
if only XX and Y Y are measured. Provided the secondary calibrator is weakly polarised, the error is
unlikely to be too substantial.

11.3 Determining Calibration Solutions

There are currently four main tasks which solve for calibration parameters – each with their own strengths
and weaknesses. These are:

• mfcal: This determines antenna gains, band passes and delays given a point-source calibrator.
Multi-frequency observations are supported. Although it can handle dual polarisation data, it
assumes the calibrator is unpolarised, and that the polarisation leakages are 0. This assumption
does not affect the bandpass or delay that it finds.

• gpcal: This determines antenna gains and leakages given a point-source calibrator. The polarisation
properties of the calibrator can be determined as part of the solution process. Gains and leakages
are assumed to be independent of frequency.

• selfcal: This determines a single set of antenna gains given a model of the visibility data. The
antenna gains are assumed to be independent of all observing parameters other than time and
antenna number. Consequently, its handling of multi-frequency and polarisation data is fairly
simple. It can handle multiple pointings and sources (e.g. mosaiced observations).

• gpscal: This is useful when self-calibrating strongly polarised sources measured with a telescope
with linear feeds (e.g. the ATCA). Given models of Stokes I, Q, U , and V , as well as the leakage
parameters, this solves for the appropriate antenna gains.

We will now describe mfcal and gpcal in some detail. This is largely for reference – the following
chapter will give a step-by-step approach to the calibration process. The self-calibration tasks, selfcal
and gpscal, are discussed in Chapter 15.

11-4 CHAPTER 11. CALIBRATION, THE ATCA, AND MIRIAD

11.4 Determining Gains and Bandpass Functions – MFCAL

As noted above, mfcal solves for antenna gains and bandpass function. It can also solve for the delay
terms, but this is rarely useful. However it does assume an unpolarised calibrator and that the polarisation
leakage terms are zero. If you have measured only the XX and Y Y correlations, you have to make these
assumptions. However if you have measured all four polarisation products, then you can correct for these
assumptions by running gpcal after mfcal.

We will now discuss some of the inputs to mfcal.

• vis: The input dataset – the dataset containing the primary calibrator in this case.

• line: The standard linetype parameter, used to select and average channels. See the discussion
of this in Section 5.4. Assuming the 128 MHz / 33 channel continuum system, you will want to
discard the first and last few channels, calibrating only the central 25 channels of so. Otherwise
you will not normally want to perform any averaging.

• edge: This is an alternative way of indicating the channels to discard. When working with single
IF datasets, it is probably easier to use the line parameter.

• interval: This gives one or two numbers, in minutes, being the maximum solution interval length,
and maximum solution gap, in minutes. The latter can usually be allowed to default. The default
maximum interval length is 5 minutes. During stable observing conditions (good phase stability)
you should set the maximum solution length to no more than the calibrator scan time. Set it to a
small value if phase stability is poor (e.g. 1 to 0.1 minutes). If you set it to a smaller value, however,
the solution process becomes more sensitive to bad data – make sure you flag it well. Additionally
you might run into program memory limitations, where it aborts due to “buffer overflows” or the
like.

• select: Normal data-selection.

• refant: The reference antenna. Set this to the antenna which had the cleanest XY phase. The
default is 3 (which may not be very appropriate).

• flux: This gives the flux density and spectral index of the calibrator.

• options: There are a few extra options, which are not of great use or interest.

delay Note that old versions of mfcal attempted to solve for a delay by default. This is no longer
the case. To solve for delays (which is strongly discouraged when calibrating a single IF band),
you now have to explicitly use the delay option.

interpolate The interpolate option may be useful if you cannot determine the bandpass for
some completely flagged channels but still need an estimate of the bandpass function. With
this option, the bandpass is spline fit (in real and imaginary) and evaluated for the flagged
channels. Be careful if a substantial fraction of channels are bad – the algorithm is only
implemented if less than 50% of the channels are flagged bad.

oldflux If you are calibrated data that are to be combined or compared with ATCA data reduced
before August 1994, you will generally want to use the ‘oldflux’ option to select the pre-
August 1994 ATCA flux scale. See Section 12.5 for more information.

11.5 Determining Gains and Polarimetric Properties – GPCAL

Task gpcal is the main workhorse of the MIRIAD calibration system, although it is only particularly
useful if you have measured all four polarisation products (XX, Y Y , XY and Y X). It has a plethora of
options to turn on and off various solvers. Most of these will be irrelevant to normal use – particularly
when calibrating a source, such as 1934-638, which is known to be unpolarised. However it does not
determine a bandpass function. So, if you have not averaged you data into a channel-0 dataset, you

11.5. DETERMINING GAINS AND POLARIMETRIC PROPERTIES – GPCAL 11-5

should precede gpcal with mfcal – gpcal will normally apply any bandpass function it finds with the
dataset before it performs it real work.

Do not be intimidated by the number of options – we give you advice on which ones to use in the following
chapter. We now discuss the various inputs.

• vis: The input dataset.

• line can be used to select the range of channels, and the averaging to be performed on a multi-
channel dataset. See Section 5.4 for more information. Generally you should not specify any
averaging. Task gpcal performs its own averaging in a fashion which gives best results.

• interval: This interval parameter has the same meaning as that described in Section 11.4 above,
and the advice for setting it is the same.

• flux gives the values of the four Stokes parameters for your calibrator source. If you choose to solve
for Q and U , (see options below) then these are initial guesses only – it is not necessary to give
them accurately, or at all, in this case. Make sure you get the signs of Q, U and V right; these are
real numbers, not visibility amplitudes. Note that gpcal does recognise a small group of calibrators
for which it knows the spectrum in I, and sometimes Q and U – see the help file for details. The
primary calibrator 1934-638 is amongst these. If gpcal does not recognise the source, the default
is an unpolarised source. This will be quite inappropriate if you have a polarised source and do not
solve for Q and U . If no flux density is given, and the source is not known, then gpcal assumes
that the rms gain amplitudes are 1 – and determines the calibrator flux density accordingly. This
will be a good approximation if you equalised the gains at the start of the observation (which is the
normal practise). However, at this stage, this approximation is largely a convenience – any error in
the assumption will be corrected later.

• tol: The iterative procedure converges when the solutions are unchanged from the previous solu-
tions by an amount tol. The default is 0.001. Make this smaller if you want more iterations.

• xyphase: This parameter is an artifact of history – it can be ignored when following the current
recommended procedure for calibrating ATCA data. This parameter can be used as an alternative
way of specifying the XY phase of the antennas. If the XY phase on the reference antenna
is constant to good approximation, and provided you have not already applied any XY phase
correction (i.e. neither in AIPS or MIRIAD atlod nor with atxy), then you can give the XY
phases of the antennas here. Unless you explicitly turn off solving for XY phase in gpcal, then
the only important XY phase value is that for the reference antenna. All the same you should give
values for all antennas. One significant catch (for arcane reasons) is that the XY phase reported
by AIPS is not the XY phase used by MIRIAD. They are related by:

φmiriad =

{

φaips − 180 if sideband indicator is 1
−φaips − 180 if sideband indicator is -1

The value of the sideband indicator is noted in the history generated by ATLOD. More simply,
however, it will also be the sign of the frequency increment.

• options controls what gpcal solves for. Several options, separated by commas, can be given. It is
important that you understand the different choices.

oldflux If you are calibrated data that are to be combined or compared with ATCA data reduced
before August 1994, you will generally want to use the ‘oldflux’ option to select the pre-
August 1994 ATCA flux scale. See Section 12.5 for more information.

qusolve means that gpcal will solve for Q and U , taking the model you gave in flux as a starting
point. You need many cuts of the calibrator with good parallactic angle coverage to do this
successfully. You should not attempt to solve for Q and U of the primary, as you will invariably
have too little data. Additionally 1934-638 is known to be unpolarised.

xyvary: If the telescope settings are not altered, the XY phases (which are purely instrumental)
appear to remain constant to better than a few degrees. By default, gpcal assumes the XY
phases are constant. Because of the reliability of the XY phase measurement system, this

11-6 CHAPTER 11. CALIBRATION, THE ATCA, AND MIRIAD

assumption is now known to be inappropriate. It is better to let gpcal solve for the XY
phases as a function of time – use option xyvary for this. Note that gpcal can do this for all
antennas except the reference antenna – the reference antenna is assumed to be constant and
(generally) zero.

xyref means that gpcal will solve for the XY phase of the reference antenna. To do this, the
source must be strongly polarised.

noxy means that gpcal will not solve for any XY phases. By default it solves for all XY phases,
except for the reference antenna. This is generally not an appropriate switch to use.

polref means that gpcal solves for all the leakage parameters of the reference antenna. By default
it does not attempt to solve for the misalignment and ellipticity of the X feed of the reference
antenna. It is only possible to use this option if the source is strongly polarised (at least 5%).
If you specify Q and U , both these terms can be found. However, if you ask for the qusolve

option, then the misalignment term cannot be determined.

nopol means that gpcal does not solve for the polarisation leakage terms. You must use this option
if you are calibrating data without XY or Y X correlations.

noamphase means that gpcal does not solve for the antenna gains. This option is rarely useful.

11.6 Copying Calibration Tables – GPCOPY

You will often wish to copy calibration tables from one dataset to another (e.g. between the calibrator
dataset and the program source). This function is performed by gpcopy. Task gpcopy is quite simple,
taking as inputs the input and output dataset names. The options keyword can be used to inhibit the
copying of various tables using the nocal, nopol and nopass switches.

11.7 Displaying Calibration Tables – GPPLT

Calibration corrections can be examined with the task gpplt. This task can list and plot antenna gain,
bandpass, delay and leakage terms. Most of the inputs are self-explanatory – see the help file for more
information. Only a few parameters will be described here.

• The input dataset is given by the normal vis parameter.

• The device parameter specifies the PGPLOT device for the plot, whereas the log parameter gives
the output logfile for the listing. Either device or log must be set.

• The options parameter determines what quantities to plot or list. Several quantities can be
given, separated by commas. Possibilities are gains (i.e. the antenna gains), polarisation (the
polarisation leakage terms), delays and bandpass. Additionally for dual polarisation systems,
there are two quantities derived from the gains, namely xygains and xbyygain. xygains gives the
X polarisation gain divided by the Y polarisation gain (or R divided by L for circular feeds). The
phase of this quantity is the much reviled XY phase of the ATCA. xbyygain is the product of the
X and Y polarisation gains – it is of more limited use.

Two other options are sometimes useful. Option dots causes the plots to use small dots rather than
larger blobs. This can reduce the size of plot files significantly and reduce the printing time. Option
dtime causes the time axis to be plotted in decimal hours (rather than the normal hh:mm:ss). This
can be useful for listings which are to be put into another package (e.g. a spreadsheet) for further
analysis.

• The yaxis parameter controls whether the amplitude, phase, real or imaginary part of the gain is
plotted. Several values chosen from amp, phase, real or imag can be given. When several values
are given, then several plots will result from a given option for a given baseline.

11.8. DELETING CALIBRATION TABLES – DELHD 11-7

• The select parameter behaves like the normal visibility selection parameter (see Section 5.5) –
except that you are selecting gains rather than visibilities. Currently only a subset of the normal
select commands are supported, and these are not entirely consistently handled. Antenna and
time selection is supported for gains. Time selection is supported for delay and spectral correction.
Antenna and frequency selection is supported for band passes.

11.8 Deleting Calibration Tables – DELHD

Occasionally (or perhaps not so occasionally) you might produce a bad set of calibration tables that you
wish to delete. This might be particularly important for instances where a calibration program takes an
old calibration table as a initial estimate of a new one yet to be derived.

As mentioned above, there can be three important calibration tables in a visibility dataset – the gains,
leakage and bandpass items. Although there are subsidiary items associated with each, these are the
main items, and by deleting any one of these you effectively prevent the calibration operations associated
with that table being attempted.

The task to delete items is delhd. For example, to delete the gains item of the dataset multi.uv, use

DELHD

in=multi.uv/gains Delete the gains item of
multi.uv

11-8 CHAPTER 11. CALIBRATION, THE ATCA, AND MIRIAD

Chapter 12

Calibration Strategies

12.1 Introduction

The calibration process can be somewhat complicated, with several possible paths. We will describe only
the main paths here. It is strongly recommended that you follow them. If you stray off them, there is
usually a way ahead, but it may not be simple.

We will describe the calibration of data either with two (XX, Y Y) or all four (XX, Y Y , XY , Y X)
polarisation products. However when there are only two products, a number of the steps involved
(usually involving gpcal) can be skipped.

This chapter discusses calibration with ATCA data loaded using MIRIAD. There are differences if
the data were initially loaded with AIPS – see Appendix D for more details. MIRIAD’s software
supports calibration of a fairly general interferometric model, including VLA and WSRT polarimetric
and non-polarimetric data. Calibration of these is not described here, and is left as an exercise for the
enthusiastic reader.

Figure 12.1 gives a flow chart of the steps typically involved.

12.2 Preparing your Data

Before you calibrate, you must prepare your data. This consists of loading, flagging, perhaps converting
to “channel-0” datasets, and then splitting.

1. ATCA data will be initially in RPFITS format. MIRIAD’s task to read RPFITS files is described
in Chapter 8. Alternatively, the data may be in FITS format (e.g. VLA data). Again see Chapter 8
for information on loading data in this format. Generally you will want to load all of an observation
into a single MIRIAD file (i.e. use atlod to read multiple RPFITS files into a single output if
necessary).

2. You should now flag your data, and possibly convert to channel-0 (using uvaver). Tasks for these
operations are described in Chapter 10.

3. As MIRIAD datasets can contain only a single set of calibration tables, it is rather poor at
handling the calibration of datasets containing multiple sources and multiple frequency bands. For
calibration purposes, it is best to work on datasets containing a single source and single frequency
band. So, it is best to break the multi-source, multi-band dataset into a collection of single-source,
single-band datasets. The best task to do this is uvsplit. Task uvsplit generates the names of
the output datasets itself, forming these from the source name and the central frequency (in MHz)
of the data. It is rather unforgiving if you already have a files with one of the names that it wants to
use. Make sure your directory is free of files that may usurp uvsplit’s name choice. Task uvsplit

12-1

12-2 CHAPTER 12. CALIBRATION STRATEGIES

possibly form channel-0

Flag data and

MIRIAD

ATLOD
Load the data

Flag the data

UVSPLIT
Split into single source

single band files

Figure 12.1: Flow chart to prepare for calibration in MIRIAD.

allows you to perform extra selection if you wish, which may be convenient if you only want to deal
with part of your observation at a time.

UVSPLIT

vis=multi.uvxy The input dataset.
select Extra selection.

For large spectral line data-sets, if disk space is low, it may be useful not to split off the program
source. Rather you can split off the calibrators, determine the calibration tables from them, copy
the calibration back to the multi-source file, and then image directly from the multi-source file.
This way you avoid making a second copy of your program source data. For example, to avoid the
source “vela” from being split off, use

UVSPLIT
vis=multi.uv The input dataset.
select=-source(vela) Do not select vela data.

12.3 Calibration

You are now ready to start the main calibration step. You should have a large number of MIRIAD
datasets, each containing a single frequency band and source. The calibration process will determine
bandpass functions (assuming you have not already averaged your data into a channel-0 dataset) and
antenna gains as a function of time. If you have measured all four polarisation products, the process will
also determine instrumental polarisation and the polarisation of the secondary calibrator. Assuming you
have observations of the primary flux density calibrator, 1934-638, a secondary phase calibrator, and your
program source, there are two avenues open to you. The first, sketched in Figure 12.2, uses the secondary
to determine all the calibration quantities except the absolute flux density scale. The primary is used
to determine the absolute flux density scale, and is generally used to double check the other quantities.
While this avenue is the preferred path, it requires good parallactic angle coverage of the secondary to

12.3. CALIBRATION 12-3

Gains

Leakages

Bandpass

Program SourceSecondary CalibratorPrimary Calibrator

MFCAL MFCAL

GPCAL GPCAL
options=xyvary options=qusolve,xyvary

GPBOOT

GPCOPY

Flux density scale

Figure 12.2: Flow chart for polarisation calibration in MIRIAD when there is sufficient secondary
calibrator data to determine all calibration parameters from the secondary.

disentangle the instrumental polarisation and the secondary calibrator polarisation. For typical secondary
calibrator flux densities, it also requires a modest amount of integration time to determine the bandpass
to good accuracy.

The second avenue is to rely on the observation of the primary calibrator, 1934-638, to determine instru-
mental polarisation and bandpass function. This is possible as 1934-638 is strong, and its polarisation is
known (it is less than 0.2% polarised). This approach is shown in Figure 12.3. Note that this approach
relies on knowing the polarisation of 1934-638. This approach cannot be used if an alternative primary
calibrator is used.

1. We start by calibrating 1934-638. Assuming that you have not averaged the data into a channel-
0 dataset, we start with bandpass calibration. The task to perform this is mfcal. After having
solved for the bandpass function, mfcal writes a bandpass table in the visibility dataset – the data
themselves are not modified. Although it is possible for mfcal to cope with datasets which contain
multiple IF bands, and which frequency switch with time, we recommend that you do not use this
feature. It is easier to stick with datasets with a single frequency band.

As well as determining a bandpass function, mfcal determines antenna gains. These gains are based
upon the assumption that the source is unpolarised (which happens to be true for 1934-638) and
that the instrumental polarisation is zero (which is not true). While these assumptions do not affect
the quality of the bandpass, and provided you have measured all four polarisation correlations, it is
best to follow the run of mfcal with task gpcal to correctly determine instrumental polarisation.
The task mfcal is described more completely in Section 11.4

12-4 CHAPTER 12. CALIBRATION STRATEGIES

Leakages

Bandpass

Program SourceSecondary CalibratorPrimary Calibrator

MFCAL

GPCAL
options=xyvary

GPCAL
options=xyvary,qusolve,nopol

GPCOPY

GPBOOT

GPCOPY
Gains

Leakages

Bandpass

Flux Density Scale

Figure 12.3: Flow chart for polarisation calibration in MIRIAD when there is insufficient secondary
calibrator data to determine some calibration parameters.

12.3. CALIBRATION 12-5

If your data are to be combined (or compared) with pre-August 1994 ATCA data, you will probably
also use the oldflux option (see Section 12.5).

MFCAL
vis=1934-638.4800 Specify primary calibrator.
flux Leave unset.
line Select good channels.
refant=3 Specify the reference antenna.
interval=5 Solution interval for gain solutions (minutes).
options Normally leave blank, but
options=oldflux set to oldflux to get the pre-August 1994 scale.

2. Skip this step if you have measured only the XX and Y Y correlations. We now proceed to determine
the antenna gains and instrumental polarisation from the primary calibrator. Task gpcal is used for
this (see Section 11.5 for more information). Task gpcal will generally use the bandpass determined
by mfcal to partially correct the data. When calibrating 1934-638, the only options that you will
normally turn on is for the XY phases to be solved for as a function of time; options=xyvary. If
your data are to be combined (or compared) with pre-August 1994 ATCA data, you will probably
also use the oldflux option (see Section 12.5). Typical parameters for calibrating 1934-638 are
thus

GPCAL
vis=1934-638.4800 Specify primary calibrator
flux Leave unset
refant=3 Specify the reference antenna
interval=5 Solution interval for gain solutions (minutes)
options=xyvary Solve for XY phase as a function of time, or
options=xyvary,oldflux add oldflux to get pre-August 1994 flux scale.

Task gpcal will report the instrumental polarisation parameters (leakages) – two complex numbers
per feed. Typically these are 1 to 2%, although they can be 4% under bad conditions. Typically
these are quite constant with time, with similar values resulting from observations several months
apart. However they are modestly frequency dependent.

3. Calibration of 1934-638 is now complete. You should examine the calibration solutions for reason-
ableness. Generally the bandpass function will have an amplitude of 1, plus or minus 15%, and
phase of a few degrees. Provided you equalised the gains at the start of your observation, your
antenna gains should have an amplitude close to 1, although the phases should reflect atmospheric
phase stability. If you see glitches in the antenna gains in time, it is probably due to bad data. Go
back and look at the data near this time, and perhaps do some more flagging – see Section 10.1.

Tasks appropriate to examine the effectiveness of the calibration are uvplt (to generate plots of
the calibrated data – remember that many MIRIAD tasks apply any available calibration by
default) and gpplt (to generate plots of the calibration tables – both antenna gains and bandpass
functions). A particularly useful plot is the “scatter diagram” plot generated by uvplt with the
following inputs

UVPLT

vis=1934-638.4800 Specify primary calibrator
stokes=i,q,u,v Plot all Stokes parameters.
axis=real,imag Plot real vs imaginary
options=equal,nobase Equal X and Y axes. Plot all baselines

together.
device=/xs Normal PGPLOT device – Xwindows for example

This scatter diagram should show four concentrations of points – one for I at the flux density of the
calibrator, and the others for Q, U and V probably near zero. If there are outliers, you probably
need to do some more flagging. If you see arcs, the phase calibration is probably bad – you might
try decreasing the solution interval.

12-6 CHAPTER 12. CALIBRATION STRATEGIES

4. We now come to calibrating the secondary calibrator, and there are three possible approaches to
follow:

• If you have multi-channel data for the secondary (i.e. not channel-0), but you do not have
sufficient observations on the secondary to determine a bandpass from it, you must use the
second approach (Figure 12.3 and step 6 below).

• If you have measured all four polarisation correlations and if you have poor parallactic angle
coverage of the secondary, you must use the second approach (Figure 12.3 and step 6).

• Otherwise you have sufficient data to use your secondary to determine the appropriate cali-
bration parameters, and you can use the first approach (Figure 12.2 and step 5).

• There is a third, hybrid, approach, which determines the bandpass from the primary and the
polarisation characteristics from the secondary. Although this approach is no more complicated
than the other two, we leave it as an exercise for the reader to determine the correct sequence.

Good parallactic angle coverage enables you to disentangle the instrumental and secondary polari-
sations from each other. “Good coverage” generally means more than a few cuts. For sources near
declination of -30◦, the parallactic angle remains constant through much of the observation, except
near transit where it goes through a rapid change, whereas for sources near the poles, parallac-
tic angle changes linearly with time. You can plot your parallactic angle coverage using the task
varplt. More strictly, it plots the angle between the sky and the feed (i.e. parallactic angle plus
45◦ for the ATCA).

VARPLT
vis=0823-500.4800 Specify secondary calibrator
xaxis Time is the default x axis
yaxis=chi Plot parallactic angle + 45 degrees
device=/xs PGPLOT device – xwindows in this case

5. If you have sufficient secondary data: If you have not already averaged the data into a channel-0
dataset, you should determine the bandpass calibration of the secondary. This is identical to the
determining the bandpass calibration for the primary, except that the flux density, and its variation
with frequency, will generally not be known for the secondary. In this case mfcal assumes a spectral
index of 0 and a flux density to make the rms antenna gains equal to 1. Again, if the atmospheric
phase stability is good, set the solution interval to the scan length. Otherwise, provided the source
is moderately strong, set the solution interval to a small value. Typical input parameters are

MFCAL

vis=0823-500.4800 Specify secondary calibrator
flux Leave unset
refant=3 Specify the reference antenna
interval=5 Solution interval for gain solutions (minutes)

Skip the remainder of this step if you have only measured XX and Y Y correlations, as the gains
determined by mfcal are as good as you can do. Otherwise we now come to solving for instrumental
polarisation and the polarisation of the secondary itself. Given good parallactic angle coverage, these
can be disentangled. For a given correlation, the instrumental polarisation terms stay constant with
time, whereas the polarisation due to the source vary as sinusoids of the parallactic angle. Inputs
to gpcal are similar to the case of the primary, with the very significant exception that we must
turn on the switch to solve for the secondary’s polarisation. The appropriate options to do this
are options=qusolve,xyvary. As with mfcal, the flux density of the secondary will generally
not be known, so gpcal determines a flux density so that the rms antenna gains are 1. Again
the interval parameter should be set to the calibrator scan length if the phase stability is good.
If this is not so, then it should be set to a smaller value (1 to 0.1 minutes) with the caveats as
noted in the Section 11.4 above. If you do set it so a small value, there is an additional step (and
decision) to be performed before you can interpolate the gain solutions onto your program source
– see Section 12.4.

Typical inputs for this case are

12.3. CALIBRATION 12-7

GPCAL
vis=0823-500.4800 Specify secondary calibrator
flux Leave unset
refant=3 Specify the reference antenna
interval=5 Solution interval for gain solutions (minutes)
options=qusolve,xyvary Solve for calibrator Q and U , and

allow XY phase to vary with time.

In the unlikely chance that your calibrator turns out to be more than about 5% polarised, you may
wish to run gpcal again, but this time you should add options xyref and polref. This will solve for
an XY phase offset on the reference antenna, as well as an instrumental polarisation characteristic
that cannot be determined from a weakly polarised source.

6. If you have little secondary data: If you have poor parallactic angle coverage of your secondary
and/or there are insufficient observations of the secondary to determine a bandpass solution, then
it is best to rely on the instrumental polarisation and bandpass calibration determined from 1934-
638. The suggested approach, sketched in Figure 12.3, is to copy the instrumental polarisation
parameters (if present) and bandpass from 1934-648 to your secondary, and then solve for the
antenna gains. Additionally if all four polarisation correlations were measure, the polarisation of
the secondary is also solved for.

The task to copy the instrumental polarisation and bandpass function is gpcopy. The inputs are
very simple for this situation – you give it the names of the input and output datasets. For example

GPCOPY
vis=1934-638.4800 Specify 1934-638 dataset.
out=0823-500.4800 Specify the output secondary calibrator
options Leave unset.
mode Leave unset.

This will also copy the antenna gains determined for 1934-638 – this is unimportant as we will now
overwrite them by rerunning gpcal. We want to solve for antenna gains and the XY phases as a
function of time. Additionally, if we have measured all four polarisation correlations, we want to
solve for the polarisation of the secondary. We do not have enough data to solve for instrumental and
secondary polarisation simultaneously, so we turn off the solver for instrumental polarisation. The
relevant options are thus options=xyvary,qusolve,nopol if all four polarisation correlations were
measured, and options=xyvary,nopol if only XX and Y Y were measured. Again the solution
interval should be either the scan length (for observations with good phase stability) or set to a
small value (if phase stability is poor). Typical inputs are

GPCAL

vis=0823-500.4800 Specify secondary calibrator
flux Leave unset
refant=3 Specify the reference antenna
interval=5 Solution interval for gain solutions (minutes)
options=xyvary,qusolve,nopol If you measured XX,Y Y ,XY and Y X, or
options=xyvary,nopol if you have only XX and Y Y correlations.

7. The calibration of the secondary is almost complete. Before we complete it, though we should
examine the quality of the solutions. Four tasks are recommended for this – uvflux (how well does
the secondary data fit a point source model?), uvplt (plot the calibrated secondary data), gpplt
(plot the gain solutions) and gpnorm (compare secondary solutions with those determined from the
primary or elsewhere).

The first, and simplest, check of the calibration process is to use uvflux to check how well the
calibrated data fits a point source. Task uvflux assumes the data represents a point source,
and determines the source flux density and the rms scatter about this point. It also prints out
the theoretical scatter based on thermal noise arguments. It will do this for any of the Stokes
parameters. Typical inputs are

12-8 CHAPTER 12. CALIBRATION STRATEGIES

UVFLUX
vis=0823-500.4800 Specify secondary calibrator
stokes=i,q,u,v Check all four Stokes parameters.
options Leave unset (apply calibration).

The first numeric column given for each Stokes parameter is the theoretical scatter. Note if you
are using the 33 channel / 128 MHz system, and if no channel averaging has been performed, or
the birdie options has not been used with atlod, then the theoretical scatter printed by uvflux

is a factor of
√

2 higher than the true theoretical value. This is as, for this correlator configuration
(and not for others), individual channels are not independent – they overlap by a factor of exactly
2 (in noise bandwidth). Task uvflux fails to take account of this. The second and third numeric
columns are the mean visibility amplitude and phase. The phase should be near 0 for I, but could
be either 0 or 180 degrees for Q and U (assuming there is signal in these!). V should be noise. The
fourth column gives the actual scatter. This should be close to the theoretical value. Do not be
concerned if it is a factor of 2 or so bigger. If it is more than a factor of a few greater than the
theoretical, you probably still have bad data or a bad gain solution.

Using uvplt to plot the calibrated data is also recommended. As with the primary, a scatter
diagram plot is quite useful and quick.

UVPLT

vis=0823-500.4800 Specify secondary calibrator.
stokes=i,q,u,v Plot all Stokes parameters.
axis=real,imag Plot real vs imaginary
options=equal,nobase Equal X and Y axes. Plot all baselines

together.
device=/xs Normal PGPLOT device – Xwindows for example

Outliers in the scatter diagram probably indicate bad data – you might want to go back and flag
some more, and redo some calibration steps. Note, however, that the ultimate objective of the
calibration process is to get good calibration solutions – you are not attempting to produce perfect
primary or secondary calibrator data. If you do not believe that outliers affect the calibration
solutions unduly, ignore them.

Another check is to plot the gain solutions and inspect them for consistency – use gpplt for this
(see Section 11.7). Typical inputs for plotting the solved-for XY phases are given below. These
XY phases are the difference between the actual XY phases and the XY phase correction applied
by atlod. These should be constant (within the noise) and no more than a few degrees.

GPPLT

vis=0823.uv Specify secondary calibrator
device=/xs PGPLOT device – X windows in this case
yaxis=phase Plot the phase of the ratio
options=xygains of the X and Y gains

In addition to plotting these solved-for XY phases, it is probably worth while plotting antenna and
bandpass gains and phases. If you see glitches in the solutions, check the data again. This might be
due to bad data or interference. You might do some more flagging, and redo some of the calibration
again.

A final check is to compare the instrumental polarisation solution (the leakage parameters). You can
compare these with another independently derived set of these solutions. These solutions are mod-
erately time independent (they are moderately consistent over months), although there is significant
frequency variation. The independent set of solutions may have come from the primary (e.g. if you
determined instrumental polarisation for the primary and secondary independently – which was
recommended if you had sufficient parallactic angle coverage), or from a previous configuration, or
possibly other secondary calibrators from the same observing run. The task to compare the different
solutions is gpnorm. Apart from just taking some sort of difference between two sets of parameters,
it adjusts certain parameters to minimise the difference. The parameters that it adjusts are the
absolute feed orientation and ellipticity – two quantities that are not solved for in the preceding

12.4. THE INTERPOLATION PROCESS 12-9

calibration process (unless you had a strongly polarised calibrator, and used options=polref in
gpcal). Task gpnorm can also deduce an error in the absolute XY phase between the two ob-
servations (an error in the absolute XY phase leaves a signature in the instrumental polarisation
parameters).

Task gpnorm reports three numbers – an XY phase offset, the offset in absolute orientation and
ellipticity, and a residual rms error. As the preceding calibration process should have corrected for
the XY phase offset, this should be no more than a few degrees. The offset in absolute orientation
and ellipticity should be no more than 2-3%. The rms residual error should be no more than 0.005.
You would expect the agreement to degrade with time difference in the observations used to derive
the parameters. Agreement should be very good for parameters derived from observations on the
same day, whereas agreement should be less good for observations several months apart.

Having solved for an offset in absolute XY phase, orientation and ellipticity, gpnorm can “correct”
the calibration tables for these. This is generally not advisable.

Typical inputs to gpnorm are

GPNORM
vis=0823-500.4800 The leakages to check.
cal=1934-638.4800 The ‘good’ set of leakages.
options Leave unset.

8. Having produced a good set of calibration tables for the secondary, all that remains is to correct
for the flux density of the secondary calibrator. The task to do this is gpboot. Recall that the flux
density of the secondary was determined by assuming that the rms gain amplitude was 1. This
assumption will be in error, although if the gains were equalised before the observation (which is
the normal practice), the error will typically be small. Only a small adjustment needs to be made.
Given that we know the flux density of the primary, the correction for the secondary’s flux density
can be determined. Then the gains of the secondary can be corrected to reflect the true flux density
of the secondary.

In principle, you should use observations of the secondary and primary calibrators that were taken
at the same time and elevation. For obvious reasons this is not possible. However, you can use the
select keyword to select data from the secondary when it was as close as possible to the primary’s
elevation when it was observed.

Task gpboot can optionally correct the XY phases of the secondary, assuming that the XY phases
of the primary are correct, and that the XY phases are constant. Given XY phase strategy that
you should have already followed, this is not recommended.

GPBOOT

vis=0823-500.4800 Specify secondary calibrator.
cal=1934-638.4800 Specify the primary calibrator.
select Use this to select the time range of

the secondary.
options=noxy Do not make XY phase corrections

9. All that remains is to transfer the calibration tables to the program source. Again we use gpcopy

to go this. Typical inputs are

GPCOPY

vis=0823-500.4800 Specify secondary calibrator
out=vela.4800 Specify the program source dataset
options Leave unset
mode Leave unset

12.4 The Interpolation Process

You should now have a program source dataset containing the appropriate calibration solutions. The
antenna gain solutions have been derived from observations of a secondary calibrator, near the program

12-10 CHAPTER 12. CALIBRATION STRATEGIES

source, taken typically for 5 minutes every hour or so. The program source antenna gains are derived by
interpolating and extrapolating these gain solutions. Although these can often be skipped, there are a
few steps that you might consider doing to improve the interpolation process.

Interpolation/Extrapolation Tolerance

Clearly there is some limit to the interval of time over which you can sensibly interpolate or extrapolate
gains. If the gap between the secondary observations is too large, then the interpolation of the gain
solutions may have no resemblance to the true gains at a given time. The software that interpolates or
extrapolates between the gain solutions has a tolerance which limits the gaps in time that it will permit.
If the time differences between a source observation and two gain solutions bounding it are both less than
the tolerance, then the program source gain is the interpolation of the two gain solutions. If there is only
one gain solution within the time tolerance, then this is used without any interpolation. If there are no
gains within the time tolerance, the corresponding program source data are marked as flagged.

This interpolation tolerance is stored as the interval item the visibility dataset. It is given as a double
precision number with units of days. Task gpcal sets its value as half a day (interval=0.5). Though
this is excessively generous, this will not be a problem unless there are large gaps between calibrator
scans (perhaps because some calibrator scans had to be discarded). You can set the set the interpolation
tolerance using puthd. For example

PUTHD
in=vela.4800/interval Set the interpolation tolerance of

dataset vela.4800.
value=0.1 Set the tolerance to 2.4 hours (0.1 days).

Averaging Antenna Gains with Time – GPAVER

If the phase stability is bad during the observation (the atmospheric conditions are poor), the phase of
the antenna gains can vary rapidly. A change of tens of degrees or more during the calibrator scan is not
uncommon. However the software that determines the antenna gains assumes that the gains are constant
during a solution interval. So during periods of poor phase stability, it is often desirable to make the
solution interval of the calibration software quite short. While the resultant gains probably track the
phase during the calibrator scan, what we are really interested in are the antenna gains for the program
source. If you solved for a number of time intervals during the calibrator scan, the best guess at the
antenna gains for the program source is derived by interpolating between some average of the calibrator
scan gains. Thus after determining the gains at a fine time step in the calibrator scan, you should average
these gains together to get some representative gain for the whole calibrator scan. This is probably the
best guess you can make (at least as far as correcting the program source is concerned), although in times
of truly awful phase stability, its a pretty poor guess (self-calibration will be needed in this case).

There are two ways to average your gains, either the “vector” or “scalar” averages. Which is the most
appropriate will depend on whether you want good estimates of the gains or good estimates of the
resultant images.

• Scalar averaging consists of averaging the amplitude of the gains separately (the ‘average’ phase
is still determined by a traditional (vector) average of the real and imaginary parts of the gains).
Assuming the variation in gain is purely due to poor phase stability, a scalar average will give you
a good estimate of the amplitude of the gain. If you are going to self-calibrate later, then scalar
averages are probably the most appropriate. This means that when you come to self-calibrate, you
only have to solve for the phase (at least initially), because you already have a good amplitude
estimate.

• On the other hand, if you are not going to self-calibrate, you are more interested in getting a good
estimate of your image at this stage, and less concerned about partially correct gains (the two
do not necessarily go hand in hand). If we were to use vector averaged antenna gains (averaging
the real and imaginary parts), the poor phase stability will cause partial decorrelation in both the

12.4. THE INTERPOLATION PROCESS 12-11

program source and calibrator. This will result in apparent reduced flux densities of both of them.
Assuming that the decorrelation is approximately the same for both, then we could scale up the
program source by the decorrelation that we note in the calibrator. This can be achieved by vector
averaging the antenna gains.

To summarise the above discussion, when phase stability is poor, it is best to use a very short solution
interval when solving for the antenna gains of the calibrator scan. The gains during a scan should then be
averaged before applying them to the program source. Scalar averaging is appropriate if self-calibration
is to be used later. Otherwise vector averaging should be used.

The task gpaver can be used to perform averaging of antenna gains. Its pretty straightforward.Typical
inputs are

GPAVER
vis=vela.4800 Average the gain table for the program source
interval=10 Averaging interval (calibrator scan length)
options=scalar Scalar average if self-calibrating later,

or
options=vector vector average otherwise

Preventing Gain Interpolation – GPBREAK

Up until now we have assumed that the antenna gains vary smoothly with time, and so it is appropriate
to interpolate between them. However this is not always the case. If there is a major instrumental glitch
between calibrator scans, then it may be more appropriate to attribute all the antenna gain difference to
this glitch. In this case, interpolating the gain solutions will probably give poorer results than assuming
constant gains before and after the glitch.

The task gpbreak can be used to insert a ‘break-point’ into the antenna gains table, which indicates to
the software which applies the calibration, that interpolation across this point should not be performed.
Rather the gain immediately before and after the break-point should be the gain from the previous or
next calibrator observation.

Inserting a break-point modifies the antenna gains table, and so it is only meaningfully performed after
the antenna gains table has been determined. To insert a break-point, you will need to know the exact
time of the glitch. You may well know this from the observing log, or you may be able to deduce it from
the program source data if you are observing a strong source.

Task gpbreak takes as its parameters the name of the visibility dataset (vis parameter), the times at
which to insert break-points (break parameter), and the antennas and feeds for which to insert the break-
points (parameters ants and feeds – the default is to insert break-points for all antennas and feeds). The
break parameter gives the time in normalMIRIAD format – either hh:mm:ss or yymmmdd:hh:mm:ss.
The second form (giving year, month and day) will generally not be required for a single day’s observing.
Several times can be given, separated by commas. For example:

GPBREAK

vis=vela.4800 Insert break points into the program source.
break=20:30:10,21:15:45 Give the times of the glitches.
ants=1,2 Only antennas 1 and 2 were affected.
feeds=x Only the X feeds were affected.

Unfortunately break-points do not survive recalibration. If you re-determine the antenna gains (e.g.
re-run gpcal or the like), then you will overwrite the old antenna gains table, and will need to re-insert
the break-points.

12-12 CHAPTER 12. CALIBRATION STRATEGIES

12.5 Combining Pre- and Post-August 1994 Data

In August 1994, the nominal flux density of the ATCA’s primary flux calibrator, 1934-638, was revised
to give better agreement between the ATCA’s flux density scale and the flux scales used in the northern
hemisphere (the VLA in particular). For more discussion, see John Reynolds’ memo “A revised flux scale
for the AT Compact Array” (AT Memo 39.3/040).

This introduces a problem when mixing data (either combining or just comparing) calibrated before
and after this change. By default MIRIAD tasks use the new flux scale. However if you use the
option ‘oldflux’ in gpcal and mfcal when calibrating 1934-638, the old flux scale will be propagated to
the calibrated data. In this way, new data can be calibrated to have the old flux scale, and so can be
combined/compared directly with data calibrated before the revision.

Chapter 13

Imaging

13.1 Introduction

The task invert is used to produce an image (or image cube) given a collection of visibility datasets.

Even if you are only interested in continuum imaging, your data may contain several frequencies. Unless
you have averaged over frequency channels earlier, your data still contains the 33 frequency channels
produced by the ATCA correlator. Additionally as the ATCA can observe two frequency windows
simultaneously, and if these two windows are relatively close (within about 25% of each other), then
you can get extra sensitivity and improved u − v coverage by combining the two sets of data during
imaging. Indeed you can enhance your u− v coverage further (but not sensitivity) by time-switching the
frequency setup used, and so you might have observations at several frequencies, perhaps from different
configurations.

The net result is that you possibly have data observed at multiple frequencies, and you are faced with the
question of how to make an image from these data. Generally, unless perhaps your observation consists
of a single frequency band at 3 cm, now is not the time to do any more averaging. It is better to let
the imaging task, invert, do its job with the UN-averaged data. By giving invert data that has not
been averaged in frequency, it can grid the individual channels at their correct location in the u− v plane
(rather than some average location). In this way bandwidth smearing is reduced and the better u − v
coverage results in a better beam. The advantage of doing this decrease with the fractional bandwidth
that your data occupies, and so the reasons for not averaging are less compelling when imaging using a
single frequency band at 3 cm. In this case, the small disadvantages of not doing the frequency averaging
(somewhat slower run time, and a larger scratch file) might outweigh the advantages.

The technique of forming a single continuum image from a variety of frequencies is called “multi-frequency
synthesis” (MFS). It produces an image with a frequency corresponding to some average of the frequencies
of the input data. There is nothing particularly magical about combining different frequencies to produce
a single continuum image. This is done all the time (interferometers are never monochromatic). The
advantage of MFS is that it can take a greater fractional spread in frequencies before artifacts become a
problem.

Eventually MFS will break down because of the variation in the sources flux density with frequency. If
the fractional spread in frequencies is small (< 10%) or if high dynamic range imaging is not required
(dynamic ranges less than a few hundred or so), then spectral index effects are unimportant. You can
make an MFS image, and deconvolve it using the conventional deconvolution tasks (if deconvolution is
required). Otherwise, spectral index effects are likely to be important, and you should use a special task
(mfclean) for the deconvolution. Note that the decision to use MFS in the imaging does not require you
to use mfclean in the deconvolution. While many ATCA continuum observations will benefit from using
MFS in the imaging, a much more select set will benefit from accounting for spectral index effects in the
deconvolution.

13-1

13-2 CHAPTER 13. IMAGING

13.2 Spectral Line Imaging Considerations

Although you do not have to decide whether to use MFS or not for spectral line observations (clearly
you cannot), there are a few other issues you must consider. These are discussed in Chapter 16 in more
depth – we only list some pointers here. Some questions to ask yourself are:

• Do I need to remove the continuum from the visibility data?

• Is the velocity information in the dataset correct? What velocity system convention am I interested
in?

• Do I need to account for the Doppler effect caused by the Earth’s motion?

13.3 Weighting

Each visibility sample is given a weight in the imaging step. This weighting can be used to account for
differences in the density of sampling in different parts of the u−v plane, or to account for different noise
variances in different samples, or to improve sensitivity to extended objects, etc. Here we briefly review
some weighting schemes:

Natural weighting This gives constant weights to all visibilities (or, more strictly, inversely propor-
tional to the noise variance of a visibility). This weighting gives optimum point-source sensitivity
in an image. However the synthesised beam-shape and sidelobe levels are usually poor.

Uniform weighting This gives a weight inversely proportional to the sampling density function. This
form of weighting minimises the sidelobe level. However the noise level can be a factor of 2 worse
than natural weighting.

Super- and sub-uniform weighting Uniform weighting computes the sampling density function on
a grid that is the same size as the gridded u − v plane. This results in the synthesised beam
sidelobes being minimised over the same field-of-view as the region being image. Surprisingly,
making the field-of-view very large (bigger than the primary beam size) or very small (comparable
to the synthesised beam) both cause uniform weighting to reduce to natural weighting. Super-
and sub-uniform weighting decouple the weighting from the field size being imaged. Instead, the
sidelobes in the synthesised image are minimised over some arbitrary field size, with this field being
either smaller or larger than the field being imaged (for super- or sub-uniform weights respectively).

Robust weighting Uniform weighting (including super- and sub-uniform weighting) minimising side-
lobes, whereas natural weighting minimises the noise level. Robust weighting provides a compromise
between the two, doing so in an optimal sense (similar to Wiener optimisation). See Dan Briggs’
thesis for more information.

Tapering In signal processing theory, the optimum way to detect a signal of known form, which is buried
in noise, is to convolve that signal with a “matched filter”. This filter has an impulse response
which is just the reverse of the form of the signal that is being detected. Applying this principle to
detecting sources in radio interferometry, the optimum weighting for detecting a Gaussian source
is to weight the visibility data by a Gaussian. This is often called ‘tapering’. Using a Gaussian
weight will significantly increase the detectability of an extended source. However it also degrades
the resolution. Gaussian weighting can be combined with any of the above weighting schemes to
achieve some form of balance between sidelobes and sensitivity.

MIRIAD gives good (excessive?) control over the visibility weighting schemes, via three parameters
and one option.

• fwhm controls tapering of the data. Unlike AIPS, this taper is specified in the image domain, in
arcseconds. If you are interested in features of a particular angular size, then the signal-to-noise
ratio in the resultant dirty image is optimised for these features if the taper FWHM is the same as
the source FWHM (or source scale size).

13.4. COMPUTATION 13-3

• sup is used to control super- and sub-uniform weighting. The sup parameter indicates the region of
the dirty beam (centred on the beam centre) where sidelobes are to be suppressed or minimised. Like
the fwhm parameter, the sup parameter is given in arcseconds. The weights that invert calculates
are optimal, or near optimal, in a least-squares sense to minimising the sidelobes in the specified
region of the beam. Although the sidelobe suppression region is not a direct control of resolution
and signal-to-noise ratio, it does have an effect on these characteristics.

Suppressing sidelobes over the entire field of the dirty beam corresponds to uniform weighting –
that is, we get uniform weighting if sup is set to the field size of the dirty beam; this is the default.
Alternately making no attempt to suppress sidelobes (sup=0) corresponds to natural weighting.

Increasing sup from 0 to the field size results initially in an improvement in resolution until the
value of sup is approximately equal to the best resolution. Increasing sup beyond this results in a
slow degradation in resolution. The noise level varies in a less regular way with sup. Apart from
saying that sup=0 (natural weighting) gives the optimum signal-to-noise ratio, it is not possible to
generalise. However the noise level will be no worse than a factor of a few from the optimum.

The default value for sup is the field size (i.e. uniform weighting).

• robust: In MIRIAD, robust weighting is parameterised by a “robustness” parameter. Values less
than about -2 correspond essentially to minimising sidelobe levels only, whereas values greater than
about +2 just minimising noise. A value of about 0.5 gives nearly the same sensitivity as natural
weighting, but with a significantly better beam.

• options=systemp: The basic weight of a visibility (the weight used for natural weighting, or the
weight used for a point in determining the local sampling density function) is ideally 1/σ2, where
σ2 is the noise variance of a visibility. Because historically the value for this in a MIRIAD
data-set has been of dubious reliability, invert normally assumes the noise variance is inversely
proportional to the integration time of a visibility. However ATCA data loaded with MIRIAD
atlod will contain good estimates of σ2: using the true σ2 will result in some improvement in
sensitivity in the final image. In this case, the systemp option can instruct invert to compute the
basic weights using σ2.

13.4 Computation

Task invert is a fairly conventional imaging program, which produces a dirty image from a visibility
dataset. It normally does this using a grid-and-FFT approach, although there are switches to use a direct
Fourier transform and a median algorithm. Task invert does not require the data to be sorted in any
way. Normally any calibration tables are applied by invert on-the-fly (although this can be turned off
with the nocal, nopol and nopass options). Both continuum or spectral line observations are handled.

We describe the inputs to invert. For MFS imaging, note options=mfs (and options=sdb) options.

• vis gives the name of the input visibility datasets. Several datasets can be given, as may be
convenient when a source is observed with multiple configurations or multiple frequencies. The
selected data are assumed to be of the same object, with the same pointing centre. Additionally,
when making spectral line cubes, the number of channels derived from each dataset must be the
same (this restriction does not apply for MFS images). Dataset names can include wildcards.

• map is the name of the output image dataset(s). When several Stokes parameters are being imaged,
you need to give one name for each Stokes type. There is no default.

• beam is the name of the output beam dataset. The default is not to create an output beam. If you
wish to deconvolve, then you must create an output beam. Note that invert produces a single
beam which corresponds to all image planes and Stokes parameters.

• cell gives the image pixel size in arcseconds. Either one or two values can be given. If only
one value is given, the pixels are square. The default is to choose a pixel size which samples the
synthesised beam by about a factor of 3 (i.e. the recommended sampling for deconvolution).

13-4 CHAPTER 13. IMAGING

• imsize gives the size of the images in pixels. It need not be a power of two. Generally the beam
is also this size, but see options=double below.

• line is the normal data linetype selection. The default linetype is the first channel when performing
normal imaging and all channels when doing multi-frequency synthesis. Generally you should set
this parameter if you have more than one channel.

• select is the normal visibility data selection. The default is to select all data.

• stokes gives the Stokes or polarisation types to be imaged. Several values can be given, separated
by commas. For example

stokes=i,q,u,v

will cause images of Stokes I, Q, U and V to be formed. Note that there needs to be a corresponding
output file (see map above) for each Stokes parameter being imaged. The default Stokes parameter
to image is ‘ii’, which images Stokes-I, and assumes that the source is otherwise unpolarised.

• offset: This gives an offset, in arcseconds on the sky, to shift the image centre away from phase
centre. Positive values result in the image centre being to the north and east of the observing
centre. If one value is given, both RA and DEC are shifted by this amount. If two values are given,
then they are the RA and DEC shifts. The default is no shift.

• options gives extra processing options. Several options can be given (abbreviated to uniqueness),
separated by commas. Possible values are:

mfs: This invokes multi-frequency synthesis imaging, as described above. All selected channels and
frequencies will be gridded simultaneously to form a single output image.

sdb: This is used in MFS imaging to cause invert to produce a spectral dirty beam (this is stored
as a second plane of the beam data-set). The spectral dirty beam is used by the deconvolution
task mfclean in determining the spectral index of the image. Generally if you think you may
use mfclean to deconvolve your image, then you should set options=sdb. See the discussion
of multi-frequency synthesis in Section 14.4 for more information.

double: Normally invert makes a beam which is the same size as the image. However MIRIAD’s
deconvolution tasks generally require a beam which is four times the area than the region being
deconvolved. The double option causes invert to produce a beam which is twice the linear
extent (four times the area) of the image. In this way, you can request invert to map just
the region containing real emission, plus a guard band (at least 5 pixels on each edge).

systemp: See the description in the weighting section above.

nocal: By default, invert applies any gain calibration to the data before imaging. The nocal

option turns off this step.

nopass: By default, invert applies any bandpass calibration to the data before imaging. The
nopass option turns off this step.

nopol: By default, invert applies any polarisation leakage correction to the data before imaging.
The nopol option turns off this step.

mosaic: This invokes invert’s mosaic mode. See Chapter 21 for more information.

imaginary: This makes the ‘imaginary’ image. This is useful for non-Hermitian data (holography)
or for investigating certain instrumental errors.

amplitude: Set the phase of each visibility to zero before imaging.

phase: Set the amplitude of each visibility to unity before imaging.

• mode: This determines the imaging algorithm to be used. Possible values are fft (a conventional
grid and FFT imaging algorithm), dft (a direct Fourier transform approach) and median (a median
Fourier transform). The dft approach produces fewer artifacts in the resultant images, but at
substantial computational expense. The median approach is more robust to bad data and sidelobes,
but at an even more substantial computational cost. The default mode is fft – this should be used
on all but the smallest datasets and images.

13.4. COMPUTATION 13-5

• slop: The slop factor. This is used in spectral-line imaging. See Section 16.10 for more information.

Typical inputs to invert for a continuum experiment are given below.

INVERT
vis=vela.uv.1,vela.uv.2 Name of input visibility datasets
map=vela.imap,vela.vmap Name of the output images – one per Stokes
beam=vela.beam Name of the output beam
cell=1 Pixel size is 1 arcsec square
imsize=256,512 Image size is 256× 512 pixels
stokes=i,v Image Stokes I and V
sup Leave unset to get uniform weighting,

or
sup=0 Set sup to zero for natural weighting
fwhm Specify desired resolution – unset gives the max

resolution
options=mfs Use the MFS option for multi-frequency synthesis, or
options=mfs,sdb use the sbd option as well if using mfclean.
line Controls channel selection and averaging. Default

is all channels when options=mfs.

For a spectral line observation, typical inputs would be

INVERT

vis=vela.uv.1,vela.uv.2 Name of input visibility datasets
map=vela.imap Name of the output image
beam=vela.beam Name of the output beam
cell=1 Pixel size is 1 arcsec square
imsize=256,512 Image size is 256 by 512 pixels
stokes=i Image Stokes I only
sup Leave unset to get uniform weighting,

or
sup=0 Set sup to zero for natural weighting
fwhm Specify desired resolution – unset gives the max

resolution
line=velocity,10,1.5,1.0,3.0 Map channels to velocities. Image 10

velocities centred at 1.5, 4.5, 7.5 etc km s−1

In its computation invert determines the theoretical rms noise. This noise is calculated assuming that
the only source of error is the system temperature of the front-end receiver. No account is made of
calibration errors, sidelobes or any other ‘instrumental’ effects. The calculation correctly accounts for
the weighting scheme used in the imaging process. This theoretical noise is the level you can expect in
a detection experiment (assuming no interference or confusion), and it is the best one can hope for in
high dynamic range work (usually instrumental effects will limit you before the noise in these sorts of
experiments).

The noise calculation of invert (and all other MIRIAD tasks that compute the variance of a correlation)
is based on values of system temperature, system gain, integration time and bandwidth stored in a dataset.
Unfortunately data loaded into MIRIAD using fits will have only nominal system temperatures and
system gains, and an educated guess is made for the integration time. Data loaded using MIRIAD
atlod, the system temperatures are those measured on-line, and the integration time will be correct. See
Chapter 8 for a discussion of setting you dataset up so that noise estimates are correct. The system gain,
however, is still a nominal figure. If system temperature, system gain or integration time are incorrect
by some factor, then the theoretical rms noise will also be wrong by the same factor.

In continuum mode (i.e. the 33 channel/128 MHz mode), when all 33 channels are retained after atlod

(i.e. options=birdie was not used) there is another effect which will cause invert’s noise estimate to
be a factor of

√
2 too pessimistic (i.e. the actual noise is a factor of

√
2 lower than the printed value).

13-6 CHAPTER 13. IMAGING

With the ATCA correlator in this mode mode, the channel bandwidth is twice as large as the separation
between channels (i.e. the channels are oversampled). Unfortunately invert assumes that the bandwidth
is the same as the separation. This will only affect you if you are imaging individual correlator channels
(i.e. no frequency averaging) and if you keep all channels. It will not affect “channel 0” or multi-frequency
synthesis imaging.

Chapter 14

Image Deconvolution

14.1 Introduction

Because synthesis arrays sample the u−v plane at discrete locations, there is incomplete knowledge about
the Fourier transform of the source intensity distribution. The measured visibility data can be thought
of as the true distribution, V (u, v), in the u − v plane multiplied by some sampling function, S(u, v).
The convolution theorem states that the Fourier transform of the sampled distribution (the dirty image,
ID) is equal to the convolution of the Fourier transform of the true source visibility distribution (the true
image, I) and the Fourier transform of the sampling function (the dirty beam, B0):

ID(`, m) = I(`, m) ∗B0(`, m) ⇀↽ V (u, v) × S(u, v)

where ∗ indicates convolution, and ⇀↽ indicates the Fourier transform. Deconvolution algorithms attempt
to account for the UN-sampled regions of the u − v plane. If it was fully sampled, there would be no
sidelobes, since the sampling function would be a constant, and the Fourier transform of a constant is a
delta function; a perfect beam. Thus, deconvolution tries to remove the sidelobes of the dirty beam that
are present in the image. It is important to realize that in doing so, the algorithm is guessing at what
the visibilities are in the UN-sampled part of the u − v plane. The solution to the convolution equation
is not unique, and the problem of image reconstruction is reduced to that of choosing a plausible image
from the set of possible solutions.

You should be extremely cautious when deconvolving images formed from a small number of snapshots.
In these cases, there will be large areas of the u − v plane that are unsampled because of the poor
instantaneous u−v coverage of the ATCA. If the source is complicated, the deconvolution algorithm may
go badly wrong in its guess of what the source really looks like in the gaps. The best way to make a
decent image of an object is to observe it, not to allow a deconvolution algorithm to guess what it looks
like.

If you are using multi-frequency synthesis (MFS) in a situation where spectral index effects are significant
(i.e. when the fractional spread in frequencies is > 10% and/or images with dynamic ranges better than
a few hundred are required), then the simple convolution relationship no longer applies – see Section 14.4.

There are two techniques used commonly in radio astronomy; CLEAN and maximum entropy (MEM).
CLEAN is rarely used outside of radio astronomy, but MEM is more far reaching. For detailed discussion
on the ‘pros’ and ‘cons’ of these algorithms, see the NRAO imaging workshops and references therein.
Much blood has been spilt over their relative merits in the last decade or so.

It is probably fair to say that in general, CLEAN is easier to drive than MEM, although using MEM can
result in reduced processing times for large problems. All dirty images produced by invert (continuum,
line, MFS, any Stokes parameters) can be deconvolved with either clean (CLEAN) or maxen (MEM).
However to deconvolve an MFS image where spectral index effects are important, a special version of
CLEAN is used, mfclean.

14-1

14-2 CHAPTER 14. IMAGE DECONVOLUTION

After the deconvolution is finished, you have produced a the model of the source. CLEAN produces a
CLEAN component image (a collection of delta functions), whereas MEM produces some more smooth
model. The output images of both CLEAN and MEM are in units of Jy/pixel, and are super-resolved
(i.e. they contain spatial frequencies beyond those measured). Looking at the CLEAN component image
is a sobering experience. While the MEM output is more visually appealing, it will generally contain a
positive bias. To improve the qualitative appearance of the models produced by the deconvolution tasks,
and to suppress what is essentially unmeasured high spatial frequency structure, it is common (essentially
universal with CLEAN) to follow the deconvolution by a ‘restore’ step. This step involves convolving the
model sky with a Gaussian. This convolved image is then added to the residual image. The Gaussian is
chosen to match the main lobe of the dirty beam, and it is generally called the CLEAN beam (regardless
of whether CLEAN or MEM was used) or the restoring beam.

14.2 Deconvolution with CLEAN

The CLEAN algorithm (Högbom 1974) (A&AS 15, 417) represents the image as a number of point
sources in an otherwise empty field of view. A simple iterative procedure is used to find the locations
and strengths of these point sources.

The Högbom CLEAN algorithm looks for the brightest (in an absolute sense) pixel (called a CLEAN
component) in a specified region in the image (called the CLEAN window which must include all the
real emission in the image). For Stokes I images (but not Q, U or V), ideally only positive components
would be encountered. However noise, errors in previous CLEAN iterations and calibration errors will
mean that eventually negative components will also be found. Often it is quite valid to CLEAN these
negative components. Having found this peak pixel, it subtracts a fraction (called the loop gain, and
generally about 0.1 or less) of the dirty beam from the dirty image at the location of that brightest pixel.
This subtracted image is called the residual image. The search and subtraction loop is repeated until the
sidelobes in the image are reduced to below the noise level. It is easy to see how CLEAN works if you
just think about a single point source. For extended sources, one thinks of the emission as a collection
of point sources. Except for point sources, the flux density units of the dirty image are not very useful.
However, convolved CLEAN components do have meaningful units of Jy per CLEAN beam area, which
can be converted to Jy per unit area, because the equivalent area of the CLEAN beam can be calculated.

The Clark CLEAN

The Clark CLEAN algorithm (Clark 1980) (A&A 26, 89) is a variant of the Högbom CLEAN, and aims
at improved speed for large images. The original Högbom algorithm spends a lot of time searching
residuals which are negligible, and shifting and scaling the dirty beam. The Clark algorithm avoids these
by searching a list of only the largest residuals, working with only a sub-region of the beam for much of
the time, and by using FFTs to perform convolutions when it has to resort to using the full beam. This
leads to an algorithm which is more efficient for large images (although a good deal more complicated).
For small images though, the Högbom CLEAN may still be faster.

The Clark CLEAN plays a few tricks which you should know about. It has what are termed major and
minor cycles. In the minor cycle, CLEAN components are searched for, and subtracted from the image,
in a fashion very similar to that of the Högbom CLEAN. The difference is that only the central portion
of the dirty beam is used for the subtraction, and a list of the largest residuals are searched (not the full
region being CLEANed). The rationale is that for dirty beams that have a fairly good sidelobe pattern,
this will be good enough to find the CLEAN components. At some designated time, this minor cycle
is terminated and a major cycle computed. This means that the list of CLEAN components from the
current cycle are ‘FFTed’, and subtracted from the FFT of the residual image that resulted from the
previous major cycle. In this way, errors that might have accumulated in the subtraction phase of the
minor cycle with only a part of the beam are largely set to rights. It is also at this stage that the list of
the largest residuals is re-determined.

This use of a small beam patch in the Clark CLEAN is a potential danger if the beam is poor. Images
made from ATCA snapshot data, even if there are a few cuts, often have a beam in which the first

14.2. DECONVOLUTION WITH CLEAN 14-3

sidelobe response is quite strong and outside of the beam patch that the Clark CLEAN typically uses.

The SDI CLEAN

CLEAN sometimes runs into an instability when working on extended sources of fairly uniform surface
brightness. It produces obviously wrong ‘CLEAN stripes’ in your image. The Fourier transform of these
stripes tends to be found in UN-sampled parts of the u−v plane. This is a complicated way of saying that
the visibility data do not constrain CLEAN’s interpolation between the measured visibilities sufficiently
well to prevent it putting in badly wrong values.

Another variant of the CLEAN algorithm which helps suppress CLEAN stripes, is the SDI CLEAN
(Steer, Dewdney, and Ito 1984) (A&A 137, 159). In this variant any point in the residual image greater
than some factor times the maximum residual point is taken as a CLEAN component. The factor is
less than one. Thus, when the residual image has become very smooth, this avoids introducing ripples
into it (which occur when subtracting the beam from just one location) which lead to the stripes. This
algorithm can be quite successful.

Region-of-Interest Considerations

Note that the Högbom, Clark, and SDI versions of CLEAN can only properly deconvolve a region a
quarter the area of your beam. If your the image and beam are the same size, which is the default
behaviour of invert, you can deconvolve only a quarter of the image. For example, consider images that
are 256 pixels in size (one dimension will do), with a point source located at pixel 192. A beam image
centred on that point source will extend only to pixel 64, so that the full image cannot be CLEANed.

However there is a switch in invert, options=double, to make the beam four times the area (twice the
linear extent) of your image. In this way, you can CLEAN to the edge of your image (you should make
the image at least 5 pixels larger in each direction than the real emission).

In practise, you can sometimes violate the above rule that the beam must be four times the area of the
CLEAN region, especially if the field is very sparse (e.g. a central source, and some simple confusing
sources at a modest distance away). Generally the Högbom CLEAN will be more forgiving if you at-
tempt to use a CLEAN region larger than a quarter the area of the beam. However there is a switch
(options=pad) in clean to improve the stability for Clark and SDI CLEANs as well.

Apart from restricting the area CLEANed to a quarter of the area of the beam, CLEAN works much
better if the region being CLEANed snugly encompasses the real emission in the image. At first, you may
not know where this is. However, after some quick and dirty (sic) CLEANing, you could redo it properly
with a better idea of the CLEAN region. Essentially, you are giving CLEAN a priori information about
the source, which better constrains the deconvolution problem.

The Cotton-Schwab CLEAN

Yet another CLEAN variant, similar to a Clark CLEAN, is the MX algorithm (Schwab 1984). During
the major cycle, the Fourier transformed CLEAN components are subtracted from the ungridded residual
visibility data, instead of the residual gridded visibility data (i.e. the FFT of the residual image). This
means that the subtraction is more accurate. MIRIAD does not have a task which implements the MX
algorithm.

CLEAN Stripes

CLEAN stripes are, in part, introduced by the approximations made during the minor cycles of a Clark
CLEAN – they are less common when using a Högbom algorithm. Thus striping problems can be allevi-
ated by taming the minor cycle approximations. There are two simple ways to tame the approximations

14-4 CHAPTER 14. IMAGE DECONVOLUTION

used in the minor cycle of a Clark CLEAN – use a larger beam patch, and relax the criteria to perform
a major cycle (i.e. perform fewer minor cycles per major cycle).

Cornwell (1983) (A&A 121, 281) suggested that the CLEAN stripe instability can be suppressed by the
addition of a delta function to the dirty beam. For obvious reasons, this is popularly termed the ‘Prussian
helmet’ CLEAN. The spike is usually set at about 0.3. Together with this, one usually makes the loop
gain smaller, to perhaps 0.05 or even 0.01. However, recent wisdom suggests that in general, the Prussian
helmet is probably a red herring.

Computation

MIRIAD’s CLEAN task – surprisingly called clean – implements the Högbom, Clark and SDI algo-
rithms. Given an input dirty image and beam, it produces an output CLEAN component image which
has flux density units of Jy/pixel. This CLEAN component image is CLEAN’s best guess at what the
source really looks like. Invariably its extrapolation at high spatial frequencies is very poor (and probably
a reason why AIPS does not make it easy to view it). To reduce the undesirable effects of this extrapo-
lation, and to add in any emission remaining in the residuals, you will need to use the task restor. This
gives you what is normally thought of as the ‘CLEAN’ or restored image.

The various input parameters to clean are:

• map, beam: These keywords give the names of the input image and beam datasets – as generally
produced by invert.

• out: This gives the name of the output CLEAN component image.

• mode: MIRIAD clean can perform either Högbom, Clark or SDI CLEANs. The mode parameter
can be set to indicate the particular algorithm to use. Possible values are ‘hogbom’, ‘clark’, ‘steer’
or ‘any’ (the default). With ‘any’, clean determines what it believes is the best algorithm for your
particular image. In this case, clean can switch between different algorithms, as the nature of the
residuals change. This is particularly useful when CLEANing a large image which contains some
strong point sources and much lower brightness extended emission. In this case, clean may well
switch from a Clark or Högbom algorithm to the SDI algorithm when it finds that the residuals are
becoming very smooth.

Generally you can allow clean to choose the algorithm. Task clean will override your choice if you
attempt to use the Högbom algorithm on an image that is too big.

• region: As noted above, it is important in clean to limit the CLEAN region to an area one quarter
that of the beam, and to make it fit snugly around the real emission. The region parameter can
be used to describe quite complex CLEANing regions. See Section 6.3 on how to specify this.
Alternatively, you can use task cgcurs to describe the region interactively from a display of an image
on a PGPLOT device. Task cgcurs (see Chapter 17.3) can produce a text file, cgcurs.region,
describing the region selected, which you can then input to clean (see Section 2.5). For example:

region=@cgcurs.region

The default CLEAN region is the largest region (centred on the dirty image centre) that can be
safely deconvolved.

• gain: A good number for the loop gain is 0.1 (the default). If CLEAN stripes occur, then try
lowering the loop gain by a factor of about 10.

• cutoff, niters, options=negstop: You can tell clean when to stop in three ways. You can
tell it to quit once the brightest pixel (in an absolute sense) in the residual image reaches some
cut-off. This is typically some multiple of the rms noise level (3–σ or so). Specify this level with
the parameter cutoff. Alternatively, you can tell clean to stop when it encounters the first
negative component, by using the options=negstop switch. Otherwise, CLEANing will proceed
until niters CLEAN iterations have been performed. When CLEANing a cube, niters is the

14.2. DECONVOLUTION WITH CLEAN 14-5

number of iterations per plane. For small and simple sources, a few hundred iterations are usually
sufficient. For complicated and large sources, you can CLEAN forever.

You can set all three of cutoff, options=negstop and niters. Task clean will stop when any
one of these stopping criteria are satisfied.

• phat: This gives Cornwell’s Prussian helmet parameter, which is the value of the spike to add to
the central lobe of the beam. Using this parameter may give some success at eliminating CLEAN
stripes. When using a Prussian helmet, typical values are 0.3 or so. Note that the loop gain should
also be reduced when using Prussian helmets.

• model: If you CLEAN an image, and find that you need to CLEAN some more, clean can be
restarted from where you left off. Do this by setting the model parameter to the name of the old
output CLEAN component image, and setting the out parameter to a new name. Actually the
model image need not have been produced by clean – it can be any image with units of Jy/pixel.
Of course, it should be a representation of your source.

• speed: The ‘speedup factor’ is a knob for the Clark algorithm which controls how often major
cycles are performed. The more major cycles, the closer a Clark CLEAN is to a Högbom CLEAN.
For point sources, this can be about 1. For extended sources, or if you are having trouble with
CLEAN stripes, set speed to some small negative number – typically -1 is good. The default is 0.

• minpatch: For Clark CLEANs, the parameter minpatch is the minimum full width (not half-width,
as it is in AIPS) of the beam patch used in the minor cycle. The default is 51. However, for
ATCA work, where the beam can often have large distant sidelobes, and so this value may be too
small. Setting minpatch to larger values will slow the algorithm, but may avoid CLEAN striping
problems. The maximum value that clean will accept is 257 – larger values will be trimmed back
to 257.

• clip: For SDI CLEANs, this parameter gives the ‘clip level’. During an SDI iteration, all pixels
greater than clip times the peak flux density are considered to represent true structure, and so
are taken as components for that iteration. Typically the clip level is 0.9. The default that clean
computes is image dependent, and will be a function of how many pixels there are across the beam.
The default value is usually adequate.

• options, as usual, gives several processing options. Possible values are

negstop Stop CLEANing when the first negative component is encountered.

positive Apply a positivity constraint. This constrains the component image to be non-negative.
A side-effect of this is that CLEAN will stop iterating if it cannot continue to ensure this. This
does not have any effect with SDI iterations. This option does not seem to produce as much
improvement as one might hope.

asym Normally clean assumes that the beam has a 180 degree rotational symmetry, which is the
norm in radio interferometry. Making such an assumption allows some optimisations. You
should instruct clean if this is not the case, by using the asym switch.

pad Double the beam size by padding it with zeros. This will give better stability with Clark and
Steer modes if you are daring enough to CLEAN an area which is more than a quarter of the
beam area.

Typical inputs are given below:

14-6 CHAPTER 14. IMAGE DECONVOLUTION

CLEAN
map=vela.imap Dirty image
beam=vela.ibem Dirty beam
out=vela.icmp Output CLEAN component image
mode Algorithm used – let CLEAN decide
region Defaults to max area safely CLEANed.
gain=0.1 Loop gain
phat Unset means no Prussian helmet
cutoff=0 Terminate CLEAN at this residual level or
niters=500 Specify total number of CLEAN components
speed Speedup factor; -1 for extended

sources, +1 for point sources
minpatch=127 Minimum beam size for minor cycles
clip SDI clip level

The total CLEANed flux density (i.e. the cumulative sum of the CLEAN components) should eventually
settle down to a roughly constant number. This indicates that you are just picking up noise, and that
there are no sidelobes left to remove. If the total CLEANed flux density starts to decrease again, this
usually indicates that you have been a bit heavy handed, and CLEANed too much. You might also look
at the result and see if you can see any sidelobes left over.

Having completed clean, you will almost certainly want to “restore” your image – see Section 14.6.

14.3 Deconvolution with maximum entropy algorithms

This discussion was lifted from Tim Cornwell’s article in the NRAO imaging workshop (1988).

CLEAN approaches the deconvolution problem by using a procedure which selects a plausible image from
the set of feasible images. This makes a noise analysis of CLEAN very difficult. The Maximum Entropy
Method (MEM) is not procedural. The image selected is that which fits the data, to within the noise
level, and also has maximum entropy. This has nothing to do with physical entropy, it is just something
that when maximised, produces a positive image with a compressed range of pixel values. The latter
aspect forces the MEM image to be smooth, and the positivity forces super-resolution on bright, isolated
objects.

One general-purpose definition of entropy (championed by Gull and Skilling) is

H = −
∑

k

Ik log

(

Ik

Mk

)

where Ik is the brightness of the kth pixel, and Mk is some default image. An example might be a
low-resolution image of the object. This allows a priori information to be incorporated into the problem.
An alternate form, suggested by Cornwell (sometimes call the ‘maximum emptiness’ criterion) is

H = −
∑

k

log(cosh(
Ik

Mk

)).

This second form does not enforce positivity, and so can be used for Stokes parameters other than I.

The requirement that each visibility be fitted exactly by the model usually invalidates the positivity
constraint. Therefore, data are incorporated with the constraint that the fit, χ2, of the predicted visibility
to that observed, be close to the expected value:

χ2 =
∑

r

|V (ur , vr) − V̂ (ur , vr)|2
σ2

V (ur ,vr)

.

Maximising H subject to the constraint that χ2 be equal to its expected value leads to an image which fits
the long spacings too well, and the zero and short spacings poorly. To remedy this, an added constraint

14.3. DECONVOLUTION WITH MAXIMUM ENTROPY ALGORITHMS 14-7

can be added to the problem. Typically this is a flux constraint, which ensures that the flux density in
the maximum entropy image is correct. That is, the flux density of the maximum entropy image,

F =
∑

k

Ik,

is constrained to equal the known flux density for the source. This is quite a useful constraint. Although
the maximum entropy task, described below, does not force you to give a flux constraint, you should
attempt to, if at all possible.

Computation

Maximum entropy algorithms tend to be less robust and harder to drive than CLEAN algorithms. The
quality of the maximum entropy solution can depend very strongly on the rms and flux parameters –
these parameters should be set with some care, or some experimentation may be necessary.

Various parameters to the task maxen are described below:

• map, beam: As with CLEAN, you give task maxen a dirty image and a dirty beam.

• default: You also have the option of supplying a default image. The default image (Mk in the
equations above) is some estimate of what the algorithm should tend towards. It could be some
a priori model or low-resolution image of the source. The default default (sic) image is a uniform
image. The units of the default image are not too important, though it should be positive valued
if the Gull and Skilling entropy measure is used.

• model: The model is some initial estimate of the deconvolved image (units of Jy/pixel). In principle,
the model image is simply a way to kick start maxen towards the correct solution. In principle it
should not affect convergence to the final solution or its quality – it should just speed up the process.
In practice, a good initial model can sometimes help.

• region: As with CLEAN, this gives the region in the dirty image which contains all the source
emission, and much the same can be restated here about setting the parameter. In particular, you
can deconvolve an area no more than a quarter the area of the beam (but see options=pad if you
fail to heed this advice).

• measure: This determines the entropy measure used; specify either gull or cornwell (these are the
p log(p) and log(cosh[p]) forms, respectively). The default is to use the Gull form, but if deconvolving
Q, U or V images, the Cornwell form may be useful.

• out: This gives the name of the output image, which has units of Jy/pixel. This is the equivalent
image to clean’s CLEAN component image. However, unlike CLEAN, maximum entropy tech-
niques tend to be more conservative in their extrapolation of high spatial frequencies, and so this
output is more commonly viewed and used as a final image than the CLEAN component image
would be. However it is just as valid an operation to pass this output from maxen through restor,
and so produce either a restored or a residual image. Those with some courage may choose to look
at the residual image. Unlike CLEAN, the residuals tend to be strongly correlated with source
structure.

• niters: Task maxen uses an iterative algorithm to arrive at its solution, and terminates when it
believes it has converged. The parameter niters gives the maximum number of iterations that
maxen will attempt before giving up if it does not converge. For low dynamic-range images, 10
iterations are usually sufficient. Higher dynamic-ranges (greater than 1000) can require 30 iterations
to converge. The default maximum number of iterations is 20.

• rms: This is a crucial parameter. It gives the rms noise in Jy/beam. The rms noise value printed by
invert should be some guide to setting this parameter, but see the caveats about this value under
invert. An alternative way is to measure the rms in a blank portion of the sky. If the beam has
few sidelobes you will probably be able to measure this directly from the dirty image. Otherwise
you would really need to CLEAN first! If rms is too large, the output image will be too smooth. If

14-8 CHAPTER 14. IMAGE DECONVOLUTION

it is too small, convergence will be prevented. A useful trick is to underestimate rms and then stop
after a few iterations, and then reset rms to the level achieved up to that point. Do not leave rms

unset.

• flux: The flux specifies how the zero-spacing flux density is to be estimated. There are three
modes of use. First, you specify a known value which must be fitted to within 5%. Second, if you
have no idea what the zero-spacing flux density is, then leave flux unset; maxen will attempt to
estimate it. Third, if you have a rough idea (within a factor of 2, say) then set flux to the negative
of your guess. If at all possible, you should give some estimate of the total flux density.

• q: This gives an estimate of the volume of the main lobe of the dirty beam in units of pixels.
Typically it is 10 to 30, and the algorithm does not depend critically on it. The default is determined
from the data, and generally will be adequate.

• options, as usual, gives several processing options. Possible values are

quiet, verbose: This controls the verbosity of maxen’s messages.

asym: Normally clean assumes that the beam has a 180 degree rotational symmetry, which is the
norm in radio interferometry. Making such an assumption allows some optimisations. You
should instruct clean if this is not the case, by using the asym switch.

pad: Double the beam size by padding it with zeros. This will give better stability with Clark and
Steer modes if you are daring enough to CLEAN an area which is more than a quarter of the
beam area.

MAXEN

map=vela.imap Dirty image
beam=vela.ibem Dirty beam
model An initial solution solution – generally unset
default The image that the solution should tend

towards – generally unset
out=vela.ivm Output dataset
niters=20 Maximum number of iterations
region= Region to be deconvolved
measure Leaving unset gives you the Gull measure
flux= Total source flux – give some value
rms= Rms noise in the dirty image – IMPORTANT!
q= AN estimate of the value of the beams main lobe.

14.4 Multi-frequency deconvolution – MFCLEAN

If you have used multi-frequency synthesis in the imaging stage, you will have to have considered a fly in
the ointment – the flux density of the source will vary with frequency (as well as spatially). For detection
and low dynamic-range work, mild spectral variation can generally be ignored. For high dynamic range
imaging, the variation with frequency will cause a distortion in the resulting image.

The MIRIAD deconvolution task mfclean can be used to avoid this distortion. Rather than just
determining a flux density estimate, mfclean simultaneously solves for both a flux density and spectral
variation for each source. To understand how this is possible, consider a noiseless observation of a single
point source at the phase centre. Assume that it has a linear spectral variation. While this is obviously an
approximation, it is an adequate one for dynamic ranges up to several thousand to one (assuming typical
spectral variation and fractional spread in frequencies of no more than 30%). The visibility function for
this source can be described by two parameters: the source brightness at some reference frequency, and
the brightness derivative.

V (ν) = I(ν0) +
∂I

∂ν
∆ν

If we temporarily assume that the derivative is zero, then the image resulting from a multi-frequency
synthesis observation of this source will just be the normal point-spread function (beam pattern) scaled by

14.4. MULTI-FREQUENCY DECONVOLUTION – MFCLEAN 14-9

I(ν0). If we now assume some non-zero derivative, we will get a different image. Because of the linearity
of the system, the output image will be a sum of the two terms. The first term is just the normal
point spread function scaled by I(ν0) as before, while the second term is caused by the derivative. The
importance of the second term will be related to the size of the derivative and the range of frequencies
sampled. This second term has been called the “spectral dirty beam” – it is a point-spread function
resulting from a linear frequency variation. While it may seem that the most logical definition of the
spectral dirty beam is the additional response resulting from a source with a flux density derivative of
1, there is a more convenient scaling. If we assume that the flux density variation is due to a spectral
index, α, where

I(ν) = I(ν0)(
ν

ν0
)α

then

I(ν0)α = ν0
∂I

∂ν

∣

∣

∣

∣

ν0

Conventionally the spectral dirty beam is scaled so that

ID(`, m) = I(ν0)B0(`, m) + ν0
∂I

∂ν

∣

∣

∣

∣

ν0

B1(`, m)

= I(ν0)B0(`, m) + (I(ν0)α)B1(`, m)

For a general source, a sum of the two beams is replaced by a convolution relation:

ID = I ∗B0 + (Iα) ∗B1

(in the above equation, I is evaluated at ν0). The problem of multi-frequency deconvolution is to estimate
I and Iα images simultaneously. A more detailed discussion of the algorithm mfclean uses is given in
Sault & Wieringa (1994) (A&AS 108, 585).

But how important are the effects that spectral variation causes? Generally you will want to ignore them
if you can, because then the deconvolution procedure has to solve only the standard convolution equation,

ID ≈ I ∗B0,

and the other deconvolution tasks – clean and maxen – can be used.

Surprisingly spectral effects are not very important in a wide variety of problems. For fractional band-
widths of 10%, spectral effects need to be considered for dynamic ranges of better than 1000. For fractional
bandwidths of 30%, the effects become important for dynamic ranges of a few hundred. This assumes
typical spectral variations equivalent to spectral indices of order 1. When imaging beyond the half-power
points of the primary beam, the frequency dependence of the primary beam will be quite substantial,
and so spectral variation will need to be considered for lower dynamic range images.

Generally you will need to consider at the imaging step (task invert) whether you may need to account
for spectral variation in the deconvolution step. If you may, then you need to form the spectral dirty
beam, B1, as well as the normal dirty beam, B0. If so, you must have set the sdb option in invert. This
produces the spectral dirty beam as a second plane of the beam dataset. If you did produce this spectral
dirty beam plane, and then use clean and maxen, they will issue warnings (which can be safely ignored)
about the existence of the second plane.

The inputs to mfclean are fairly similar to clean. Task mfclean differs in that it does not have a
Prussian helmet or SDI CLEAN capability. Task mfclean does not support a number of the options

given by CLEAN. More fundamental, though, is that, whereas clean can only CLEAN an area a quarter
of the beam area, mfclean can strictly speaking CLEAN an area only one ninth of the beam area. To
explain the reason for this, we must consider some of the details of mfclean. To aid it in finding peaks
in the flux density and spectral index domains, it correlates the residuals with the beam and the spectral
dirty beam. More strictly it correlates the residuals with a portion of the beam and spectral dirty beam
– the sub-beam. Strictly the sub-beam size should be the same as the region being CLEANed. However
in practise, provided it contains most of the main sidelobes, a smaller portion is adequate. Task mfclean

will tell you the sub-beam size, and indeed may complain about it being small. However provided it is

14-10 CHAPTER 14. IMAGE DECONVOLUTION

either at least as big as the region being CLEANed, or is 50-100 pixels, you are probably OK. All the
same, however, you should attempt to produce images with larger guard bands if mfclean is to be used.

As with clean, you will almost certainly want to restore your resultant image – see Section 14.6. The
output from mfclean is a CLEAN component image with a difference – it contains two planes. The
first plane is the normal CLEAN component image (like the one determined by clean), while the second
plane contains the estimate of α(`, m)I(`, m). Both restor (Section 14.6) and a number of other tasks
use this second plane.

14.5 Other deconvolution tasks

The following two tasks are primarily written for multiple-pointing (mosaiced) observations (see Chapter
21). However they also work equally well for a conventional single pointing dataset (in MIRIAD,
a single pointing observation is treated as a degenerate mosaic). They both provide functionality not
available with the other single-pointing deconvolution tasks.

• mosmem: This is a maximum entropy deconvolution task which can handle a joint deconvolution
with an interferometric and single dish observation. A joint deconvolution of a single dish and
single pointing interferometric observation is not common: usually if the source is large enough to
warrant a single dish observation, then it is likely that the interferometric observation would be a
mosaic.

• pmosmem: This is another maximum entropy deconvolution task. It differs in that it can perform
a joint deconvolution of the four Stokes parameters simultaneously. With polarised emission being
potentially positive and negative valued, the entropy measure for this is different from a simple
total intensity deconvolution. See Sault et al. (1999) (A&A, 139, 387) for more background on
joint polarimetric deconvolution.

Often joint polarimetric deconvolutiondoes not do a better job than doing the different polarisations
individually (e.g. by using clean, or by using maxen and the maximum emptiness entropy measure).

14.6 Restoring an image

Having produced a model of the sky with either clean, maxen or mfclean, you will probably want to use
restor to convolve this with a Gaussian CLEAN beam (restoring beam) and add the remaining residuals.
For models produced by mfclean, restor convolves only the intensity (I) plane with the CLEAN beam,
although it does use the Iα plane when determining the residuals.

Having the restoration as a separate step does have some flexibility advantage, but the user then has to
run another task to produce the final image. Task restor optionally fits the dirty beam with a Gaussian
CLEAN beam, and then either produces a restored image or, alternatively, a residual image. There are
a few other possibilities, but these are less common. The inputs to restor are:

• model: This is normally the output CLEAN component image, but can be any image that is a good
representation of the source. It should have units of Jy/pixel.

• map, beam: These are the input dirty image and beam.

• mode: This parameter determines the operation to be performed by restor. The most common
operations are to produce a restored image (mode=clean) or a residual image (mode=residual).

• out: The output restored or residual image.

• fwhm, pa: Parameters of the CLEAN beam; fwhm gives the size, in arcseconds, of the Gaussian
beam to be used in the restoration. This will normally be two numbers, giving the full-width at
half maximum of the major and minor axes of the Gaussian. If only one value is given, then the
Gaussian is assumed to be circularly symmetric. Parameter pa gives the position angle, in degrees,

14.6. RESTORING AN IMAGE 14-11

of the restoring beam, measured east from north. If no values are given for fwhm, restor first
checks the beam dataset to see if it contains Gaussian fit parameters. If not, restor performs a fit
to the beam data. Note that the fitting procedure will probably give different values to the AIPS
MX and APCLN tasks. Generally the value computed by restor is to be preferred to the APCLN and
MX values.

Typical inputs are given below:

RESTOR

map=vela.imap Dirty image
beam=vela.ibem Dirty beam
model=vela.icmp Component image produced by CLEAN
out=vela.icln Output restored image (or residuals)
mode Leave unset to get restored image
fwhm Beam size – Leave unset to let restor

fit it
pa Leave unset to let restor fit it

14-12 CHAPTER 14. IMAGE DECONVOLUTION

Chapter 15

Self-Calibration

Because the basic interpolated calibrator gains do not determine the antenna gains perfectly at each time
stamp, the quality of the resultant image suffers. Often the technique of self-calibration is used to make
additional corrections to the antenna gains as a function of time. It is notionally very similar to the basic
calibration. The main difference is than the model of the source is generally more complex than just
assuming its a point source at the phase centre. The self-calibration technique finds antenna gains, gi,
which minimise the difference between the measured visibilities, Vij, and the model visibilities, V̂ij, viz

ε2 =
∑

|Vij − gig
∗

j V̂ij |2.

Like basic calibration, these gains are normally described as ‘antenna gains’. This, however, is somewhat
of a misnomer when a telescope measures dual polarisations. In this case, it would be better to describe
the gains as ‘feed gains’, as the gain factors will generally differ between the two antenna feeds. The
above equation should include subscripts to indicate the polarisation type of the correlation (e.g. VXX)
and the gain (e.g. gX).

The model visibilities are generally derived from a model image (which should have units of Jy/pixel). For
a complex source, the model image will usually be determined by the deconvolution tasks (the outputs
of clean, mfclean or maxen without the restore step). If the source is a point source, then a point-source
model could be used, although the restriction that it be located at the phase centre is lifted.

The self-calibration procedure is often performed iteratively, each time with a better model, until finally
the sequence converges and no more improvement in the image quality can be made.

Self-calibration is not a technique that should be applied blindly. This is especially true for ATCA data
because, compared with the VLA, the problem is only slightly over-determined. This is because the
ATCA has, at most, 15 baselines to determine the complex gains for 6 antennas, whereas the VLA has,
at most, 351 baselines to determine the complex gains for 27 antennas. Because we can set the phase
of one antenna to zero, the problem reduces to finding 11 real numbers from 30 real equations. With
the 5-antenna compact array, we must find 9 real numbers from 20 real equations. This problem is
exacerbated when one antenna is absent from the data for a period of time, or you have flagged it out
because of poor data quality.

There are other problems to do with the east-west nature of the ATCA – see Bob Sault’s technical memo
‘Some simulations of self-calibration for the AT’ (AT Memo 39.3/058). One important point to keep in
mind is that self-calibration with the ATCA depends crucially on the initial model that you start with –
much more so than with the VLA where you can start with quite a poor model but arrive at the correct
result after just a few iterations.

Self-calibration, like basic calibration, requires that the signal-to-noise ratio on each baseline be of the
order of at least 5 or so. For weak sources, this may require a long solution interval, within which the
gains are assumed to be constant. If, in reality, the gains are changing on a time-scale significantly shorter
than your solution interval, and these changes are degrading your image quality, then you will be unable
to improve the image quality. The time-scale on which you will often find it necessary to correct the
gains is approximately one minute. Thus, weak sources often cannot be self-calibrated. For a continuum

15-1

15-2 CHAPTER 15. SELF-CALIBRATION

SELFCAL
GPSCAL

Self-calibrate

UVAVER

INVERT

CLEAN
MFCLEAN

MAXEN

RESTOR

calibration

Make image

Deconvolve

Restore

Apply primary

Figure 15.1: Typical self-calibration path

observation (100 MHz bandwidth) with the ATCA, you will, typically, need a signal strength of 100 mJy
before self-calibration is possible.

Note that it is not the receivers that cause the gains to be unsteady with time, but the atmosphere. In
a similar way to the degradation of an optical image by the atmosphere, a radio image is defocused by
the phase (and amplitude) noise that atmospheric cells induce into the wavefront. Self-calibration can
be thought of as an off-line mimicry of adaptive optics in optical astronomy.

15.1 Computation

MIRIAD contains two self-calibration tasks – selfcal and gpscal. After some general comments, we
describe the way in which these tasks handle polarisation and multi-channel data. Finally, the general
inputs to the tasks are described.

Figure 15.1 gives a typical self-calibration flow chart.

15.1. COMPUTATION 15-3

Apply Your Original Calibration Before Self-Calibrating

Both selfcal and gpscal produce antenna gain tables in the same format as the calibration tasks
previously described. Consequently, after running these tasks, the gains they derive are applied to the
data ‘on-the-fly’. However, the new gain tables derived by the self-calibration tasks will overwrite any
old gain tables. Provided the self-calibration produces an improvement, this is fine. However, if the
self-calibration process degrades the quality of the image (possibly because you gave it bad inputs or a
poor model, or because you were attempting to calibrate a weak source), then you may have lost your
good set of gains. An additional shortcoming is that the self-calibration tasks do not apply bandpass
corrections – they assume bandpass corrections have been previously applied. Finally, if the primary
gains have appreciable XY phase (for any antenna for selfcal, but for the reference antenna only for
gpscal), or significant amplitude gain mismatches (for selfcal only) then these corrections should be
applied to the data before self-calibration. Consequently, it is usually wise, before starting to perform
self-calibration iterations, to form a calibrated dataset (apply bandpass corrections and primary antenna
gains). Additionally if you are going to use selfcal, as discussed below, you should convert to Stokes
parameters. The task used to apply calibration and convert to Stokes parameters is uvaver.

Thus when using selfcal, use inputs to uvaver such as;

UVAVER
vis=vela.uv Raw visibility dataset, with primary

calibration tables.
out=vela.uv.cal Output with primary calibration applied.
stokes=i,q,u,v Perform Stokes conversion.

If using gpscal, do not perform Stokes conversion.

UVAVER
vis=vela.uv Raw visibility dataset, with primary

calibration tables.
out=vela.uv.cal Output with primary calibration applied.
stokes Unset for no Stokes conversion.

Once you have started self-calibrating, however, you probably do not need to form a calibrated dataset
after each iteration. Provided you keep your best model of the image, if you do overwrite good gains
with bad ones, then they are simple enough to regenerate using self-calibration and the best model.

Self-Calibrating with Multiple Models

Both selfcal and gpscal can be given multiple input model images. The input models can be cubes
for multi-channel data. These different models represent some different aspect of the data. For example,
the data could contain multiple pointing centres from a mosaiced observation or multiple spectral lines.
The self-calibration tasks assume that the gains are not dependent on these different aspects of the data
(e.g. the gains are independent of frequency and pointing centre). All the information will be used in
a simultaneous solution of the gains. The self-calibration tasks will generally determine the appropriate
correspondence between data and model (e.g. it will associate the data from a particular pointing with
a model with the same pointing). There are, however, some caveats described below.

Polarisation Handling

The biggest difference between selfcal and gpscal is in the handling of polarisation and dual feeds.

Though selfcal can handle multiple pointings and frequency ranges, it assumes that the antenna gain
is independent of feed (i.e. the X and Y gains are the same). It also only handles Stokes-I models (and
ignores visibilities that are unrelated to determining Stokes-I).

15-4 CHAPTER 15. SELF-CALIBRATION

Task gpscal is intended for telescopes with dual feeds (either linear or circular), such as the ATCA.
Indeed, it will fail for other sorts of data.

• gpscal solves for the two feeds either totally independently, or with the constraint that the XY
(or RL) phase of an antenna must be constant with time.

• gpscal converts between Stokes parameters and raw polarisations. It can take multiple input
models for different Stokes parameters. However, if a model of a particular Stokes parameter is not
given, it is assumed to be zero. For example, if you give it models of I, Q and U, but not V, then
the source is assumed to have no circular polarisation.

• gpscal uses the antenna polarisation leakage table if this information is present. If it is not present,
leakages are assumed to be zero.

• Unlike selfcal, gpscal cannot take models from multiple pointings or from different frequency
ranges. All models must correspond to the same pointing and same frequency range.

Frequency Handling

Both selfcal and gpscal assume that the gains are independent of frequency. This allows them to
use data from all channels in forming gain solutions. However, as mentioned above, they do not apply
bandpass corrections. Consequently, if you have multi-channel data and models, you will probably want
to form a bandpass-corrected visibility dataset before doing self-calibration.

The assumption that the gains are independent of frequency should be treated with some caution. If all the
visibilities for a given baseline go through one signal path, then the instrumental phase for the different
visibilities should be equal (assuming the signal path is well equalised). However, atmospheric phase
should vary linearly with frequency. Provided the fractional bandwidth is small, it is still a reasonable
approximation that the gains are independent of frequency. Indeed this is the normal approximation used
in deriving calibration solutions from a ‘channel 0’ dataset.

If the visibilities for a given baseline go through multiple signal paths (e.g. the 2 IF system for the
ATCA), then the instrumental phases for the different paths could be significantly different. Tentative
results for the 2 IF system of the ATCA show that, apart from an offset, the phase of the two signal
paths track each other as the ratio of the frequencies (i.e. the path length difference is constant). The
offset between them can be eliminated either by adjusting the phases of the two paths to zero at the start
of the observation, or by the primary calibration process. Provided the offset has been eliminated, and
provided the frequencies are not too different, it may be useful to approximate the gains as independent
of frequency.

If the phases vary significantly between the frequencies, then the different frequencies need to be self-
calibrated individually. Ideally there would be a self-calibration task which knows that the phase errors
at different frequencies tracked as the ratio of the frequencies.

When self-calibrating multi-channel visibility datasets, there are two distinct modes of calculating the
variation of the model with frequency, depending on whether the model contains multiple planes, or
whether multi-frequency techniques were used. We discuss these two possibilities in turn.

Multi-Plane Models

When the model contains multiple planes, it should be noted that the self-calibration tasks do not perform
any interpolation of models along the spectral dimension. The self-calibration tasks assume that there is a
one-to-one correspondence between a model plane and some average of the channels. The correspondence
is determined in a rather imperfect fashion – the self-calibration tasks use the standard line parameter
(see Section 5.4). This parameter determines the channels selected from the visibility dataset, and the
averaging performed on them. Unfortunately, the self-calibration tasks only perform rudimentary checks
on whether the line parameter makes sense (i.e. whether the selected channels have the same frequencies
as the model planes). Despite this, in many instances, the self-calibration tasks will provide appropriate

15.1. COMPUTATION 15-5

defaults for the line parameter. Below we outline those instances where you can or should allow the
line parameter to default, and those instances where you should not.

• MIRIAD tasks normally maintain a record of the line parameter used to form an image. The
imaging task, invert, records the line parameter it uses, and the deconvolution tasks propagate
it to their outputs. The default line parameter used by the self-calibration tasks is that which was
used to form the model. This is generally quite appropriate if the model was formed from the data
being self-calibrated. However if the model was formed by some other means, then the default will
be quite inappropriate, and you should set the line parameter explicitly.

• selfcal can cope with the case of several models being derived from different channel ranges
from one visibility dataset. This might occur, for example, if multiple lines were being observed
simultaneously (as often happens at millimeter wavelengths, but rarely with the ATCA). In this
case, the different models were formed with different line parameters. selfcal must rely on the
record of the line parameter stored in the model.

• If a point-source model is used (i.e. no input model dataset), then you should give the line

parameter explicitly.

• Similarly, if using the mfs option, you should also set the line parameter explicitly – see the next
subsection.

Multi-Frequency Models

When using multi-frequency techniques for continuum work (i.e. specifying options=mfs to invert),
the model will generally consist of a single plane (if derived from clean or maxen) or an intensity plane
and flux scaled derivative plane (mfclean). In these cases, the self-calibration tasks can generate the
model for all needed frequencies. However, you must tell the self-calibration tasks that the model is a
multi-frequency one by specifying options=mfs.

In the case of the models produced by clean and maxen for multi-frequency images, as these deconvolution
tasks do not determine the derivative plane, the self-calibration tasks assume that the spectral index is
0.

The line parameter can still be used when performing multi-frequency self-calibration. In this case, it
selects out those channels in the visibility dataset that are appropriate to the model. Indeed, the default
line parameter can be rather inadequate, and you should give the parameter explicitly.

Input Parameters to the Self-Calibration Tasks

We now describe the input parameters to the self-calibration tasks. Given the similarity of the two tasks,
we will describe them together, noting any differences as we go.

• vis: This gives the name of the input dataset to be self-calibrated.

• model: This gives the names of the input models. Several models can be given. Task selfcal

can take models from different pointings and frequency ranges. Task gpscal can take models from
different polarisations only.

• interval: This gives the self-calibration solution interval time, in minutes. This time must be long
enough to integrate an appreciable signal-to-noise ratio (5 or more) on visibilities. On the other
hand, it should be short enough so that the gains can be approximated as being constant during
this interval. The default is 5 minutes.

• select: This selects the u − v data to be used in the self-calibration process. For selfcal, you
need not perform source, dra, or ddec selection if you use the selradec option (see below).

• minants: The minimum number of antenna that must be present before the tasks will attempt to
find a solution. The default is 3 for phase self-calibration, or 4 for amplitude self-calibration.

15-6 CHAPTER 15. SELF-CALIBRATION

• refant: The reference antenna (i.e. the antenna which has zero phase) to be used in the solution
process. If this is not specified, selfcal chooses a default for each solution. gpscal, however, uses
antenna 3 as the default reference antenna.

• line: The standard line parameter, as described in Section 5.4. This parameter is described in
some detail above.

• clip: This parameter allows you to set the limit of the faintest believable flux density in the model.
For Stokes I or parallel-hand correlations, this is a maximum limit – flux densities below this limit
are assumed to be noise or error. For Stokes Q, U and V, this is an absolute limit – flux densities
less that |clip| are assumed to be noise or error.

• offset: The self-calibration tasks can be run assuming a point-source model. A point-source model
will be assumed if no model parameter is given. In this case, offset gives the offset, in arcsec,
from the observation centre, of the point source. The default is to assume that the point source
is at the observation centre. Note that you should generally also give the line parameter when
self-calibrating multi-channel data with a point-source model.

• flux: For selfcal, when using a point-source model, this gives the Stokes I flux density. The
default is 1. For gpscal, when using a point-source model, this parameter gives the flux density of
I, Q, U and V. The default is 1,0,0,0. Also see the noscale option below.

• options: The options parameter, as usual, gives a number of extra processing options. Options
common to selfcal and gpscal are:

amplitude and phase: This determines whether the self-calibration tasks solve for just phase
(options=phase, which is the default) or amplitude and phase solution (options=amplitude).

mfs: This option is described in the section on frequency handling (see above).

noscale: Normally the self-calibration tasks scale the gains so that their rms amplitude is 1. This
preserves your primary flux density calibration. The noscale option prevents this scaling,
thus allowing the absolute flux density scale to be changed by the self-calibration process. You
will want to allow the flux density scale to change if you are self-calibrating several datasets
of the same source (i.e. using the same model) separately. For example, you may have several
datasets containing different configurations or frequencies of the one source, and yet all these
datasets are used to produce the one output image. Using noscale ensures that the flux
density scales resulting from the different self-calibrations are the same.

Options specific to selfcal are:

relax: This relaxes the convergence criteria of gain solutions somewhat, and may be helpful if
there are a large number of solutions which fail to converge. This option will be useful when
the model is particularly poor. This will be so in the early self-calibration iterations when the
primary calibration was quite poor.

mosaic: This causes selfcal to select only those visibilities whose observing centre is within plus
or minus three pixels of the model reference pixel. This is needed if the input visibility dataset
contains multiple pointings or sources. By default, no observing centre selection is performed.

Task gpscal takes a few options to dictate how it handles XY phases:

noxy: Do not attempt to solve for XY phase. By default gpscal solves for a constant XY phase
on all antennas except the reference antenna.

xyref: Solve for the XY phase of the reference antenna (as well as the XY phase of the other
antennas). This cannot be used together with the noxy option. To use this option, the source
should be strongly polarised (at least 5%), and Stokes Q and/or Stokes U models should be
given.

xyvary: Solve for a variable XY phase. It is recommended that you use this option, although this
option does not work for phase-only self-calibration. If used withoptions=xyref then gpscal

additionally solves for a variable XY phase on the reference antenna.

15.1. COMPUTATION 15-7

Summary

We finish with two examples, the first being for selfcal.

SELFCAL
vis=vela.uv.cal Visibility data-set to be corrected,

Generally I,Q,U,V visibilities.
model=vela.icmp CLEAN component image
select Data to select.
interval=5 Self-cal solution interval.
options=phase Phase self-calibration, or
options=amp Amplitude self-calibration, or
options=phase,mfs Phase-selfcal, MFS model, or
options=amp,mfs Amplitude self-cal, MFS model
line You need to specify this for MFS selfcal,

can generally default otherwise.

The parameters for gpscal are very similar.

GPSCAL

vis=vela.uv.cal Visibility data-set to be corrected,
Should be XX,YY,XY,YX visibilities.

model=vela.icmp,vela.qcmp,vela.ucmp CLEAN component images
select Data to select.
interval=5 Self-cal solution interval.
options=phase Phase self-calibration, or
options=amp,xyvary Amplitude self-calibration, or
options=phase,mfs Phase-selfcal, MFS model, or
options=amp,mfs,xyvary Amplitude self-cal, MFS model
line You need to specify this for MFS selfcal,

can generally default otherwise.

15-8 CHAPTER 15. SELF-CALIBRATION

Chapter 16

Spectral Line Data Reduction

16.1 Velocities in MIRIAD

Because of the Doppler effect, the observed frequency of a spectral line can be related to the radial
velocity between the observer and the source. The relativistic expression relating frequency to radial
velocity is

v = c
ν2
0 − ν2

ν2
0 + ν2

,

where v is the radial velocity, ν the observed frequency, ν0 the rest frequency, and c is the speed of light.
For various reasons, astronomers usually approximate this formula. There are two common approxima-
tions – the “radio definition”,

vradio = c(1− ν

ν0
),

and the “optical definition”,

voptical = c(
ν0

ν
− 1).

The radio definition has the advantage that points sampled at equal increments in frequency translate to
equal increments in velocity. However the radio definition is now deprecated by the IAU.

In defining a velocity, a rest frame must also be given. Because of the Earth’s diurnal and annual motion
(spin on its axis, and rotation around the Sun), the Earth’s surface is not a good rest frame. The diurnal
and annual motion have maximum velocity components of approximately 0.5 km s−1 and 30 km s−1

respectively. Two commonly used rest frames are the solar system barycentre (the dynamical centre of
the solar system) and the local standard of rest (LSR) (which accounts for motion of the solar system
relative to a collection of local stars). The local standard of rest is generally used as the rest frame for
Galactic astronomy, whereas the barycentric frame (often misnamed heliocentric frame – which is slightly
different) is generally used for extragalactic work. MIRIAD uses the “definition” of the LSR that the
solar system barycentre is moving at 20 km s−1 in the direction of (RA,DEC) = 18 hours,+30 degrees
(B1900) (this is a so-called “kinematic” definition of the LSR).

Because of the Earth’s motion, the frequency that corresponds to a particular velocity of an astronomical
source will change with time. When observing spectral lines, many observatories continuously change
the observing frequency to account for the effect of the Earth motion, and thus make a particular source
velocity correspond to a single channel. This is known as Doppler tracking.

Note, however, that the ATCA does not Doppler track.

This means that the channel that a particular source line corresponds to varies with time. If the velocity
resolution is coarse compared to the diurnal velocity component of the Earth (< 0.5 km s−1), and only
a single configuration of data is being used, this effect can be ignored. However when high velocity
resolution is required or multiple configurations are being combined, account must be made of the way
the line wanders between channels. That is, account must be taken of the changing radial velocity of the
observatory.

16-1

16-2 CHAPTER 16. SPECTRAL LINE DATA REDUCTION

For a dataset from an observatory that does Doppler track (i.e. not the ATCA), the frequency descriptors
in a dataset should vary with time. This will be the case with some datasets, but not others – the
time varying Doppler frequency component has been lost somewhere. Although this loss will affect the
calculation of u − v coordinates, the error that it introduces is generally negligible (see the discussion
in the spectral-line processing chapter of Neil Killeen’s “Analysis of Australia Telescope Compact Array
Data”).

Regardless of whether or not the observatory Doppler tracks, MIRIAD stores the radial velocity of the
observatory (with respect to the rest frame) to account for the Earth’s motion when determining source
velocities. This is stored in the visibility variable veldop.

16.2 ATCA Spectral Line Correlator Configurations

Many of the ATCA correlator configurations are specifically intended for the spectral line observer. One
aspect of the ATCA correlator that you should note is that the spectral resolution is often moderately
different to the channel increment. For a full description of this, see the memo by Neil Killeen (AT Memo
39.3/057).

16.3 Spectral Line Processing and RPFITS files

When using atlod to read in spectral line data, there are a few extra parameters that should be considered

ifsel: The ATCA allows you to observe two frequency setups simultaneouslyifsel allows you to load
just one of them by setting ifsel=1 or ifsel=2. The default is to load both of them.

restfreq: The RPFITS file does not contain the rest frequency of the spectral line observed, so you
need to give this at some stage during data reduction – the earlier the better. The rest frequency
can be entered (via restfreq, in GHz) in atlod.

There are a few options in MIRIAD’s atlod of particular interest to spectral line observers:

bary: By default, task atlod uses the LSR as the rest frame when computing velocity information.
However you can change this to the barycentre by using options=bary. Note that LSR velocities are
the standard for Galactic astronomy, whereas barycentric are more commonly used by extragalactic
astronomers. If you load with the wrong velocity reference frame, you can change this later with
uvredo (for visibility datasets) or velsw (for images).

birdie: The ATCA suffers self-interference at frequencies which are multiples of 128 MHz (e.g. 1408
MHz). For spectral line modes, the birdie option flags any channels that are affected by the
self-interference. This is strongly recommended.

hanning: This option performs Hanning smoothing of the spectra, and discards every second channel.

compress: This causes the data to be written in a scaled 16-bit format, thus reducing disk usage by a
factor of two.

noif: If you are loading the ATCA’s two frequency setups simultaneously, atlod normally tries to stack
the two together as “spectral windows” (IFs in AIPS terminology). However this will not be
possible if the two setups sample different sets of polarisation parameters. In this case, you will
need to use options=noif to get atlod to store the different frequency setups as different visibilities.

16.4 Spectral Line Processing and FITS files

When fits reads a visibility FITS file, it can use one of two schemes for computing the observatory’s
radial velocity. Possible schemes are:

16.5. LISTING AND PLOTTING VELOCITY INFORMATION 16-3

1. fits assumes that a velocity of a given channel remains constant. This means that one of the
following three conditions is satisfied:

• Correcting shifts have been performed on the spectra by offline software to account for the
Earth’s motion (e.g. by AIPS task CVEL or various tasks in MIRIAD).

• The velocity resolution is sufficiently coarse that Doppler tracking is not required.

• Doppler tracking has been performed during the observation (not ATCA data).

If any one of these is satisfied, then given the velocity of a particular channel, fits can determine
the corresponding observatory radial velocity that this would imply.

You can either allow fits to retrieve the needed velocity information from the FITS file, or you
can give this information explicitly using the velocity keyword. The default behaviour (if you do
not set the velocity keyword at all) is to use the information in the FITS file. You will need to
explicitly enter the velocity information to fits if the information in the FITS file is incorrect.

The velocity keyword gives three values: the velocity definition and rest frame, the velocity of a
particular channel, and the channel velocity in km s−1. Possible values for the velocity definition
and rest frame are lsr (LSR velocity, radio definition), bary (barycentric velocity, radio definition),
optlsr (LSR velocity, optical definition), optbary (barycentric velocity, optical definition) and obs

(velocity relative to the observatory – not of much use). For example, to indicate that channel 257
has an LSR velocity (radio definition) of 4310 km s−1, use

velocity=lsr,4310,257

Specifying the velocity of a channel for a multi-source FITS file is not a particular meaningful thing
to do (unless you are interested in only one source).

2. fits assumes that the velocity of a particular channel varies as a result of the Earth’s motion.
This will be the case for ATCA observations and so should generally be used (unless CVEL has been
used in AIPS, or similar corrections performed in MIRIAD). In this case, fits will compute
the Earth’s radial velocity as a function of time. The model of the Earth’s motion used by fits is
accurate to better than 0.005 km s−1– which is adequate for most radio-astronomical applications.
fits will compute the radial velocity from its Earth model if a velocity frame and definition is given
in the velocity keyword (either lsr, bary, optlsr, optbary or obs, as before), but the velocity
and reference channel are omitted. For example, fits will use its Earth model to determine the
observatory’s radial velocity with respect to the LSR if given:

velocity=lsr

It is recommended that the second approach is used for ATCA data that has not already been corrected
for Earth motion. This is especially so if the velocity information in the FITS file is incorrect.

16.5 Listing and Plotting Velocity Information

The task uvlist can be used to list information about the frequency and velocity setup, with the
options=spectral listing. This prints out the velocities for a visibility record. It is suggested that you
do this before proceeding much further, to ensure that the velocity and rest frequency information is
what you expect.

The task varplt can be used to plot or list the observatory’s radial velocity as a function of time. Use
the parameter setting yaxis=veldop.

16.6 Recomputing Velocity Information

Although atlod or fits is the best place to set the velocity information, this can also be handled by
the task uvredo. This task recomputes a number of the ‘derived’ quantities (such as observatory radial

16-4 CHAPTER 16. SPECTRAL LINE DATA REDUCTION

velocity) which are stored in a visibility dataset. You have to select uvredo’s velocity option, and set
the keyword velocity to indicate the rest frame to be used. Typical inputs are:

UVREDO
vis=line.uv Input dataset name
out=line2.uv Output dataset name
options=velocity Recompute velocity information
velocity=lsr Use the LSR as the rest frame

16.7 Setting the Rest Frequency

The rest frequency of a line may sometimes need to be set or corrected (e.g. you forgot to enter it in
atlod, or the FITS file failed to contain this information). This can be done with puthd.

PUTHD
in=line.uv/restfreq Set the parameter restfreq of

dataset line.uv
value=1.420405752d0 Rest frequency, in GHz. Express it as

a double precision number.

16.8 Velocity Linetype

As mentioned in Section 5.4, many MIRIAD tasks allow a range of channels to be given by their
velocities (rather than their channel numbers). Because these channels often do not correspond to any
channels that the correlator might produce, they will be call “velocity channels”. Velocity channels are
specified using the line parameter. The velocities are given in km s−1, in the radio or optical definition,
with respect to the rest frame of the dataset. The main reason for ‘velocity channels’ is that they are
corrected for the Earth’s motion – a particular source velocity component will remain in the same velocity
channel regardless of whether the observatory Doppler tracks or not.

The velocity specification is given in the form

line=velocity,nchan,start,width,step

or

line=felocity,nchan,start,width,step

where nchan is the number of velocity channels to select, start is the centre velocity of the first channel
selected, width is the width of each channel, and step is the velocity step between channels. With the
velocity form, the radio velocity definition is assumed, whereas the felocity form uses the optical
definition. Note, however, both forms produce channels at equal increments in radio velocity (even the
felocity linetype). See Section 5.4 for more information.

For example

line=velocity,10,1.5,1.0,3.0

will specify 10 channels, having velocities (radio definition) centred at 1.5, 4.5, 7.5, etc, km s−1, with
respect to the rest frame. Each channel has a width of 1 km s−1.

If the start, width and step values cause the velocity channels not to map directly to the underlying
correlator channels, a weighted sum of correlator channels is used to determine a velocity channel. If the

16.9. CONTINUUM SUBTRACTION 16-5

magnitude of the velocity channel width (the width value in km s−1) corresponds to correlator channel
increment, i.e. if

|width| = |c∆ν

ν0
|

(where ∆ν is the correlator channel increment) then the weighted sum is equivalent to linear interpolation.

For telescopes that do not Doppler track, such as the ATCA, it will rarely be the case that velocity
channels map directly to correlator channels because of the continual change in the observatory’s radial
velocity.

There are some caveats when using velocity channels:

• The rms noise in each velocity channel will vary if there is not a one-to-one mapping between these
and correlator channels. Also there may be some noise correlation between consecutive channels.
The theoretical noise given by MIRIAD will generally be an overestimate. This is worst for a
long synthesis when the channel resolution is 0.5 km s−1or finer. In this case, the true theoretical
noise will be, on average, a factor of

√

3/2 less than that suggested by MIRIAD.

• The “weighted sum” method of determining a velocity channel is inferior to more sophisticated
interpolation schemes (e.g. the FFT based interpolation in AIPS CVEL).

16.9 Continuum Subtraction

Spectral line observations will always be “corrupted” by some continuum emission. If this is stronger or
comparable with the spectral line, then the final spectral images may be dominated by the continuum
and its artifacts (sidelobes, deconvolution errors, calibration errors, etc). If the final dynamic range of
your image is dominated by continuum errors, then weak spectral features will be completely obscured.
It is possible to remove the continuum so that the final dynamic range of the spectral image is dependent
on thermal noise and artifacts resulting from the spectral line (and not artifacts from the continuum).
Consequently it is usually best to subtract the continuum from the data. A good description of the
algorithms to do this is given by Cornwell, Uson and Haddad (1992). (A&A 258, 583). Neil Killeen’s
“Analysis of Australia Telescope Compact Array Data” also gives a good summary as well as describing
the AIPS possibilities. The paper Sault (1994) (A&AS 107, 55) describes one of the algorithms in detail.
Yet another summary is given below.

Although three approaches to continuum subtraction are possible in MIRIAD, we recommend only one
of these – the UVLIN approach. The other two are briefly mentioned for completeness:

UVSUB: This is the most time consuming of the techniques, which involves forming a continuum image
from the line-free channels, deconvolving this and subtracting it from the visibility data-set. In
addition to the normal imaging and deconvolution tasks, uvmodel will be used to perform the
actual subtraction of the continuum model from the visibility data. The options=mfs switch will
be useful in this context. No more details to this approach will be given here.

IMLIN: This is an image-based technique, where a polynomial fit of the continuum is done along the spectral
axis at each pixel in the dirty image. Although MIRIAD tasks contsub and avmaths can be used
to perform this, no more details will be given here.

UVLIN: This is the recommended approach in MIRIAD to perform continuum subtraction. It is imple-
mented with the task called (surprisingly) uvlin.

In this scheme, each visibility spectrum is fitted by a polynomial. Only the line-free channels of
the spectrum are used to determine the fit The polynomial can be taken to represent the contin-
uum emission, and so can be subtracted from the spectrum. Because bandwidths in spectral line
experiments are often narrow, the continuum emission is usually well modelled by a fairly low order
polynomial (zeroth, first or second order). The fit is performed to the real and imaginary parts of
the data separately. In general, this is better than fitting to the amplitude and phase, as the whole
process remains a linear one. A non-linear fit to amplitude and phase couples together the errors
on all sources, and produces an amplitude bias at low signal-to-noise ratios.

16-6 CHAPTER 16. SPECTRAL LINE DATA REDUCTION

Fit Order Maximum Residual Continuum Error

0 S
π2

6
η

1 S
π2

9
η2

2 S
π4

150
η3

3 S
π4

525
η4

Table 16.1: Approximate residual error for visibility-based continuum subtraction.

The main advantage of UVLIN over the other two approaches is that it is generally the most robust to
a large variety of systematic errors (such as antenna gain errors). IMLIN is also moderately robust to
these errors, whereas UVSUB is not particularly robust at all. UVLIN, along with IMLIN, is substantially
less expensive computationally than UVSUB, and they generally requires less care and intervention on the
part of the user.

UVLIN, however, is not perfect. There will be some residual continuum left behind, and the noise level
in the output will be amplified in those channels that were excluded from the fitting process. These
drawbacks are not unique to UVLIN – they will be a characteristic of any continuum subtraction technique.
There are three parameters to control UVLIN – the set of channels to be used in the fitting process (i.e.
the set of channels that are assumed to be line-free), the order of the polynomial to fit and an offset to be
applied to the data before the fit is performed. The combination of these three parameters will determine
the residual continuum. They also determine the factor by which the noise level increases in the data.
We clearly want to keep this noise amplification to an acceptable level.

Usually we have little direct control over the channels that are line-free. Obviously, though, the more
line-free channels we have, the better the fitting process will be. Do not discard any line-free channels
until after continuum subtraction.

If there are line-free channels on only one side of the spectrum (i.e. you have to extrapolate the continuum
fit), then generally it is unwise to use anything but a 0th order fit. This is because the residual continuum
is not greatly affected by the fit order, whereas noise amplification can become extreme.

On the other hand, if there are line-free channels on both sides of the spectrum, and provided the fraction
of channels involved in the fitting process is appreciable (at least 25%), then higher order fits are quite
useful. The residual continuum depends on the continuum source flux density and the parameter η. For
a source at location (`0, m0) (with respect to the phase centre),

η =
1

2

∆ν

ν

√

`20 + m2
0

θ
.

Here ∆ν is the total bandwidth and ν is the observing frequency. For a point source θ is the resultant
image resolution. For resolved sources, θ is the angular extent of typical image features. Unfortunately you
cannot really determine η without having formed a continuum image. The maximumresidual continuum is
approximately as given in Table 16.1. Because of the narrow bandwidth of most spectral line experiments,
η < 1, and so the residual continuum decreases rapidly as the fit order is increased. A zeroth or first
order fit will be quite adequate for many spectral line experiments. Given a continuum image, the task
conterr can determine images which should be indicative of the residual. There should not be viewed
as strict error images. Rather they indicate the magnitude and location of the residual errors.

As the fit order is increased, noise amplification also increases. Generally, provided we have a significant
number of line-free channels (and you are not extrapolating) the noise amplification is modest. You
should be cautious of noise amplification for fourth order fits if fewer than 50% of the channels are line-
free, or for third order fits when fewer than 25% of the channels are line-free. MIRIAD task contsen

can be used to determine the noise amplification given the fitting order and the channels included in the
fitting process.

16.9. CONTINUUM SUBTRACTION 16-7

The fact that the residual continuum is a function of the distance of the point source from the phase centre
should not be a surprise. As u − v coordinate is proportional to frequency, the channels in a visibility
spectrum are sampling slightly different locations in the u−v plane. For a point source (which we assume
to have a spectral index of zero, for simplicity) will have a visibility function whose real and imaginary
parts are sinusoids. The fraction of a period of this sinusoid contained within the u − v coordinates
spanned by a visibility spectrum will be directly proportional to the distance of the point source from the
phase centre. The further the point source is from the phase centre, the greater proportion of a sinusoid
period is present in the visibility spectrum, and the poorer the approximation of the visibility spectrum
by a low order polynomial.

This leads us to another way of reducing the residual continuum – we can shift the phase centre to the
location of the continuum source. The amount of benefit derived from such a shift will depend strongly
on the skewness of the distribution of the continuum, and its distance from the phase centre. The task
conterr can suggest shifts which will minimise the error (see options=shift).

Computation

For a relatively simple program to drive, uvlin has a rather large number of input parameters. Task
uvlin behaves somewhat like a copying program, taking an input dataset (selecting, calibrating and
performing Stokes conversion, as appropriate), performing the continuum subtraction, and writing out a
resultant dataset. Input parameters are:

• vis: The name of the input dataset.

• select: The subset of data to select.

• line: The normal line parameter.

• chans: This gives the set of channels to be used in the fitting process. It consists of a number of
pairs giving the start and end range of the channels to include in the fitting process. Note that
there channel numbers are relative to the channels selected with the line parameter.

• out: The output dataset.

• order: The fit order. The default is 1.

• offset: An offset to be applied to the data before the fit, and “deapplied” after the fit. The
net result is that the phase centre of the data is unchanged. However the fitting process is better
behaved if the phase centre during the fitting process is located at (or near) the dominant continuum
emission. The default is to do no shifting.

• mode: This determines what form of data are written to the output dataset. Normally you will want
to write the line data (the data after continuum subtraction). However you can also write out the
fitted continuum (mode=continuum) or a fitted channel-0 dataset (mode=chan0). Task uvlin also
has a option where it can solve for line shape (see options=lpropc below). In this case, you can
also write out the fitted line (mode=fit).

• options: The options parameter gives the normal ability to turn off calibration. Note that you
will generally want calibration to be applied, as a copy of the dataset is being formed. It is
particularly important to apply bandpass correction. There are a few extra switches in addition to
the calibration switches:

sun: With this option, the offset keyword is ignored, and a shift appropriate for the Sun is
determined instead. Thus, if your continuum is dominated by the Sun, this will help eliminate
it. You will normally want to use the “twofit” option with this (see below). Also see Sault
& Noordam (1995) (A&AS 109, 593) for information and an example.

twofit: If an “offset” is given, or if the “sun” option is used, uvlin normally fits for continuum
just at the offset or solar position. By using the “twofit” option, uvlin will fit for continuum
at both the phase centre and the offset/solar position.

16-8 CHAPTER 16. SPECTRAL LINE DATA REDUCTION

relax: Normally uvlin attempts to avoid overfitting the data if it finds a significant number of
flagged continuum channels (more than 40% bad). If it does find a large number of flagged
channels, it starts reducing its fit order. The relax option tells uvlin to fit the order you ask
for regardless of large numbers of flagged channels.

lpropc: In recombination line experiments, it might be a good approximationthat the line strength
is proportional to the continuum. Using this extra constraint, uvlin can simultaneously fit for
both a continuum spectrum (varies from visibility to visibility) and a line spectrum (which is
a function of the continuum strength). This results in an iterative algorithm, which can take
an appreciable time, with unfortunately only modest improvement in results. You probably
do not want to use this option.

Typical inputs to uvlin are:

UVLIN
in=line.uv Input dataset before continuum subtraction.
select Leave unset to select all data.
line Leave unset to select all channels.
chans=1,100,300,512 Channels 1 to 100, and 300 to 512 inclusive

contain only continuum emission.
out=line.sub The output continuum subtracted dataset.
order=1 Use first order fit (which is the default).
offset The offset to apply. Probably leave unset.
mode Leave unset to get line data after

continuum subtraction.
options Probably leave it unset

16.10 Imaging and Image Velocity Definitions – INVERT and
VELSW

A few comments are in order when using the imaging task, invert, to create spectral cubes (more
information on invert can be found in Chapter 13):

• To conserve space, invert produces a single beam dataset for all planes of a cube. For it to do
this, the cell size of each plane is scaled with frequency. For the small fractional bandwidths typical
in spectral-line experiments, this affect is small. Additionally the coordinate-handling software
accounts for this scaling when converting between pixel and celestial coordinates.

For one beam to be valid for all planes, invert usually insists that the u− v coverage for all planes
is the same. That is, invert usually insists that no channels of a spectrum are flagged before
that spectrum can be used for imaging. This is required to ensure each image plane has the same
point-spread function.

This rule can be too restrictive for some uses. For example if deconvolution is not envisaged or
if one channel (the birdie channel?) is always bad. invert’s slop keyword allows the rule to be
relaxed. The slop keyword takes two values. The first is the fraction of channels that invert will
tolerate as being bad before a spectrum is rejected. The default is 0 (i.e. the entire spectrum is
rejected if even a single channel is bad). A value of 1 indicates that invert will accept a spectrum
provided at least one channel is good. The second value dictates the ‘replacement’ method, i.e.
what value to assign for the flagged channel, when imaging with flagged channels. Possible values
are ‘interpolate’ and ‘zero’.

Interpolation replacement would be appropriate if there are a small number of channels that are
always bad, and that you wish to replace them with something for, essentially, aesthetic reasons.
Note that the interpolation is simple-minded linear interpolation.

Surprisingly zeroing the flagged correlation also has its advantages. When zeroing, the true beam
(point-spread function) will be channel dependent and will differ from the computed beam. Conse-
quently deconvolution should not be attempted. invert attempts to scale each plane so that the

16.10. IMAGING AND IMAGE VELOCITY DEFINITIONS – INVERT AND VELSW 16-9

true beam has a peak value of 1. This scaling is correct only for natural weighting when no tapering
is used (i.e. sup=0 and fwhm unset). If this is the case, the channel images can be astrophysically
useful. For other weightings and taperings, the peal value of the true beam will not be exactly 1
– the flux density scale will no longer be what is conventionally understood by Jy/(dirty beam).
Additionally the beam peak value can vary from plane to plane, and so the flux density scale may
not be comparable between planes. Be warned.

• invert checks that the velocity of visibilities gridded onto a particular plane remains constant. The
velocity will not remain constant if the observatory does not Doppler track and velocity linetype is
not being used. If the velocity of visibilities gridded onto a plane varies by more than 10% of the
plane separation, invert gives a warning.

• Regardless of the line parameter, invert labels the velocity axis using the radio definition. How-
ever it is possible to switch the labelling of this axis to be either frequency or velocity using the
optical definition, or indeed back to velocity using the radio convention. Note that for the optical
velocity definition, the velocity separation between planes is not constant. The velocity increment
stored in the header is that which corresponds to the reference frequency. The task velsw performs
this task. Its inputs are fairly simple:

VELSW

in=line.map Input image.
axis=optical Label as velocity using optical definition,
axis=radio or label as velocity using radio definition,
axis=frequency or label as frequency.

16-10 CHAPTER 16. SPECTRAL LINE DATA REDUCTION

Chapter 17

Displaying Images

17.1 Introduction

As discussed in Chapter 3, there are two basic suites of display software for MIRIAD data. One uses
the ATNF Visualisation suite, and the other is PGPLOT-based

The ATNF visualisation software, which lies outside the domain of MIRIAD, uses a X-windows based
user interface, with pop up menus, etc. It is largely interactive, and tends to be poorer when quantitative
information is needed. The PGPLOT-based software, uses the normal MIRIAD user interface, tends to
be better suited to hardcopy output, quantitative work, and for more specialised astronomical applications
(e.g. plotting polarisation vectors).

17.2 The ATNF Visualisation Software

The ATNF Visualisation software is a suite of tools (outside MIRIAD) designed to display images and
data cubes (including MIRIAD images and cubes). See Chapter 3 for more information.

The main visualisation tool of interest in image display is kview This tool allows you to inspect one or
two 2- or 3-dimensional datasets in several ways. The simplest thing to use it for displaying a dataset.
kview gives flexible zooming, special colour maps for velocity fields etc. For 3-dimensional datasets one
can play the channels, as well as the RA-VEL and DEC-VEL slices, of the data cube as a movie, in order
to get an idea of the 3D structure of the emission in the data cube.

Another application of kview is that one can load two datasets – one can then look at these two datasets
simultaneously in several ways, like blinking or contour one data set on top of the other. The advantage
of kview is that one has interactive control over zooming, contour levels etc., so it gives more flexibility
than e.g. cgdisp. This mode of kview can be used for overlaying a radio-continuum map on an optical
image, or the channels of an HI data cube on the continuum or an optical image and inspecting this
interactively. Note that for the contouring, the two datasets do not have to be on the same grid, they
should have a proper coordinate system defined. Also note that the visualisation software can read data
in FITS format so one can load images from e.g. skyview directly and overlay MIRIAD datasets.

kview can also produce full colour postscript output of whatever you display.

17.3 PGPLOT Device Tasks

There are a number of tasks that display on a PGPLOT device. These devices include, of course,
postscript disk files that you can spool to a laser printer (see Chapter 3 for details of how to use PGPLOT).
For image display, there is a suite of tasks called cginit, cgdisp, cgcurs, cgslice, and cgspec. We
will discuss the first four in this chapter, and cgspec in Chapter 19.

17-1

17-2 CHAPTER 17. DISPLAYING IMAGES

The ‘CG’ tasks attempt to label the plots in the correct non-linear axes. Provided the field is not too
large, the labelling is good (use options=grid to see the non-linearities more clearly). However for for
very large fields or where the non-linearity is particularly severe (e.g. south celestial pole), the ‘CG’ tasks
will fail to label adequately.

Common Keywords

This suite has many common keywords and much common functionality. We describe briefly now some of
the common keywords, although not all the tasks in the suite use them in all possible ways. Refer to the
individual help files to see what each task offers. Specific uses by cgspec will be described in Chapter 19.
Note that minimum match is usually accepted for the value of keywords. The keywords usually default
to the same value in each task, but you should again refer to the help files for details.

• The keyword in takes a list of input images as its arguments. These images are displayed or used
in the display in some way indicated by the keyword type.

• The keyword type indicates how the images given in the in keyword will be displayed. These two
keywords are in one to one correspondence with each other. Possible values are pixel (display
image as a pixel map representation, formerly called a grey scale, but now full colour is available),
contour (display image as a contour map), box (display image as little boxes, where the size of
the box is proportional to the value of the pixel, and it is hollow for positive and solid for negative
values), amplitude and angle (display these two images as line vectors). In addition, type can
take on the value mask. In this case, the relevant image given in the keyword in is not displayed,
but its pixel blanking mask is applied to all the other images which are being displayed.

• The standard MIRIAD keyword region is used to select the region of the images for display. It
interacts with the keyword chan (see below) which allows you to group planes (or channels) together
onto separate subplots. The region selected applies to all the input images and they must all have
the same size on the first 2 axes. However, you can input a mix of 3-D and 2-D images. If you
input more than one 3-D image, they must all have the same size on the third axis. Any 3-D region
selection indicated with the region keyword is applied only to the 3-D images that you input. An
example of this usage would be overlaying a continuum image on each channel of a spectral line
cube.

• The keyword xybin allows you to spatially bin up (average) pixels, or to pick out pixels at regular
increments. This can be very handy for displaying large images, especially if you are making a hard
copy on a postscript printer where the printer resolution does not merit retaining the individual
pixels. Using this keyword can make the postscript file much smaller and print much faster.

You can bin up the two spatial axes of an image independently, and you can enter up to 4 values, 2
for each axis specifying the increment and binning size. As an example, xybin=4,4,3,1 would bin
up the image by 4 pixels in the x direction and pick out every third pixel in the y direction. If the
binning size is not unity, it must equal the increment.

• The keyword chan is used to allow you to group the planes (or channels) that you selected with the
keyword region onto separate subplots of the plotting page. The first value you give is the channel
increment to step through the image in. The second value is the number of channels to average,
for each sub-plot. For example, chan=5,3 would average groups of 3 planes together, starting 5
channels apart such as 1-3, 6-8, 11-13 and so on.

The channels available are those designated by the region keyword. A new group of chan-
nels (sub-plot) is started if there is a discontinuity in the region selected channels (such as
region=image(10,20),image(22,30). The combination of the region and chan determines how
many sub-plots there will be.

• The keywords slev and levs (or lev1, lev2, levs3 in cgdisp – it can draw up to 3 contour
maps at once) indicate at what values the contours should be drawn. The first value of slev can
be p or a, indicating percentage or absolute levels. The second value of slev is a scale factor to
multiply the contour levels given in levs by. For example, slev=p,1 and levs=-1,1,2,4,8,16

17.3. PGPLOT DEVICE TASKS 17-3

would draw contours at -1%, 1%, 2%, 4%, 8% and 16% of the peak value in the image. On the
other hand, slev=a,0.001, levs=3,5,10 would draw contours at values of 0.003, 0.005, 0.01.

• The keyword range is used to control the way in which pixel intensities are mapped onto the colour
lookup table of the device for pixel map representations (type=pixel. Its use varies somewhat from
task to task, but the basic functionality is the same; see the individual help files for details. See
also options=fiddle which provides an interactive way to interact with the lookup tables.

The first two values indicate the range of pixel values (intensities) to map onto the lookup table.
Pixels with values outside this range will be represented with the colour of the nearest extremum.
Thus, if the image was being displayed with a simple linear black and white transfer function on
an interactive device, range=−0.2, 2.0 would cause all pixels with values below −0.2 to come out
black, all pixels with values greater than 2.0 to come out white, and all pixels in between that range
to have shades of grey from black to white.

The third argument of range allows you to specify a transfer function so that the pixel values can be
mapped onto the lookup table in some way other than linearly. Allowed values are lin,sqr,log,heq
for linear, square root, logarithmic and histogram equalisation transfer functions. Histogram equal-
isation can be very handy for images which have a lot of dynamic range. What this does is use the
device colour levels for pixel values which occur the most often.

The fourth argument of range is an integer between 1 and 9 specifying the type of lookup table.
The available tables are 1 (b&w), 2 (spectrum colours), 3 (linear pseudo colour), 4 (floating zero
colour contours), 5 (fixed zero colour contours), 6 (rgb), 7 (background) 8 (heat) and 9 (absolute
b&w) . If you enter a negative integer, then the reversed lookup table is displayed.

Fixed zero colour contours fix a colour boundary (blue-green) at 0 intensity, with 4 colour pairs
([light blue, light green], [dark blue, dark green], [purple,yellow], [black,orange]) distributed positive
and negative of 0. There are then two more colours (read and white) for the remaining positive
intensity values. Once you have arranged the colour pairs so that they define the noise level, the
red and white colours quickly show you the true signal. You need to use options=fiddle to get
the scaling to the noise level right.

Note that in cgdisp, you can enter a group of 4 values for each subplot that is drawn. This is
useful for hardcopy output, in that you can have an individual scaling and lookup tables for each
subplot. For example, you may have made a “cube” with unlike quantities in different planes
(total intensity, polarised intensity, fractional polarisation, rotation measure etc) and it would be
impossible to display them all with just one set of 4 values for the range keyword.

The following figure shows the possible colour table types for a simple image. The colour bars or
wedges show the differences most clearly.

• The keyword device indicates the PGPLOT device upon which the plot will be drawn.

• The keyword nxy takes two values, which are the number of subplots in the x and y directions on
the page (dictated by the chan keyword).

• The keyword labtyp specifies what units the axes will be labelled in. It can take two values and
they can be different.

Possible values are:

– hms for a label in H M S.S (e.g. for RA)

– dms for a label in D M S.S (e.g. for DEC)

– arcsec for a label in arcsecond offsets

– arcmin for a label in arcminute offsets

– absdeg for a label in degrees

– reldeg for a label in degree offsets

– abspix for a label in pixels

17-4 CHAPTER 17. DISPLAYING IMAGES

Figure 17.1: Available Colour Lookup Tables

17.3. PGPLOT DEVICE TASKS 17-5

– relpix for a label in pixel offsets

– abskms for a label in km s−1

– relkms for a label in km s−1 offsets

– absghz for a label in GHz

– relghz for a label in GHz offsets

– absnat for a label in natural units as given by the axis label.

– relnat for a label in offset natural coordinates

– none for no label and no numbers or ticks on the axis

All the offsets are with respect to the reference pixel. Note that you are expected to match your
values with the order of the axes. For example, if you asked for labtyp=abskms,dms, it is expected
that the first two axes of the image are velocity and declination. You will get rude messages if this
is not the case.

• The keyword csize gives you control over the size of characters on the plot such as axis labels,
or annotation text. These are given as factors of the default PGPLOT character size csize=1.0,
which gives a character about 1/40 of the maximum dimension of the view surface. See the help
files for details on what you can control in which task.

• The keyword options offers a variety of enrichment options for each task. There are a few that are
common to most of the tasks in this suite.

– Option wedge causes a labelled colour bar or wedge to be drawn, showing the mapping between
pixel intensity and colour.

– Option fiddle invokes the interactive lookup table fiddler. This is mouse (or keyboard) driven,
and instructions are given the in the window from which you invoked the task. basically, it
is tree structured, with one branch to select different colour lookup tables, and one branch to
modify the transfer function. You can swap between these branches.

This option allows you to cycle through all of the same colour tables offered by keyword range

(see above), and reverse them if desired. You can cycle through all of the same pre-defined
transfer functions that are available with keyword range (see above).

In addition, there is an interactive linear transfer function fiddle mode, where you can change
the slope and offset of the linear transfer function. When you invoke the different transfer
function modes, you get a little plot in the bottom right corner showing you what the transfer
function is doing.

Note that if you are plotting on a hard-copy device such as a postscript file, this option is then
activated with keyboard inputs. You have the usual ability to cycle through lookup tables
and transfer functions, but you do not get the interactive linear transfer function fiddler for
obvious reasons. This gives you the same functionality as you could have obtained with the
keyword range.

– Option grid extends the coordinate ticks into a full grid. Minor ticks are excluded with this
option.

– The option unequal instructs the software to fill the plotting page maximally. By default, is
tries to make the scales of the x and y axes the same. It is important that you use this option
when you are displaying unlike quantities such as a velocity-DEC diagram, as the efforts to
make equal scales will go wrong here.

– Option relax instructs these tasks not to be concerned if the axis descriptors for the input
images are different. The axis sizes still have to be the same though. Use this one with great
care, and its only useful if you are labelling the axes with abspix or relpix types.

– When you are displaying multiple subplots, with each subplot being a different channel or
plane from a 3-D image, the options 3value and 3pixel instruct the software to write the
coordinate value and pixel value of the displayed subplot in its top left hand corner. You can
use either or both of these.

– The option full will cause a full set of plot annotation to be written at the bottom of each
page of the plot. This includes things like coordinate information, contour levels, pixel map
representation intensity ranges and so on.

17-6 CHAPTER 17. DISPLAYING IMAGES

Examples

Let us continue with some examples of usage of these tasks.

• cginit initialises a PGPLOT device. Its only input is the keyword device. Most interactive
PGPLOT devices are ephemeral, so that cginit is not useful for them. However, the PGPLOT
/xs X window is persistent, so cginit is useful for it.

• cgdisp can display (simultaneously) contours, pixel map representations (i.e. images or “grey
scales”), vectors and boxes (pixels are displayed as filled [positive values] or hollow [negative values]
boxes with size proportional to the pixel value) on a PGPLOT device. Up to three contour plots,
one pixel map, one vector plot and one box plot may be displayed in multi-panel plots of multi-
channel images. It also offers a “mask” image type, which is not displayed, but its blanking mask
is applied to all the images that are. cgdisp can also display labelled overlay locations (plotted as
boxes, stars, circles, ellipses, lines or see-through) may be specified from an ascii text file.

We will just give a few examples of some common things that you might like to do with it.

1. In the first example, cgdisp bins an image up by 2 pixels in the x and y directions, and then
displays the image as a pixel map representation on a persistent X window. The transfer
function wedge is drawn to the right and then you enter the interactive cursor driven fiddle
loop. cgdisp then draws some overlay crosses on the plot (the overlay file format is described
in the help file) and draws the beam size in the bottom right corner of the plot. The plot is
annotated with useful information at the bottom and all four axes are labelled in arcsecond
offsets from the reference pixel.

CGDISP
in=cena.icln Input image
type=pixel Display as a pixel map
region=quarter Display central quarter of image
xybin=2 Bin up image spatially
chan Unset; no channels to bin
slev Unset; no contours
levs1 Unset
levs2 Unset
levs3 Unset
range=#,# Intensity range or unset for full range
vecfac Unset
boxfac Unset
device=/xs PGPLOT device; persistent X window here
nxy=1 One plot per page
labtyp=arcsec,arcsec Label with offset arcseconds
options=full,beambr,wedge,fiddle,trlab Full plot annotation,

draw beam in BRC
Draw wedge, interactive fiddle
label top and right axes too

lines=1,2 Linewidths for labels and overlays
break Unset; no contours
csize=1,1,0.8 Set overlay character size to 0.8
scale Unset to fill page
olay=stars.txt Text file containing overlays

2. The second example contours channels in the velocity range -100 to 100 km s−1 from two 3-D
images (cubes); each channel is put on a separate sub-plot (but both cubes go on the same
sub-plot) on the page and annotated with its velocity. Only every third pixel from the central
40 by 60 arcsec is displayed. The two cubes must have the same axis descriptors; i.e. the
same axis dimensions and increments etc. The selected channels are binned up such that five
channels are averaged together. However, the increment between the start group of each set
of binned channels is 10. Thus, the displayed channel width will be one half of the displayed

17.3. PGPLOT DEVICE TASKS 17-7

channel increment (they could of course be equal if you wish). The first cube is contoured via
percentage levels, the second via absolute levels. The second cube’s contours are drawn with
a thicker linewidth. The two cubes could be from different spectral-lines, for example.

Finally, a histogram equalised pixel map representation of a continuum image is overlaid on
each channel sub-plot. As the output file is a disk file (a colour post-script file) we have used
the range keyword to specify the desired lookup table (rainbow colours; fourth argument of
keyword) and transfer function (histogram equalisation; third argument of keyword). Alter-
natively, we could still have used the interactive fiddle to do these things as the dialogue is
keyboard driven for non-interactive devices. In fact, if we had set a transfer function via the
range keyword and then invoked the interactive fiddle, we could have applied another transfer
function to the already histogram equalised image !

The options keyword is used to ask for an intensity wedge so that the map of colour to
intensity can be seen. It is also used to ask for a full coordinate grid on the plot instead of
just ticks as well as to annotate the plot with information about the images. Finally it is also
used to ask for the value of the third axis (usually velocity or frequency) to be written in the
corner of each subplot.

When you ask cgdisp to display a mix of 2-D and 3-D images, the region (keyword region)
that you specify applies equally to the first two dimensions of all images. However, any third
axis region information that you give (e.g. region=image(10,120)) applies only to the 3-D
images, and is ignored for the 2-D image. Finally, if you ask for more sub-plots than can be
fitted on the page, then the task will advance to a new page (you will be prompted to hit the
carriage return key if your are plotting on an interactive device) when needed.

CGDISP
in=oh.cube,hcn.cube,cont.icln Input images; two cubes and continuum
type=c,c,p Two contours and a pixel map
region=arcsec,kms,box(-20,-30,20,30)(-100,100) Display central 40 by 60 arcsec

and -100 to 100 km s−1

xybin=3,1,3,1 Display every third pixel
chan=10,5 Increment is 10 channels, width is 5 channels
slev=p,1,a,0.05 Percentage and absolute levels for cubes
levs1=-5,5,10,30,50,80 Percentage levels for first cube
levs2=-3,3,10,20,30 Absolute levels (by 0.05 for second cube)
levs3 Unset
range=0,0,heq,2 Ask for histogram equalised display of

image with rainbow lookup table
between min and max.

vecfac Unset; no vectors
boxfac Unset
device=plot/cps PGPLOT device; disk postscript file here
nxy=4,3 4 and 3 sub-plots in x and y directions
labtyp=hms,dms RA and DEC labelling
options=wedge,grid,3val,full Wedge, grid, velocity labels &

full page annotation
lines=1,2 Linewidths for cubes 1 and 2
break Unset
csize=1,0.7 Character sizes for axis and velocity labels
scale Unset to fill page
olay Unset for no overlays

3. This third example shows how to display a position-velocity image. You could produce such
an image by reordering a cube with reorder into velocity-x-y order. You could then look at
one or several planes of this cube. Normally, cgdisp tries to display with equal x and y scales.
This equality is worked out using the linear axis descriptors. Equal scales are meaningless
when displaying unlike axes, so you should set options=unequal.

17-8 CHAPTER 17. DISPLAYING IMAGES

CGDISP
in=neon.vxy Input vxy cube
type=p Display as a pixel map
region=image(1,16) Select first 16 planes, say
xybin Unset for all spatial pixels
chan Unset for all spectral pixels
slev Unset
levs1 Unset
levs2 Unset
levs3 Unset
range=#,# Image intensity range or unset for full range
vecfac Unset
boxfac Unset
device=/xs X window
nxy=4,4 16 sub-plots on the page
labtyp=relkms,arcsec Relative velocity and arcsecond labelling
options=unequal Unequal scales in x and y
lines Unset
break Unset
csize Unset
scale Unset
olay Unset

4. This fourth example is a polarimetry display. It is common practice to display these images by
way of a pixel map representation and/or contours for the total intensity, and vectors for the
(fractional) polarised intensity at the specified position angles. The length of the vectors are
proportional to the (fractional) polarised intensity. Here is an example of how to do this sort
of polarimetric plot, where in this case the total intensity is displayed as both contours and a
grey scale. The contours are displayed as multiples of the rms of the noise (you input the rms)
in this case, although you can also use percentage-of-the-peak contours (this is controlled by
the slev keyword – see the help file). You may need to fiddle with the keyword vecfac which
allows you to scale the lengths of the vectors, and also specifies whether you draw a vector
for each pixel or leave some of them out. The default is to draw a vector every second pixel
and to scale the vectors so that the longest one takes up 1/20 of the plot. You can display
any combination of the images (e.g. vectors only), but you must give both the vector position
angle and amplitude images.

17.3. PGPLOT DEVICE TASKS 17-9

CGDISP
in=0823.fp,0823.pa0,0823.i,0823.i Input images, order unimportant
type=amp,ang,c ,p Image types
region=arcsec,box(-30,-30,30,30) Display central 60 by 60 arcsec region
xybin Unset
chan Unset
slev=a,# Contour levels are to be multiplied by

the specified number; use the noise rms
levs1=-5,-3,3,5,10,30,50,100 Contour levels
levs2 Unset
levs3 Unset
range=#,# Image intensity range or unset for full range
vecfac=# Defaults may be OK, or may require fiddling
boxfac Unset
device=plot/ps Postscript file
nxy=1 One plot per page
labtyp=hms,dms Label with RA and DEC, say
options=full,beambl Full plot annotation, draw beam in BLC
lines=1,2 Linewidth for contours and vectors
break Unset
csize Unset or fiddle with
scale Unset to fill page
olay Unset for no overlays

5. The final example is also polarimetry display. Displaying rotation measure images as a pixel
map is sometimes unsatisfying, as the sign changes, if any, can be hard to see. Similarly,
contours can be pretty useless as the RM distribution is often very unsmooth. cgdisp offers
the image type “box” whereupon each pixel is displayed as a small box. Positive pixel values
are shown as a solid box, and negative pixel values as a frame only. The size of the box is
proportional to the values of the pixel, so that this method is not so useful if you have RMs
close to zero. By default, the boxes are scaled so that there is a little gap between adjacent
boxes. You can control the boz sizes with the keyword boxfac which gives an extra scale
factor to multiply the box widths. This keyword also gives the x and y increments (in pixels)
across the image at which to plot the boxes.

In this example, we also overlay contours of total intensity. In addition, a global blanking
mask is applied to both images.

17-10 CHAPTER 17. DISPLAYING IMAGES

CGDISP
in=0823.i,0823.rm,0823.msk Input images, order unimportant
type=con,box,mask Image types
region=quarter Display central quarter
xybin Unset
chan Unset
slev=a,# Contour levels are to be multiplied by

the specified number; use the noise rms
levs1=-5,-3,3,5,10,30,50,100 Contour levels
levs2 Unset
levs3 Unset
range Unset
vecfac=# Defaults may be OK, or may require fiddling
boxfac=1,3,3 Self scale box widths, and plot boxes

every 3 pixels in x and y
device=plot/ps Postscript file
nxy=1 One plot per page
labtyp=hms,dms Label with RA and DEC, say
options=full,beambl Full plot annotation, draw beam in BLC
lines=1,2 Linewidth for contours and vectors
break Unset
csize Unset or fiddle with
scale Unset to fill page
olay Unset for no overlays

• The task cgcurs is similar to cgdisp except that it is less flexible in terms of what it can display,
but it does offer an interactive capability with the cursor. You can read image pixel locations and
values, compute statistics over a region defined by the cursor, and define polygonal spatial regions
that can be output into a text file for use in other tasks (using the region=@file facility). In addition,
cgcurs can be used to generate text files in a format suitable (almost) for input to cgdisp and
cgspec as overlay files.

cgcurs only displays pixel maps or contour plots, and only one image at a time. You can invoke
all of cgcurs’ cursor options in the one run if you wish. You can also display many channels in
the same way as cgdisp; in this case, the cursor options are invoked after each sub-plot (channel)
is drawn. The following example shows how to display all pixels in the x direction, but only every
third pixel in the y direction (who knows why you might do this), activate the interactive lookup
table fiddler, read some image values with the cursor, mark their locations on the plot, and output
them into a text file (called ‘cgcurs.cur’) for use as an overlay file in cgdisp. In addition, the option
to evaluate some statistics in a region defined by the cursor is also activated.

CGCURS
in=neon.mom0 Input image
type=p Display as a pixel map
region=arcsec,box(-10,-10,10,10) Display central 20 by 20 arcsec
xybin=1,1,3,1 Pick out every third y pixel
chan Unset
slev Unset
levs Unset
range=#,# Image intensity range or unset for full range
device=/xs PGPLOT device; must be interactive
nxy=1 Just one plot
labtyp=arcsec,arcsec Offset arcsecond labelling
options=fiddle,curs,stats,mark,log,cgdisp Fiddle, cursor and statistics options
csize Unset

• The task cgslice allows you to generate 1-D cuts (slices) through a 2-D image and then fit Gaus-
sians to these slices. You can define many slices with the cursor or input their positions via a text
file. In addition, you can display many channels from an image, and generate slices differently from

17.3. PGPLOT DEVICE TASKS 17-11

each channel. Like cgcurs, cgslice only displays one image (which could be 3-D of course) at a
time via a pixel map or a contour plot. You can save the slice locations, values and model fits in
text files.

In the example, we make slices from 9 channels of a cube, one channel at a time. We then fit
Gaussians plus a baseline to them and output the fits into a text file.

CGSLICE
in=1333.icln Input image
type=p Display as a pixel map
region=quarter(1,9) Display central quarter of

first 9 channels
xybin Unset
chan Unset
slev Unset
levs Unset
range=#,# Image intensity range or unset for full range
xrange Auto x-range scaling
yrange Auto y-range scaling
device=/xs PGDISP server
nxy=3,3 9 plots on the page
labtyp=hms,dms RA and DEC labelling
options=fit,base Fit gaussian plus baseline
csize Unset
posin Define slices with cursor
posout Do not save slice locations
valout Do not save slice values
modout=1333.model Save Gaussian fits in this file

17-12 CHAPTER 17. DISPLAYING IMAGES

Chapter 18

Image Analysis

18.1 Image Statistics and Histograms

• Task histo is a fairly commonly used task, giving a number of image statistics and a simple
histogram. Apart from the input image (keyword in), it can take a region of interest (region), a
range to determine the histogram over (range), and the number of bins in the histogram (nbins).

HISTO

in=vela.imap Input image
region Select region of interest
range=-0.1,1 Range for histogram. Default is image

min and max.
nbins=# Number of bins in the histogram

Unset for default of 20

• If you do not like histo, or you would like a PGPLOT plot of the histogram, you could use the task
imhist instead. This task will also optionally draw, on the histogram, a Gaussian with the same
mean, rms and integral as the actual histogram. This task, and its friend imstat use the options

keyword atypically to input numeric (rather than just logical) information – see the help file and
the example below.

Here we plot the histogram with 20 bins with a connected line style. We also do not allow any
values below zero to contribute to this histogram.

IMHIST
in=vela.imap Input image
region=# Select region of interest
options=nbin,20,style,connect Specify desired options
cutoff=0.0 Discard negative pixels
device=/xs Plot on X window

• Complementing imhist is imstat. This task gives you statistics about your image in the selected
region. It computes the statistic either over a row or a plane of data.

1. For example, let us look at the rms value of a cube computed over each RA–DEC plane. Note
that it does not matter what order the cube is in. For example, it might be in vxy order.
imstat will average over the xy planes regardless.

18-1

18-2 CHAPTER 18. IMAGE ANALYSIS

IMSTAT
in=zeeman.vcub Input image cube
region=image(50,450) Select region of interest
plot=rms Plot rms
options Unset
axes=ra,dec Compute statistic over RA-DEC plane
cutoff Unset
device=/xs Plot on X window
log=numbers.log Write numbers to log file

2. By setting the axes keyword to a single axis, imstat will compute the statistic over a single
row. Be warned that this can produce a lot of output. For example, if you wanted to see the
sum along the velocity axis plotted as a function of RA and DEC position in your cube you
could do

IMSTAT

in=zeeman.vcub Input image cube
plot=sum Compute the sum.
axes=velocity Compute statistic over the velocity axis.
device=/xs

• You may wish to integrate your image in concentric ellipses, thus producing an azimuthally averaged
profile. You can do this with ellint. Each plane of a cube is integrated separately. There is no
graphical output, just some tables of numbers which you can optionally write to a log file and plot
with your favourite plotting program. In this example, we integrate 10 circular rings from 0 to
100 arcsec centred on a pixel offset from the reference pixel by -5 and 10.3 arcsec in RA and DEC.
We also make a primary beam correction and write the results to a log file.

ELLINT

in=ngc1313.mom0 Input image
region Full region
center=-5,10.3 Offset from reference pixel
pa Unset for face-on
incline circular rings
radius=0,100,10 Radii of rings
options=pbcorr Correct for primary beam
log=rings.1313 Write the results to log file

18.2 Listing Image Values

You might like to list some of the pixel values from a section of an image. You can do this with the task
imlist. Because it is always very difficult to format numbers in a way which suits every application,
imlist gives you this job. You do this via the format keyword, into which you put a FORTRAN format
specifier such as ‘1pe11.4’, or ‘f7.2’ etc.

IMLIST

in=ic4296.icln Input image
options=data Display pixel values
region=relpix,box(-10,-10,10,10) Select region
format=f8.3 Select display format

Any pixel which is blanked will be listed as “...” (ellipsis).

18.3 Source Fitting and Positions

• MIRIAD has a couple of tasks available for finding positions of sources (see also cgcurs in
Chapter 17). The simplest of these is maxfit. It fits a 2-D parabola to the image intensities in a

18.3. SOURCE FITTING AND POSITIONS 18-3

3 × 3 pixel box centred on the brightest pixel in a specified region and reports the fitted location
and intensity.

MAXFIT
in=ic4296.icln Input image
region=relpix,box(-20,-20,20,20)(1,10) Search region
log=ic4296.maxfit Write results to log file

• If you would like to do something slightly more sophisticated than just find a good value for the
peak and location of your source, you might like to fit a Gaussian to it with imfit. This task can
also fit levels and disks.

In this example, we fit a Gaussian to a region of an image by inputting the region in a file. The file
was generated interactively by cgcurs (see Chapter 17); you delineate a polygonal region around
the source of interest with a cursor. The quality of your fit can improve significantly by selecting
a snug region, and/or using the clip keyword to keep pixel values with little signal (e.g. sidelobes
and noise) out of the fitting process.

IMFIT

in=ic4296.icln Input image
region=@cgcurs.region Fit region
clip=0.1 Only use pixels greater than 0.1

in the fitting process
object=gaussian Fit a single gaussian
spar Unset to let task set initial guess
fix Unset to let everything float
out=ic4296.model Write residuals of fit out to a dataset
options=residual Specify residuals

Task imfit can fit multiple components. In this case, you will need to set good initial estimates of
the source parameters with the spar keyword, and good values for region and clip become more
important.

• There is a task called gaufit for fitting Gaussians to profiles from cubes. You are on your own
here.

• Tasks often report positional information in absolute image pixel coordinates, but you may often
find you would like to convert to some other units. For example, a task has told you that there is
something of interest at a certain pixel in your image, but you would like to know its RA, DEC,
and velocity. You can use impos to convert for you. This task enables you to convert coordinates
from one system to another. The keyword type specifies the input units of the specified coordinate,
given by the keyword coord. The coordinate is then converted to all useful types (e.g. pixel to
absolute and offset coordinate).

Note that if you specify a coordinate in km s−1 then the keyword stype indicates what convention
that coordinate is in (radio or optical). You can specify the spectral-axis coordinate in any of
frequency and the two velocity conventions, regardless of what the header says the spectral axis
is; all spectral axis conversions are done as needed. In addition, any spectral-axis coordinate is
converted to each of frequency, and optical and radio convention velocities (if possible).

See the help file for all the choices.

IMPOS

in=ic4296.icln Input image
coord=-20.3,234.5,2400.123 Input coordinate
type=arcsec,abspix,abskms Input coordinate types
stype=radio Velocity is in radio conventions

18-4 CHAPTER 18. IMAGE ANALYSIS

18.4 Copying, Reordering and Regridding Images

• The task imsub allows you to extract out some region of one image and copy it to a new image. For
example, let us copy every other pixel from the central 20 by 20 arcsec from the first 20 planes of
a cube into a new file. Naturally, imsub can also be used to make an identical copy of your entire
image.

IMSUB
in=vela.imap Input image
region=arcsec,box(-10,-10,10,10)(1,20) Select region of interest
incr=2,2,1 Pixel increments
out=vela-sub.imap Output image

• The task imcat allows you to concatenate images along the third dimension. Thus you can build
cubes from 2-D images, and bigger cubes from smaller cubes. One use, for example, is that you
might like to put dissimilar images (e.g. 2-D images from different spectral lines) into the one cube
and make a Post-Script plot of all of them together on one plot (each plane in its own sub-plot)
with cgdisp.

When concatenating dissimilar images, you will probably want to set options=relax. This tells
imcat not to be concerned if axis descriptors differ. However, the image dimensions must still be
the same.

IMCAT
in=*.imap Input images
out=big.icub Output image
options=relax Ignore header discrepancies

• The task reorder enables you to reorder the axes of an image. For example, to reorder a cube in
xyv order to vxy order and flip the direction of the velocity axis you would do the following:

REORDER

in=ngc253.xyv Input cube
out=ngc253.vxy Output cube
mode=-312 Reordering instructions

• Similar to reorder is imframe. It too can reorder the axes , but generally we recommend you use
reorder for that application as its inputs are much simpler than those of imframe. imframe is
useful if you want embed an image inside a larger one and pad the border with zeros.

In the example, we take an image of some size and pad it out to be 512 by 512 pixels. Note that the
frame keyword which specifies the output image size in relative pixels is in the non-standard order
of xmin,xmax,ymin,ymax compared to the region keyword which expects xmin,ymin,xmax,ymax.

IMFRAME
in=cena.imem Input image
out=cena-pad.imem Output image
region Unset
box Unset
frame=-256,256,-255,255 Output size in relative pixels
goal Unset

• When comparing images, it is often necessary to have them on the same grid so that tasks such as
cgdisp can overlay them graphically, or so that maths (see below) can evaluate some expression
involving the two images.

The task regrid enables you to take an image, and regrid it via a cubic interpolation scheme on a
new grid. This task can regrid any combination of the the first three axes of an image. The new
grid can be specified in one of two ways. The first way (and generally easiest) is to give a template

18.5. IMAGE ARITHMETIC – MATHS 18-5

image and make the image of interest look like the template image. The alternative way requires
you to specify the output header axis descriptors explicitly with the keyword desc. You have to
input the reference value, reference pixel, pixel increment and number of pixels for each axis you
want to regrid – pretty tedious stuff.

Note that regrid has comparatively recently been upgraded to handle non-linear axes correctly
(older versions used a linear approximation

In this simple example, we regrid the first two axes of an image via a template image.

REGRID
in=0336-vla.icln Input image
tin=0336-atca.icln Template image
out=0336-vla-atca.icln Regridded image
desc Unset for template
axes=1,2 Regrid first two axes only please

Task regrid is smart enough to correctly handle different projection geometries, conversion between
equatorial and galactic coordinates, equinox conversion between B1950 and J2000, as well as conversions
between different velocity systems (radio vs optical, LSR vs barycentric).

If the template does not have quite the geometric grid that you want, then regrid provides a number of
options to fiddle what it treats as the template coordinate system before it does the regridding. Option
galeqsw causes the template to be switched from galactic to equatorial, or visa versa before the regridding
operation, whereas the option equisw switches the equinox from B1950 to J2000 (or visa versa). The
project keyword can be used to reset the projection geometry of the template. The noscale option
causes the template coordinate system’s cell size not to scale with frequency (the images made by invert

are such that the cell size in inverse proportional to frequency).

Normally regrid makes the output exactly overlay the template or the axis descriptors. However, if you
really only want them in the same coordinate system, with potentially different image sizes and offset
perhaps by an integral number of pixels, then use options=offset.

Task regrid can be used to resample an image on its own. You would use this to set a different
projection geometry, to switch between galactic and equatorial coordinates, or to change equinoxes. If
both the template and axis descriptor are unset, regrid uses the main input as the template. To do
this use options=offset along with the other options or parameters to change the template coordinate
system.

There is a potential trap when regridding ATCA images to equatorial coordinates: ATCA images pro-
duced by invert are in the so-called “NCP” projection. As this projection has a singularity at the
equator, it is generally disastrous to regrid an ATCA image which is near or on the galactic equator
without also changing the projection. The “SIN” (sine) projection is a reasonable choice for this.

18.5 Image Arithmetic – MATHS

The task maths evaluates a mathematical expression at each pixel of a set of input images. The expression
(given by the exp keyword) is given in a FORTRAN-like syntax, using all the normal FORTRAN opera-
tors, real-valued functions (using the FORTRAN generic, rather than specific, names), brackets and real
constants. Logical operators are also handled with a number zero or less being .FALSE., and a positive
number being interpreted as .TRUE. (the results of a logical expression are always zero or one). Dataset
names take the place of FORTRAN variables, and the expression is each pixel of the input images. For
example, maths can evaluate expressions such as

exp=sqrt(vela.qmap**2+vela.umap**2)

This will cause maths to take the squares of the pixels in vela.qmap and vela.umap, add them, and then
take the square root.

18-6 CHAPTER 18. IMAGE ANALYSIS

Note that when there are multiple input datasets, maths insists that they are exactly the same size.
However it does not check whether they align, or indeed whether they use the same axis system. Task
maths does not check coordinate types.

There are some restrictions on dataset names, however. To start with, maths treats the names x, y and z

as special (see below). Also there are some inherent ambiguities. For example, maths will think 1934-638

is a subtraction of two integers (not a dataset named after a source). Avoid dataset names which start
with numerics, or those containing special characters (e.g. plus and minus signs). Also avoid extensions
like .not (there are situations where this can introduce ambiguities). If you follow the normal FORTRAN
or C rules for variable names, ambiguities will not arise. If you insist on using names which could be
ambiguous, you can bracket them inside angular braces. For example, maths will interpret <1934-638>

as a dataset 1934-638 (not a subtraction operation).

Another useful (or indeed needed) keyword is mask. This gives a second expression (generally a logical
expression) indicating where the expression given by exp is to be evaluated. For example,

exp=sqrt(vela.imap)

mask=vela.imap.gt.1e-3

indicates to take the square root of an image only when the image value is greater than 10−3. Note that
maths believes it is your responsibility to protect against illegal mathematical operations (square roots
or logs of negative numbers, divide by zero, etc). You must protect any potentially dangerous operations
by appropriate masking.

As mentioned above, maths treats the names x, y and z in a special manner. They are taken to represent
variables that vary linearly across the image, in the x, y and z directions respectively. The values that they
take are set with the keywords xrange, yrange and zrange. Expressions can potentially be constructed
with no input datasets. In this case, a image size needs to be given via the imsize keyword. For example,
to generate a two dimensional Gaussian in the range [−2, 2] on both the x and y axes, use

exp=exp(-(x**2+y**2))

xrange=-2,2

yrange=-2,2

imsize=128,128

The only remaining keywords are out (the output dataset) and region (region-of-interest in the input
datasets).

Here is a simple example of how to use maths to make a spectral-index image from two total intensity
images. For example, consider two images (i1 and i2) at frequencies 4.8 and 8.4 GHz. You can compute
the spectral-index image (Sν ∝ να) from

MATHS

exp=log(i1/i2)/log(4.8/8.4) Divide log ratios
mask=(i1.gt.1e-4).and.(i2.gt.1e-4) Blank below these values
region Leave unset to do full image
out=4.8-8.4.spin Output spectral index image
imsize Leave unset
xrange Leave unset
yrange Leave unset
zrange Leave unset

In this example, we have computed the output image only when both the input image pixel intensities
were above 0.1 mJy/beam (this might be 5-σ or the like).

Alternatively, if you were very keen, you could also get maths to create an error image by inserting the
appropriate expression (from propagation of errors). Then you could make the spectral index image and
blank it according to the value of the error in the spectral-index image via the mask keyword.

18.6. SMOOTHING IMAGES 18-7

18.6 Smoothing Images

MIRIAD offers tasks to convolve images by Gaussians (convol and smooth) and also to convolve images
by other images (convol). It can also bin up (or block) an image (imbin).

• The fastest way to convolve an image by a Gaussian is with an FFT-based algorithm. This is
implemented in task convol. In the example below we convolve an image by an elliptical Gaussian.

Note that FFT based algorithms cannot correctly deal with blanked pixels. If your image has a
blanked pixels, convol pretends that they are zero when it does the convolution. However, the
corresponding pixels are blanked in the output image.

CONVOL
map=1331-09.icln Input image
beam Unset
fwhm=10,20 FWHM of Gaussian
pa=45 Position angle of Gaussian
out=1331-09.icln2 Convolved image

Task generally convol does its best to scale the output pixels so that the output image units are
Jy/beam. If you are convolving an image which is already in Jy/beam by Gaussian, then convol

needs the beam parameters (bmaj, bmin, bpa) to be in the dataset header to correctly determine
the scale factor, and the output effective beam parameters. It will give you messages about what
it thinks its doing as far as scaling factors go. If you know better than convol, you can give your
own scale factor, via the scale keyword.

Often you know the output resolution that you want, rather than the resolution of the Gaussian that
you want to convolve with. In this case using options=final causes convol to treat the parameters
given by the fwhm and pa keywords as the desired final resolution, and to work backwards to
determine the Gaussian that it needs to convolve with to achieve this result. Again, convol needs
to know the beam parameters (bmaj, bmin, bpa), and does its best to maintain the intensity units
in Jy/beam.

• If your image does in fact contain a blanking mask and it is important that they do not take part in
the convolution, then you could convolve your image by a Gaussian (or a boxcar if you so desired)
with task smooth. This task will be significantly slower than convol for any but the smallest images
because it operates entirely in the image domain.

As with convol, the scale of the output image is adjusted so that it is in units of Jy/beam – and
you can override this by setting scale yourself.

SMOOTH

in=1331-09.icln Input image
out=1331-09.icln2 Convolved image
fwhm=10,20 FWHM of Gaussian
pa=45 Position angle of Gaussian
options Unset
scale Unset for auto scaling

• If you wish to convolve one image by another, you should use task convol. Again scaling is as with
the above two descriptions.

CONVOL

map=1331-09.icln Input image
beam=1331-09.icln2 Convolving image
region Unset for full image
out=1331-09.convol Output image
sigma Unset

18-8 CHAPTER 18. IMAGE ANALYSIS

• Finally, there is imbin; it doesn’t smooth an image, rather, it bins up (averages) an image (like the
keyword xybin in the cg suite of programs. You can bin up pixels, and/or pick out every Nth pixel
along any of the first three axes; this is controlled by the keyword bin.

In the first example, we bin up the first three dimensions of an image by a factor of 2 along the x
axis, a factor of 4 along the y axis and a factor of 3 along the z axis.

IMBIN

in=gc.icln Input image
region Unset for full image
bin=2,2,4,4,3,3 Bin and increments for each axis
out=gc.icln-rebin Output image

In the second example, we pick out every 4th pixel along the z axis.

IMBIN
in=gc.xyv Input image
region=quarter Only write out inner quarter
bin=1,1,1,1,1,4 Pick out every 4th pixel along third axis
out=gc-2.xyv Output image

18.7 Modifying Images by Models

The task imgen can be used to create an image with a source of some simple model disposition. It can
generate noise, point sources, Gaussians, elliptical disks, Bessel functions and DC terms. It can also be
used to modify an already existing image by a model. In the following example, we subtract an offset
(by -1.5 and 3.5 arcsec in x and y from the reference pixel) circular Gaussian model from an image. The
Gaussian parameters are given in the keyword spar (height 0.87 Jy, FWHM of 1.7 arcsec). Note that
imgen cannot create elliptical Gaussians unless they align with the x and y axes.

IMGEN

in=ic4296.icln Input image
out=ic4296-sub.icln Output image
factor=1 Multiply input by 1
imsize Unset
object=gaussian Gaussian model
spar=-0.87,1.7,1.7 Gaussian parameters
xy=-1.5,3.5 Offset from reference pixel
cell Unset

If you wish to create an entirely new image with imgen, you should leave in unset, and specify cell and
imsize.

18.8 Polarimetric Analysis Tasks

In this section we see how to make total polarised intensity and position angle images (task impol),
fractional polarisation images, and rotation measure images (task imrm).

• Task impol is used to generate images such as the total linearly polarised intensity and position
angle (in degrees North through East; see also options=radians) from the primary Stokes Q and
U images that you produced with invert. It can also be used to make the fractional polarisation
image if you input the Stokes I image as well. It is convenient to make this image with impol

rather than, say, maths, because impol can be used to generate error images as well.

18.8. POLARIMETRIC ANALYSIS TASKS 18-9

It is generally necessary to deconvolve the Q and U images in the same way that you do the Stokes
I image before combining them. Note however, that negative values in these images are as valid
as positive values; it just depends upon the position angle of the polarised emission. impol can
optionally (and by default) debias the total polarised intensity image with a first order algorithm
(see help file). A polarised intensity image is positive definite (

√

(Q2 + U2)), even with no signal
and the intensities of its pixels follow the Ricean distribution. At high signal-to-noise ratios, this is
the normal distribution. At low signal-to-noise ratios, it is skewed biased distribution.

The ability of impol to produce error images is very important to assist you in assessing what is
real and what is not. These are computed via a simple propagation of errors, and you must specify
the rms level of the input image (σQU is also needed for debiasing the polarised intensity). Tasks
histo (see above) or cgcurs (see Chapter 17) can give you estimates of the relevant statistical
information of an image.

impol offers the opportunity to blank the output images based upon the signal-to-noise ratio of
the polarised intensity image (keyword sncut), and also on the absolute value of the position angle
error images (keyword pacut).

Interpreting polarised intensity images below about 2-σ is pretty deadly because the debiasing
becomes inaccurate. In general, it is recommended that you blank the output images in the ways
provided. You have the choice of whether you blank the polarised intensity images (not the position-
angle image) with zeros or via a bit in a mask. It is important that you use zero if you are planning
to evaluate statistics over a region that encompasses the blanked pixels. This is because zero is
generally a better estimate of the polarised intensity of a blanked pixel (which has a small signal)
than just not contributing to the sums with that pixel.

A case where debiasing and blanking is not appropriate is a detection polarisation experiment. You
should ignore impol when it implores you to blank and debias in this case.

impol can also make a plot showing the effect of bias in the polarised intensity; see the help file
for details. You can access this plot even if you do not input any images. The plot is made via a
Monte Carlo simulation. It may take a while to run so be patient; just fill in the device to activate
this option. For extra discussion of debiasing and blanking see the VLA scientific memorandum no
161. by Patrick Leahy.

The following example takes CLEANed Q, U and I images and their rms noise value (assumed
the same for Q and U), and computes images of the linearly polarised position angle, the debiased
total polarised intensity, the fractional polarisation and their associated errors. These images are
all blanked when the error in the position angle image is greater than 10 degrees or when the
signal-to-noise ratio in the polarised intensity image is less than three. Note that the error image
for the polarised intensity is constant (and equal the rms of the Q and U images that you input)
so that there is no output polarised intensity error blanking option. The choice of the blanking
levels depends upon your particular data; do not treat the ones given below as being necessarily
appropriate.

IMPOL

in=qcln,ucln,icln Input Q, U and I images respectively
poli=p,ep Polarised intensity and error images
polm=m,em Fractional polarisation and error images
pa=pa,epa Position-angle and error images
sigma=0.003,0.004 Set standard deviation of noise in Q or U and Iin Jy/beam
sncut=3 Blank below 3-σ
pacut=10 Blank when p.a. error greater than 10◦

options=zero If evaluating area statistics
rm Leave unset
device No bias plot

• The position-angle image you generated with impol is the orientation of the electric vectors following
the traversal of the photons through the interstellar medium. The position angle is defined to be
positive North through East. You can be sure that some Faraday rotation of the electric vectors
will have occurred in that magneto-ionic medium. We are ultimately interested in the orientation of
the magnetic field before Faraday rotation. imrm can be used to generate rotation measure (RM)

18-10 CHAPTER 18. IMAGE ANALYSIS

and zero-wavelength position-angle (χ0) images by fitting the equation χ = χ0 + RMλ2 to a series
of position-angle images (in degrees) at different frequencies. The more frequencies that you can
give it the better.

By default, imrm tries to remove Nπ ambiguities with the assumption that there are none between
the angles of the first two given images (note this has changed from an earlier algorithm). The
details of the algorithm are given in the help file. Basically, it estimates the rotation measure
from these two images, and then estimates the position angle expected at the other frequencies. It
then adds or subtracts integral multiples of π radians to make the measured values as close to the
predicted values as possible. Then a least squares fit is done to solve for the rotation measure.

You can set options=ambiguous to turn this ambiguity removing off, but you should read the help
file carefully, and examine the results carefully (you should do this anyway) if you do this. In
principle, if there are no ambiguities, the ambiguity removing algorithm should not find any.

The units of the rotation measure, RM , and position-angle images are rad m−2 and degrees,
respectively.

The keyword rmi is very useful. It enables you to specify an initial estimate of the rotation
measure. For example, you may know the Galactic contribution in the direction of your source.
Angle appropriate to this amount is subtracted from the data before any attempt to compute the
rotation measure is made. If it is substantial, it will help quite substantially to reduce ambiguity
problems.

imrm offers three blanking options for the output images (all of the blanking criteria are applied
equally to the rotation measure and position angle images). First, you can blank the output images
if any of the input error images exceeds a certain value. Second, you can blank the images if the
output errors exceed a certain value, and third you can blank the images if the goodness of fit is
less than a certain value. You should think about what these values should be. Remember that
you are now generating a tertiary image, and that the errors compound rapidly. Unfortunately, it
makes no sense to blank rotation measure and position-angle images based upon a measure of the
output signal-to-noise ratio; a rotation measure or position angle of zero does not necessarily imply
little signal. Probably blanking with the input position-angle errors (keyword errcut) is the best
way to blank the output.

You can only compute the goodness of fit if you have position angle images at more than two
frequencies, and if you input their error images. If it cannot be computed, the goodness of fit is
assumed to be unity so that if you have more than 2 frequencies, but do not input the error images,
the output errors are computed with this assumption (that is, you cannot get independent estimates
of the the output errors and the goodness of fit).

If the goodness of fit is above about 0.1, then the fit is believable. If it is as low as 0.001, the fit may
be believable if you have non-normally distributed errors in the position angle images. If it is below
0.001, the fit should probably be rejected; this is the default value for the keyword qcut. Note that
the distribution of the noise in the position angle images is indeed non-normal at low signal-to-noise
ratios. Below P/σ ≈ 2 they are seriously non-normal (but pixels such as these should already have
been blanked in impol). Above P/σ ≈ 5, the noise is approximated by a normal distribution. The
grey area is between 2- and 5-σ.

If you set the keyword device, then imrm will draw some plots showing the fits to the data. The
plots show the data that the least squares fit was done on (i.e. with turns removed as needed), but
with the initial estimate rmi added back in. Set options=accumulate to put all the plots on one
panel, else use nxy to specify the number of sub-plots per page, with each sub-plot containing the
data fit for one spatial pixel.

18.9. MISCELLANEOUS ANALYSIS TASKS 18-11

IMRM
in=pa.f1,pa.f2,pa.f3,pa.f4 Input p.a. images at different frequencies
inerr=epa.f1,epa.f2,epa.f3,epa.f4 Error images associated with the p.a. images
rmi=35 A priori estimate of RM
rm=rm Output RM image
pa0=pa0 Output λ = 0 position-angle image
qcut=# Blank if goodness of fit below this value
errcut=# Blank if any input errors greater than this
rmcut=# Blank if RM error greater than this
pacut=# Blank if position angle error greater than this
device=/xs Draw plots please
nxy=10,10 100 subplots per page

18.9 Miscellaneous Analysis Tasks

• The task imdiff can be used to compare two images. It finds optimum parameters (in a maximum
likelihood sense) for making one image approximate another image. The parameters are an ampli-
tude scale factor, dc offset, shifts in the x and y directions and an expansion factor. Any of these
parameters can be fixed at a given value, and the others allowed to vary.

Note that this task is suited only to small shifts, expansions and scale factors. You can use the
self-explanatory task shifty for large integral pixel shifts. The keyword in2 gives the image which
must be adjusted to look like the image given by keyword in1. Task imdiff can also output a
residual image – see the help file for the definition of the residual, but it is basically a combination
of all the residuals of all the adjustable parameters.

To hold any particular parameter fixed, you simply specify the appropriate options string (see help
file). Otherwise, imdiff will solve for that parameter. Initial guesses can be entered through the
keyword for each parameter.

IMDIFF
in1=vela.atca Template image
in2=vela.vla Adjust this image
adjust=vela.vla-atca Adjusted image
resid=vela.resid The residual image
region Unset for entire image
guard Unset for default OK
xshift Unset for initial guess of 0
yshift Unset for initial guess of 0
expand Unset for initial guess of 1
amp Unset for initial guess of 1
offset Unset for initial guess of 0
options=expand Unset to vary everything and x

and y expansions separately

• A very useful tool for diagnosing errors in images is to Fourier Transform them. The error may,
under some conditions, be easier to recognise in the Fourier plane. MIRIAD offers the task fft for
this purpose. It can Fourier Transform real or complex images (you input there real and imaginary
parts with separate keywords). Note that blanked pixels in the input are treated as if their value
was zero.

In the following example, we FFT a CLEANed image and form the amplitude and phase images of
the Fourier Transform.

18-12 CHAPTER 18. IMAGE ANALYSIS

FFT
rin=ic4296.icln Input real image
iin Unset
sign=+1 Forwards transform
center Use ref. pix. for centre of transform
rout Unset
iout Unset
mag=fftp.amp Amplitude image
phase=fft.phase Phase image

Task fft produces gridded images, so you can use all the usual display tools to look at them (see
Chapter 17).

• For those of you wrestling with optical data in MIRIAD, the task impoly may be of benefit. You
may like to make a polynomial sky subtraction. impoly allows you to define a region over which a
2-D polynomial is fit. The fit is the subtracted from the the full image, not just the designated fit
region.

IMPOLY

in=cluster.deep Input image
out=cluster-sub.deep Output image
order=# Order of polynomial
coeffs Unset not to see coefficients of fit
region=@cgcurs.region Fit over this region

• As is discussed in Chapter 17, there are a variety of transfer functions that you can apply to your
image with the display tasks. One that is particularly useful is histogram equalisation. Essentially,
this method assesses, via a histogram, which image intensities have the most pixels. It then opti-
mally expends the dynamic range of the device in displaying these pixels, rather than the pixels
which have intensities that occur seldom.

It may be that you would like the image to be written out with histogram equalisation applied,
rather than it just being computed but not saved by the display task. The task imheq will do this
for you. You can specify the intensity range in which pixels will be included when computing the
histogram. It is useful to use this if you have outliers significantly from the bulk of the distribution.
imheq will equalised each plane of a cube, and by default, use the image minimum and maximum
of that plane. If you set options=global it will take the minimum and maximum from the whole
cube instead.

If you set the device keyword, imheq will draw a plot of the image histogram and discretized
cumulative histogram (see help file). The latter is essentially the transfer function that is applied.
This plot is drawn after every plane of a cube.

IMHEQ
in=cluster.deep Input image
out=cluster-heq.deep Output image
nbins Default for 128 histogram bins
range Default is image min to max
options Unset for plane by plane equalisation
device=/xs PGPLOT device for histogram

• It is sometimes useful to replace the value of all image pixels which are blanked by some number
(often zero). Task imblr offers this facility; it unblanks all blanked pixels and replaces their value
with the one specified.

IMBLR
in=test.m1 Input image
out=test-2.m1 Output image
value=0.0 Replacement value

Chapter 19

Displaying Spectral Cubes

19.1 Introduction

For sophisticated visualisation software, you are recommended to use the ATNF visualisation suite (briefly
described below). On the other hand, MIRIAD contains tasks to display simple spectra (imspec and
imspect) or spectra overlayed on an image (cgspec).

19.2 The ATNF Visualisation Software

The ATNF visualisation software is a suite of tools (outside MIRIAD) specifically aimed at displaying
spectral-line data cubes. See Chapter 3 for more information. The tools available are:

• kview: This tool allows you to inspect one or two 2- or 3-dimensional datasets in several ways.
This tool is partially described in Chapter 17.

• kslice 3d: This tool allows you to interactively inspect data cubes. The RA-DEC, RA-VEL and
DEC-VEL slices of the data cube are shown simultaneously, and by moving the cursor one moves
through the data cube.

• xray: This tool does volume rendering of data cubes. This is very useful for getting an overview
of the emission in data cubes, as well as for finding small errors in continuum subtraction or the
cleaning of the cube.

• kpvslice: This tool allows you to interactively display Position-Velocity slices through a datacube.
It provides a window in which you can load an image (say an optical image or a moment map) and
draw a slice across the sky. In the other window the corresponding slice through the datacube is
displayed. This slice may be exported to MIRIAD for further analysis.

• krenzo: This tool will draw a contour map for every channel in a datacube over an image, using a
different colour for each channel. This is a much better way of showing the velocity structure than
using 1st moment maps, since a 1st moment map cannot show multiple peaks in a velocity profile.

• kshell: This tool computes and displays Velocity-Radius images from a datacube, allowing you to
interactively browse for expanding shells. An expanding shell in a datacube appears as an ellipse in
a Velocity-Radius image. This is an easy way of distinguishing between spherical shells and those
which have distorted shapes (i.e. a gas bubble which has blown out through a galactic disc).

• koords: This tool allows you to easily add a coordinate system to an image (say a CCD image),
by using a reference image (perhaps from the DSS). You select matching objects (stars) in the two
images, and then press a button to compute a coordinate system for your target image.

19-1

19-2 CHAPTER 19. DISPLAYING SPECTRAL CUBES

19.3 Displaying spectra only

The tasks we discuss here allow you to make a line plot plot of a single spectrum averaged over some
spatial region from a cube. There are two rather similar tasks with rather similar names; imspect and
imspec. The latter offers more options, the former is easier to drive if you want something basic. We
will give examples of both.

• We begin with imspect. The input cube can be in xyv or vxy order. This example plots a 3-point
Hanning smoothed spectrum averaged over a small spatial region centred on the reference pixel.

IMSPECT
in=neon.xyv Input cube
region=relpix,box(-2,-3,2,3) Spatial region to average over
xaxis Default to label x-axis in natural

spectral units (km s−1 or GHz)
yaxis=average Average over spatial region
yrange Auto-scale
hann=3 Hanning smooth
options Unset
device=plot/ps PGPLOT device
log Unset; use to write spectrum to text file
comment Unset

Note that imspect can also be used to plot the derivative of a spectrum (options=1der or
options=2der) which may be useful for Zeeman enthusiasts.

Now for imspec, which offers wider flexibility than imspect. It also plots spectra from a cube, but
the cube can be in any order. It offers options to average or sum the data in RA-DEC, RA-VEL
and DEC-VEL planes (keyword axes – see the help file for details) so that you get profiles along the
velocity, DEC, and RA planes respectively. You can also convert the units from Jy to brightness
temperature and write the spectrum to a text file. imspec offers Hanning and boxcar spectral
smoothing as well as the derivative options available in imspect. You can also specify a cut-off
level below which data do not contribute to the spectrum and convert from Jy/beam to Jy.

Note that the region you specify with imspec is limited to rectangular boxes only. The following
example takes a cube in xyv order, computes the spectrum from channels 1 to 256 averaged over
the central 4 by 6 arcsec, and then 3-point Hanning smooths it before displaying it on the local
X-window.

IMSPEC

in=neon.xyv Input cube
region=relpix,box(-2,-3,2,3)(1,256) Region of interest
plot=average Plot average
options=hann,3 Hanning smooth
cutoff Unset
beam Unset
axes=ra,dec Average over RA and DEC axes
device=/xs PGPLOT device
log Unset

19.4 Overlaying spectra on images

The final task in the cg suite is cgspec. It displays both images and spectra, but its primary aim is
spectral. You are referred to Section 17.3 for extensive discussion of the many common keywords in the
cg suite of software.

cgspec allows you to display an image, and then overlay small plots of spectra at different locations on
the image. You can input up to five different 3-D images (cubes) from which the spectra are extracted

19.4. OVERLAYING SPECTRA ON IMAGES 19-3

(e.g. each one representing a different spectral-line), as well as up to three contour images and one pixel
map representation image. On colour devices, the spectra from different cubes are plotted in different
colours. The spectral cubes can be of any size and be in any order. Neither do the pixel increments have
to be the same between different cubes. However, the 2-D contour and pixel map images do have to have
the same axis descriptors. The locations at which the spectra are drawn can be either on a regular grid
or irregularly spaced at locations specified in a text file. In addition, you can bin the spectra up over
some spatial region centred on the given locations.

cgspec uses the value spectrum for the keyword type to indicate that spectra are to be extracted from
that image listed in the keyword in. For Zeeman enthusiasts, you can also plot the derivative of a
spectrum image (with keyword type=dspectrum). See the help file for details.

The following example shows how to overlay spectra at irregular locations from two cubes (which hap-
pened to have different axis orders) on a grey scale. Because spectra from different lines rarely have a
similar range of intensities, you can use the keyword iscale to scale the spectra from each cube by some
number to bring them into the same range. Alternatively, you can normalise all spectra to a peak of 1.0
(options=normalize). You may need to specify the size of the spectra as a fraction of the plot window
taken up by the spatial image (i.e. the grey scale and contour plots), as the defaults of 0.1 may not be
suitable.

The only keyword amongst all the scaling keywords that there is no default for is stick. This specifies
the major tick mark increments on the velocity and intensity axes for the spectra; it is pretty much
impossible to guess at a default.

There are a variety of choices about to how you draw the spectra. You can draw labelled borders around
them or not (options=frame), you can mark their spatial location with a cross or not (options=mark;
it can be hard to know sometime exactly which pixel the spectrum refers to), you can draw and label
the x = 0 and y = 0 axes or not (options=noaxes), you can choose any of these axis options but not
put any numeric labels on them (options=naked) as things can get pretty cluttered, and you can write a
spectrum ‘number’ in the corner of each spectrum (options=number) which reflects the numeric location
of the spectrum in the text file or the automatically generated grid. There are a few more options too,
so see the help file for more details.

CGSPEC
in=oh.xyv,6cm.icln,hcn.vxy Input images
type=s,g,s Images are spectrum, grey, spectrum
region=quarter Display central quarter of grey scale
xybin Unset for no spatial binning
slev Unset; no contours
levs1 Unset
levs2 Unset
levs3 Unset
grange=# Grey scale range or unset for auto-scale
vrange=# Velocity range or unset for auto-scale
irange=# Spectrum intensity range or unset for auto-scale
iscale=# Specify a scale factor for each cube or leave unset
spsize=# Specify size of each spectrum. Default may be OK
stick=100,0.5 Ticks at 100 km s−1 and 0.5 in intensity
device=/xd PGDISP server
labtyp=arcsec,arcsec Offset arcsecond labelling for images
options=mark,norm,num Mark location, normalize and number spectra
clines Unset
slines Unset; set linewidths for spectra on non-colour devices
blines Unset; set linewidths for axes on non-colour devices
break Unset
csize Unset; character sizes of axes may need fiddling
olay=locations.spc Specify locations of spectra in this file; see help

19-4 CHAPTER 19. DISPLAYING SPECTRAL CUBES

Chapter 20

Analysing Spectral Cubes

20.1 Introduction

MIRIAD’s collection of tasks to analyse spectral cubes is of mixed quality. This chapter describes
what MIRIAD has to offer. For some purposes, a better suite of software is available in the ATNF
visualisation suite. This suite was briefly outlined in Section 19.2.

20.2 Moment Analysis

The task moment can be used to generate moment images from a spectral-line cube. The moment axis
should be either the first or third in the cube (e.g. vxy or xyv order). You should use reorder if you
want the moment of the second axis for some reason. The moments (evaluated for each spatial pixel and
along the velocity axis) are defined as

Mn =

∫

I(v)vndv

where I(v) is the intensity at a given velocity v. Thus, the zeroth moment corresponds to the integrated
intensity over velocity, the first moment corresponds to the intensity weighted velocity, and the second
moment corresponds to the intensity weighted velocity dispersion squared.

Note that moment is actually a little inconsistent in applying this equation depending on which moment
it is working out. Here is what it finds:

M0 =

∫

I(v)dv

in units of Jy km s−1.

M1 =

∫

I(v)vdv
∫

I(v)dv

in km s−1.

M2 =

√

∫

I(v)(v − M1)2dv
∫

I(v)dv

in km s−1.

20-1

20-2 CHAPTER 20. ANALYSING SPECTRAL CUBES

In the example we compute the second moment of a cube in xyv order excluding all pixels below 3-σ
which happens to be 2 mJy it seems; there is no point to adding noise to our sums. We select only the
inner quarter of each spatial plane and we select only planes 40 to 480 for this analysis.

MOMENT

in=ngc253.icln Input cube
region=quarter(40,480) Select region
out=ngc253.m2 Output image
mom=2 Second moment
axis=3 Cube in xyv order
clip=0.002 Clip below this value

20.3 Smoothing the Velocity Axis

The task hanning allows you to Hanning smooth the velocity of a cube (regardless of which axis it is)
and write out the smoothed data set. Any blanked pixels are treated as zeros.

HANNING

in=ngc253.icln Input cube
region Unset for full cube
out=ngc253.icln-hann Output image
width=3 Standard Hanning smooth

Having produced the smoothed cube, you could then drop every other channel (as they are no longer
independent) with imsub. In the example, we assume the velocity axis is the third axis.

IMSUB

in=ngc253.icln-hann Input cube
out=ngc253.icln-hann-ind Output image
region Unset for full cube
incr=1,1,2 Pick out every other pixel on third axis

20.4 Velplot

velplot is a many faceted task for display and analysis of velocity fields – read the MIRIAD help file
for velplot. velplot differs in its mode of operation from most other MIRIAD tasks in that a small
portion only of the inputs are given in the usual MIRIAD form. The main body of the inputs are given
by the user interactively after selection from an initial menu.

VELPLOT

in=data.cube Input data cube to be examined.
device=/xw Screen is the initial plot device
region=box(32,32,96,96)(5,60) Examine the centre of planes 5 to 60
log=data.log Text output where appropriate will go here

Now run velplot and the following main menu will appear:

MAIN MENU

Comment Write comment into log

List List header and velocity information

Integral Integrated flux and statistics

Options Select plot parameters

20.4. VELPLOT 20-3

Pos-Vel Plot versus position & velocity

Spectra Plot spectra

Vel-map Plot integrated velocity maps

File Write spectra & position-velocity file

Read Read spectra & position-velocity file

Write Write Miriad Image to disk file

Exit Exit from program

Select option (type 1st character) :

This selection is not case sensitive, and only the first character is used. This is what the options are :

Comment A comment will be written into the ASCII file. It goes like this:

Select option (type 1st character) : c

Enter comment > It’s time I got to work

comment > I had cereal for breakfast

comment >

You need to get used to the velplot input style. You entered 2 lines of comment in response to
the > prompt. A carriage return on the third line returned you to the velplot main menu. If you
exit now and examine the file data.log you will find it contains header information from data.cube

plus those two comment lines.

Also be aware that for many velplot inputs gives a carriage return/line feed after the question
and you are faced with entering answers on a blank line. This can be quite disconcerting if you do
not anticipate it.

List List header and velocity information. The information is written into data.log a 4 line summary
about data.cube

Integral Integrated flux and statistics. This lists statistics for each data plane specified in the region

originally selected. The headings are: plane (number), Velocity, Total Flux, Maximum, Minimum,
Average and rms. Unfortunately this list is not written in to the log file.

Options Select plot parameters. This is what happens:

Selection (type 1st character) :o

OPTIONS MENU

Select alternative options [1/2] for the following

Units for display [J/K]..... J

Negative contours [Y/N]..... Y

Plot header [Y/N]........... Y

Write map to file [Y/N]..... N

Absolute coordinates [Y/N].. N

Integer plot [Y/N].......... N

Spectra positions [Y/N]..... Y

Fit Gaussians [Y/N]......... N

Overlay Gauss Fits [Y/N].... Y

Gray Scale [Y/N]............ N

Exit from options menu

Contour levels: percent

level(1) = 15.000

level(2) = 30.000

level(3) = 45.000

level(4) = 60.000

level(5) = 75.000

20-4 CHAPTER 20. ANALYSING SPECTRAL CUBES

level(6) = 90.000

Select option (type 1st character,<cr> for options) :u

-plot units are now Janskys

Select option (type 1st character, <cr> for options) :e

Now the main menu will reappear. It is easy to get confused here between the main menu and this
options menu that selects plot parameters.

The contour setting option is of particular interest in making contour plots. This is the equivalent
of the levs input to MIRIAD cgdisp.

Pos-Vel Plots a position velocity map. This is best described by walking through an example. We want
a position velocity map made along the major axis of the galactic disk in data.cube. The position
angle of the major axis is 40 degrees (measured north to east).

Run velplot and the main menu appears. Editorial comments below are in italics

Select option (type 1st character) :p

Plot intensity versus position & velocity along selected cuts

>Type H for help, <cr> to continue :<cr>

--- no current selection of cuts ---

>List of cuts, RA-vel or DEC-vel ? [L]/X/Y):<cr>

Here, velplot in its usual cryptic style is giving us a choice of three options with the default option
– which we chose by just hitting carriage return, is in square brackets.

--- Enter list of pos-vel cuts to plot ---

angles measured from north to east (0 to 180).

>Type -n to delete cut n

-99 to delete all

L to list (ie list the already chosen cuts)

<cr> to use the current list.

>Enter cut number, position and angle (n,x,y,pa):1,0,-60,40

We think the galactic centre is at 0,-60 arcsec with respect to the plot centre.

>Enter cut number, position and angle (n,x,y,pa):<cr> No more cuts wanted
>Enter convolving beam (major("),Minor("),pa(deg):<cr>No convolution requested
Gaussian falls to 6% at edge of array

size of convolution array: 3 pixels, 90.000 arsecs

Contour or Intensity plots ? [C]/I:<cr>

Here is where velplot can get very confusing. C and I are options for quite different functions,
not like grey scale or contour options for the same plot. The function we want corresponds to the
C option - hence the carriage return.

>Enter number of windows in x and y: [1,1]:

<cr>

Notice a couple of things here. velplot inserted the carriage return after the prompting message
and left us dangling there(slap on wrist to the programmer) but it is waiting for input so we enter
return to choose the [1,1] option, i.e. single plot to the page (like nxy option in much of the rest
of MIRIAD) so something will happen. Something does happen, the pgplot window with the
position-velocity map appears on the screen. After dismissing the pgplot window we see some text
about the plot on the screen and velplot continues as follows:

20.4. VELPLOT 20-5

Another PGPLOT device ? (Y/[N])Y The last Y is our response
>Enter new PGPLOT device:pvplot.ps/ps Usual convention for a postscript plot
>Enter line width [1]:<cr> Single width lines

>Enter number of windows in x and y: [1,1]:<cr>

Now some velplot output about the plot appears on the screen. If you want several position-
velocity cuts plotted on the one page you keep answering the “Enter cut number etc” question
giving each successive cut a higher number and velplot will make a sensible choice of page layout.

Another PGPLOT device? (Y/[N])<cr> We do not want any more

Now we are finished and the main menu appears again. On exit we find the postscript file pvplot.ps
in our directory.

Still in the position-velocity option, let us go back to the question

Contour or Intensity plots ?[C]/I:

and answer I. Instead of the standard position-velocity plot we are now requesting plots of intensity
versus position at position angles in certain (x, y) image planes that will be requested. This is a
very different function from the standard position-velocity plot that comes from a 3-dimensional
slice through the cube. So suppose we have entered 4 cuts:

1,0,0,40

2,100,100,30

3,-100,-100,80

4,500,-500,70

(to nominate an arbitrary set), the dialogue with velplot would be

Contour or Intensity plots ? [C]/I: I

How many channels ? (5 max) :3 Data from 3 channels to be plotted
Enter the channel numbers : 25,30,35 Channel numbers 25,30,35 only
Fix the scales ? Y/[N] : <cr> As before
>Enter number of windows in x and y: [2,2]: <cr>

We asked for 4 cuts but the cuts are now in the x,y planes of the specified channels. There will
be 4 subplots and each subplot will have 3 lines plotted, one for each specified channel number.
And now here is where it gets confusing. The PGPLOT window appears but only one of the 4
subplots.The PGPLOT window is hiding a question being asked by velplot of the form:

>Enter name for ASCII file(<cr> to continue):

So give a carriage return and keep answering with carriage returns to the text window and watch
successive subplots appear on the screen. velplot will offer the chance to make a postscript file
as before and you will have to go through answering the question about the ASCII file for each
subplot. Cumbersome but that is the way it is. The ASCII file would be a text list of the values in
the plots , if you wanted such.

Spectra Plot spectra. A spectrum is a plot of intensity vs position along a line parallel to the z (velocity)
axis. This is an extremely useful function of velplot but quite complicated. We will explain via
an example:

Select option (type 1st character) :s

Plot spectra at selected positions.

(x,y) positions are in (HA,DEC) directions.

>Type H for Help, E to Exit, <cr> to continue :<cr>

--- no current selection of spectra ---

>Enter G to enter a grid of positions,

<cr> to edit or enter a list of positions :g

20-6 CHAPTER 20. ANALYSING SPECTRAL CUBES

So we have chosen to define a grid, the most complicated option. Had we given just a carriage
return we would have been offered the opportunity to make a list of positions similar to what is
done for Position-Velocity plots.

>Enter tlc (x,y), and PA of grid:

100,200,0

So we are saying that the top left corner of the rectangular grid of positions at which we want
spectra is at HA=100arcsec and DEC=200arcsec wrt to the centre of the plot. Our choice of PA=0
here means the grid has axes parallel to the x,y axes. If we had chosen PA=45 the whole grid would
have been rotated through 45 degrees.

(Grid PA is measured from N through E)

>Enter interval(arcsec), nrows(along PA) and ncols:

100,2,2

So we are asking for a 2 X 2 grid with 100arcsec spacing between elements.

--- current selection of spectra ---

spectra(1) (x,y) arcsecs: (100.000, 200.000)

spectra(2) (x,y) arcsecs: (200.000, 200.000)

spectra(3) (x,y) arcsecs: (100.000, 100.000)

spectra(4) (x,y) arcsecs: (200.000, 100.000)

selection OK? ([Y]/N):<cr> Accept default- that is our list
GAUSSIAN FITS TO SPECTRA

>Enter convolving beam etc etc :<cr> We do not want a convolving beam
Another 5 lines of text are output
>Smooth spectra (H=Hanning, B=Boxcar, [None]) :<cr> No smoothing thanks
>Omit plots and Gaussian fits ? (Y/[N]) :<cr> We want the plots
>Fix scale for spectra ? (Y/[N] :<cr>

Had we said Y here we would have been offered the opportunity to set the vertical scale in Jy - like
the range in cgdisp

>Enter number of windows in x and y: [2,2]:

<cr>

So velplot sensibly offers a 2 by 2 format for the 4 spectra we have specified. What follows next
can be very confusing. The PGPLOT window appears and the first spectrum is plotted in the top
left corner as expected but nothing more. Depending on your screen setup, the PGPLOT window
is probably obscuring your text output and you do not see that velplot has asked

>Continue with gaussian fit ([Y]/N) :n

and we say No because we do not want a gaussian fit. We told it that before but still we have to
go through this to get all the spectral plots on the screen. The same question is asked repeatedly
by velplot and we answer No each time as we watch successive subplots appear on the PGPLOT
screen. Finally, after all the subplots have appeared the same question is asked yet again and when
we say No the PGPLOT screen disappears and velplot continues as follows:

Another PGPLOT device? (Y/[N])Y Yes, lets get a postscript file
>Enter filename for spectra (<cr> to continue):

spectra.ps/ps Call the file spectra.ps

20.4. VELPLOT 20-7

So now we are finished this spectrum plotting exercise. You may get the main menu again or you
may be returned to MIRIAD and have to restart velplot if you want. spectrum.ps can now be
plotted.

Another example of plotting spectra: Suppose you have a galactic disk data cube and you want to
plot spectra at positions along the major axis. Then the grid needs to be collapsed into a line and
rotated to the PA of the disk major axis (say 40 degrees). You think the position x,y=-1200,1000
is on the major axis toward the top-left corner of the x,y plane. You want 20 plots at 100arcsec
intervals along the major axis. So the inputs to velplot/spectra would be:

choose grid- g

>Enter tlc (x,y), and PA of grid :

-1200,1000,40

>Enter interval(arcsec), nrows(along PA) and ncols:

100,20,1

velplot would offer a 5 by 5 plot format but use only the top four rows (for the 20 plots actually
5 by 4)

Vel-map Make plots of various moments of velocity averaged over specified velocity ranges. This works
like the position-velocity option above. Type H for additional documentation. The most useful
feature here is that the cursor can be used to change the plot parameters, or to plot the positions
for spectra, or for position-velocity maps. These CURSOR OPTIONS are only available if a single
velocity interval is selected in Vel-map. Here is what happens. The cursor appears in the PGPLOT
window, and the CURSOR OPTIONS must be entered by typing a single character in the PGPLOT
window. The results, or additional questions appear in the main window. It is easy to get confused
here.

>CURSOR OPTIONS: Type L to list options :

so we type L in the PGPLOT window, and in the main window we see:

Cursor options:

A - absolute coordinates

C - change contour interval

D - clear spec/pos-vel stacks

E - exit from plot

X - exit from plot

G - change grayscale

H - header label

J - Jy contours

K - Kelvin contours

N - negative contours

P - define pos-vel cut

Q - Plot spec/pos-vel positions

I - integral and rms in box

B - blc for integral

T - trc for integral

R - replot maps

S - Spectra position

V - value and cursor position

W - write out this map

(x,y) positions are in (HA,DEC) directions.

(Position angle is measured from N through E)

>CURSOR OPTIONS: Type L to list options :

We can enter a spectra position with the cursor by typing S, and position-velocity cuts by typing
P at any two positions along the desired cut. The lists of spectral positions and position-velocity
cuts are stored and can be plotted after you return to the main menu.

20-8 CHAPTER 20. ANALYSING SPECTRAL CUBES

Typing Cursor option B and T to define a box, followed by I, prints out the Total Flux, Maximum,
Minimum, Average, and rms in the box in both Jy and Kelvin units.

Type E or X to exit from the cursor options.

Write Write MIRIAD image to disk file. It does just this after prompting for a new name ie it gives
you a copy of the region (or all) the input data.

File Write file of spectra and position-velocity cuts. Suppose you have been doing pos-vel and or spectra
then there will exist lists of cuts. This option enables you to save the lists to a named file so you
could refer to them on a subsequent running of velplot.

Read Read file of spectra and position-velocity cuts You saved the lists in a previous WA and now you
can retrieve them.

The File and Read options allow you to have several lists of cuts and access them alternately without
leaving velplot.

20.5 Modelling galactic disks

Fitting a rotation curve

velfit is a task to fit a rotation curve to an isovelocity image of a rotating disk. This is classical “moment
analysis”.

VELFIT

in=inten,veloc
centre=0,-60 Rotation centre is 60 arcsec south of map centre.
pa=40 Position angle of major axis.
incline=65 The believed inclination of the disk.
vsys=440 Systemic velocity of the galaxy.
log=rot.log File to hold results - defaults to terminal.

inten is the (x, y) intensity distribution of data.cube integrated over the z (velocity) axis. It is obtained
using moment as follows:

MOMENT
in=data.cube
out=iten
mon=-1 Get average intensity.
axis=3 Squash along the third axis
clip=-2.0,0.0 Or whatever.

veloc is an (x, y) model for the velocity values, a mean velocity image. It would be obtained as follows:

MOMENT

in=data.cube Input dataset.
out=veloc The output dataset.
mon=1 First order moment.
axis=3 Squash along the third axis
clip=-2.0,0.0 Or whatever.

Fitting a tilted ring model to a warped galactic disk

Here we illustrate typical use of the MIRIAD tasks velmodel and velimage. To make the tilted ring
model one must utilise also imgen and maths (see Sections 18.7 and 18.5). The warp is simulated by

20.5. MODELLING GALACTIC DISKS 20-9

varying the inclination and position angles of successive annuli (usually suggested from various plots
from data.cube such as closure of isovelocity contours along the major axis and twists in channel maps
showing the minor axis). The velocity rotation profile in the plane of the disk may be suggested by
inspection of position-velocity maps made with velplot. For the purpose of this exercise we will assume
a flat rotation velocity profile in the plane of the disk of 150 km s−1. So we make the 3-dimensional data
cube for each tilted ring with velimage and add them together with maths.

VELIMAGE
in=aaa,vvv
sigma=10 Velocity dispersion,mandatory if no 3rd image above
nchan=64 Number of velocity channels in the output cube
start=230 Velocity at channel 1
step=6.6 Velocity increment between channels
out=model.cube The output cube
options=relax Usually necessary in this type of scheme.

Obviously, prior to running velimage, we must have generated the input files aaa and vvv which contain
our assumptions about the variation in intensity and velocity in our model.

aaa is the (x, y) intensity distribution of what will be model.cube integrated over the z-axis. In this
example it is an elliptical annulus of uniform intensity made by subtracting an inner disk from an outer
disk using maths, the disks having been made using imgen as follows :

IMGEN
out=aao Output dataset.
object=disk Disk model.
spar=0.01,0,-60,1000,500,30 Source parameters, 10 mJy intensity annulus,

centred 60 arcsec south of the image centre,
major axis=1000 arcsec,minor axis=500 arcsec
major axis pa=30 degrees

imsize=128,128 Image size.
cell=30,30 Cell size in arcsec.

IMGEN
out=aai The outer dataset.
object=disk Disk model.
spar=0.01,0,-60,1000,500,30 Source parameters, 10 mJy intensity annulus,

centred 60 arcsec south of the image centre,
major axis=1000 arcsec,minor axis=500 arcsec
major axis pa=30 degrees

imsize=128,128 Image size.
cell=30,30 Cell size in arcsec.

IMGEN

out=aai The inner disk.
object=disk Disk model again.
spar=0.01,0,-60,800,400,30 Similar parameters, but smaller radii.
imsize=128,128 Same image size and
cell=30,30 resolution.

MATHS
exp=(aao-aai) Generate a annulus.
out=aaa Output dataset name.

vvv is a model for the velocities (z-axis) made using velmodel.

20-10 CHAPTER 20. ANALYSING SPECTRAL CUBES

VELMODEL
in=data.cube Template input.
pa=30
incline=65
radius=30
vrot=150
vsys=440
out=vvv

Note that the input (data.cube in the above) a template only but if you use your actual data cube you
will finally end up with a model with much of the header information the same as the data, e.g. it will
appear to be in the same position in the sky.

One makes a number of such model.cubes and adds them together with maths to obtain the final
3-dimensional tilted ring model.

20.6 Zeeman Analysis

There is a suite of tasks to help analyse Zeeman data. These tasks implement the techniques discussed
in gruesome detail by Sault, Killeen, Zmuidzinas & Loushin (1990) (ApJS 74, 437) and by Killeen, Lo &
Crutcher (1992) (ApJ 385, 585).

• zeestat: In the small-splitting Zeeman analysis, our goal is generally to look for the characteristic
“S” Zeeman signature in the Stokes V spectrum. It can be shown that this spectral signature is
more accurately expected to follow the equation

V (ν) = kB cos θ
dI(ν)

dν

where k is a constant depending upon the particular spectral line, B cos θ is the line-of-sight com-
ponent of the magnetic field, and I(ν) is the total intensity spectrum. The procedure is then to fit
the derivative of the I spectrum to the V spectrum thus giving B cos θ.

Zeeman work can be very complicated, especially if the signal is weak (and the signal-to-noise ratio
parameter η – see Sault et al. – is close to the noise value), and a description of all the pros and
cons of the fitting techniques is beyond this guide. We suggest you read the above papers, and if
you are still awake at the end, then run the software.

Generally, the fit is done over some spatial and spectral region in which it is assumed the splitting
is constant. In the spatial averaging technique, all the spectra in the spatial region are averaged.
However, if the spectra are not all similar in shape, this will average down the signal as well as the
noise. Thus, the spatial summing technique is also offered. Here, all the spectra in the spatial area
are fit simultaneously so that the signal is not averaged down. However, one has to be concerned
with the spatial correlation of the data when predicting the errors in this case. This is a very big
concern indeed (see Zeesim below).

The fitting procedure is implemented in the task zeestat. This task expects the I (keyword iin)
and V (keyword vin) input cubes to be ordered such that the first axis is the spectral axis (frequency
or velocity [radio or optical definition]) and the second and third axes are the spatial axes (RA and
DEC). Use the reorder if they are not. The beam image (keyword beam) is used to determine the
spatial correlation when using the spatial summing technique in order to get a good estimate of
the error in the result (it does not affect the result itself much). However, generally, this does not
work well and accurate errors for spatially summed data should be obtained with a monte carlo
technique implemented in the task zeesim described below. The beam is not needed when spatially
averaging.

If the spectra are spectrally correlated, this information can be transmitted to zeestat via the
spectral correlation coefficient assigned to the keyword rho. For Hanning smoothed spectra in
which every other channel has been dropped, this should be 1/6. You must specify with freq, to the

20.6. ZEEMAN ANALYSIS 20-11

nearest MHz, the rest frequency of the spectral line. This is used to determine the conversion from
splitting in channels to a magnetic field. zeestat only knows about a few particular transitions. If
it does not know about yours, come and tell us, and we will add it in for you.

You can read endlessly in the above papers about the pros and cons of least squares and maximum
likelihood fitting techniques. All the fitting techniques are biased, in the sense that they give
a splitting biased towards zero in cases of poor signal-to-noise ratios. The maximum likelihood
technique is the least biased, so we suggest you use that (mode=m). It is also common to fit for
a leakage term allowing for a fraction of the I spectrum in the V spectrum (mode=l). Because,
in poor signal-to-noise ratio cases, there can be spurious minima, we suggest you set mode=x to
perform extra checks in finding the global minimum. Generally, sharp edges in spectra increase
your chances of detection (because this gives a large derivative). If you set mode=2, zeestat will
work out a two-sided derivative of the I spectrum. Otherwise it uses a one-sided derivative. The
former gives a lower noise derivative but performs less well for sharp spectral features. In summary,
we suggest you set mode=mxl or maybe mode=mxl2.

Set keyword aveop=s for spatial summing and and aveop=a for spatial averaging. zeestat is rather
an elderly task coded at the dawn of time. It does not know about the region keyword. Thus you
input the spectral range to fit with the chan keyword, and the spatial area via the blc (bottom left
corner) and trc (top right corner) keywords. These are all in absolute pixels. You can write the
results to an ascii file with the out keyword.

Here is a simple example of a spatially summed fit of spectrally uncorrelated OH main line spectra
over channels 200 to 300 (only include channels that have strong I signal) and over some small
spatial region.

ZEESTAT

iin=sgra.Ivxy Input I cube
vin=sgra.Vvxy Input V cube
beam Unset as technique does not work
rho Unset
freq=1.667 Rest frequency in GHz
mode=mxl Select mode
aveop=s Sum in spatial region
chan=200,300 Channel range to fit
blc=240,255 Spatial BLC to fit
trc=260,278 Spatial TRC to fit
log Unset
out=log.out Write results to this file

• The task zeesim is used to get reliable estimates of the error in the fitted magnetic field derived
by zeestat. See Killeen, Lo & Crutcher (1992) (ApJ, 385, 585) for gruesome details. It is used
when you have invoked spatial averaging, or when the signal-to-noise ratio is very poor for spatial
averaging. The technique involves taking the actual spectra and fitting them, thus producing an
estimate of the noise free true spectra. Then zeesim adds noise (correlated by the beam if simulating
spatial summing) back into the spectra and refits them to get the splitting. The noise addition and
refitting is performed as many times as is necessary to get a good histogram of the splitting. The
width of that histogram gives a good error estimate.

zeesim can work out the fiddle factor to apply to the error estimates of zeestat for may spatial
regions at once. It is much more efficient for spatial summing to use zeesim like this than to do one
run per spatial region. This is because the step of producing noise correlated by the beam is very
expensive. Multiple spatial regions can be input via a text file assigned to the keyword infile. A
single spatial region can be entered through the usual blc and trc keywords.

In this example, we run the simulation appropriate to the example of zeestat above. You should
do as many simulations as is necessary to get a decent histogram or until your computer tires.

It is important to use the nran keyword if you restart the simulations and want to use the results
in conjunction with a previous run. Computers only generate semi-random numbers. If you give
the generator the same seed you get the same random numbers. nran allows you to throw some
random numbers before beginning the simulation procedure so you can get different noise to last
time you ran the program.

20-12 CHAPTER 20. ANALYSING SPECTRAL CUBES

ZEESIM
iin=sgra.Ivxy Input I cube
vin=sgra.Vvxy Input V cube
beam=sgra.ivbem Give the beam
mode=mxl Select fitting mode
aveop=s Sum in spatial region
freq=1.667 Rest frequency in GHz
chan=200,300 Channel range to fit
blc=240,255 Spatial BLC to fit
trc=260,278 Spatial TRC to fit
bin Unset
split Unset
nruns=500 Number of simulations

How big is your computer
infile Unset
log=res,summ Log files for results
nran=# Throw away random numbers before simulating

zeesim gives you what it calls a “fiddle factor”. You should multiply the error estimate from
zeestat by this factor to get the true error estimate.

Chapter 21

Primary Beams and Mosaicing

21.1 Primary Beams and Primary Beam Correction

In interferometry, the image formed normally by the imaging and deconvolution steps is a representation
of the sky multiplied by the primary beam response of the antennas. The primary beam is typically similar
to a Gaussian function, although it also has sidelobes.

MIRIAD tasks which require knowledge of the primary beam response of a telescope use built-in models
of the responses of various telescopes (e.g. ATCA, VLA, Hat Creek, WSRT) – the primary beam model
used is determined by the ‘pbtype’ or ‘telescop’ item or variable (pbtype, if present, takes precedence
over telescop). Currently these models assume the primary beam is circularly symmetric and time
independent. The task pbplot produces some information and can make a plot of the primary beam
models. The model of the ATCA primary beam is described in Mark Wieringa & Mike Kesteven’s memo
(AT Memo 39.3/024).

If you wish to override MIRIAD’s model, or if MIRIAD does not have a model of the telescope of
interest, you may set the primary beam associated with an image or visibility dataset to be a particular
type or Gaussian of a given size. This is done by setting the pbtype item using puthd. pbplot (without
any additional parameter) produces a listing of the primary beam types known to MIRIAD.

Setting a Gaussian primary beam type differs from setting other primary beams in that you also must
give an additional parameter enclosed in brackets) giving the FWHM of the primary beam, in arc seconds,
at the reference frequency (the ‘reference frequency’ for a visibility dataset is the frequency of the first
channel imaged!!). For example, to set the primary beam to be a Gaussian of the image lmc.map, use:

PUTHD
in=lmc.map/pbtype Set pbfwhm of lmc.map.
value=gaus(1200) Set the primary beam FWHM to 20 arcmin (1200 arcsec).

Although there are a few exceptions (e.g. mfspin and ellint), MIRIAD’s analysis tasks do not
correct for primary beam attenuation automatically. The task to correct an image for the primary beam
is linmos. To use linmos for this function, you need only set the input and output dataset names. For
example

LINMOS

in=lmc.map Image to primary beam correct.
out=lmc.pbcorr Output, corrected, image.
options Leave unset.

21-1

21-2 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

Table 21.1: Mosaic grid spacing for ATCA dishes

Frequency Pointing Spacing
ν (GHz) θhex (arcmin)

1.384 19.6
2.496 10.9
4.800 5.6
8.640 3.1

21.2 Mosaicing

The primary beam limits the size of an object that we can observe with a conventional experiment. To
circumvent this, a large object can be observed using multiple pointings – this is the practise known as
mosaicing. In interferometry, mosaicing is not simply the practise of pasting together multiple tiles of
the sky. In interferometry, the adjacent pointings are not independent, and so we can get fundamentally
better images by processing the different pointings together. This is particularly so for extended emission
or when the signal-to-noise ratio is low. A description of the theory behind mosaicing can be found in
the NRAO Synthesis Imaging Summer School (Lecture 15 – Wide Field Imaging III: Mosaicing – by Tim
Cornwell). Other notable references are Cornwell (1988) (A&A, 143, 77) and Cornwell, Holdaway & Uson
(1993) (A&A, 271, 697). Sault, Staveley-Smith and Brouw (1996) (A&AS, 120, 376) describe some of
the algorithms used by MIRIAD.

21.3 Mosaicing Observing Strategies

The job of planning a mosaic experiment requires extra thought over a simple conventional observation.
Issues that you must decide in the planning of an experiment include:

• Pointing grid pattern: In a mosaic experiment, you observe a number of pointings – possibly a
few to several hundred, depending on the size of the source of interest. To consider how dense
the sampling grid needs to be, consider the primary beam of an antenna. In the u − v plane, the
Fourier transform of the primary beam pattern is just the cross-correlation between two antenna
illumination patterns. For the 22-m ATCA dishes, the Fourier transform of the primary beam
pattern will be of finite and circular extent, having a diameter of 44-m. Because it is of finite
extent, Nyquist’s sampling theorem indicates that, provided we do not sample in the sky domain
coarser than some limit (i.e. provided the pointing grid pattern is sufficiently fine), all information
can be retrieved. Assuming a standard, rectangular grid, the sky plane Nyquist sampling limit is

θrect =
λ

2D

(λ is the wavelength, and D is the dish diameter). For a well-illuminated dish, this spacing cor-
responds roughly to half-power point spacing between field centres. Because the extent of the
transform is circular, we can do somewhat better than this, by using a so-called hexagonal grid.
This grid places pointing centres at the vertices of equilateral triangles – packing six triangles
together gives a hexagon. An extension of Nyquist’s theorem indicates that

θhex =
2√
3

λ

2D
.

So a hexagonal grid allows a given area of the sky to be covered in a smaller number of pointings (it
does also require slightly longer drive times between pointings – see below – which may occasionally
be a consideration). Table 21.1 gives this grid spacing for ATCA dishes.

• Dwell time: Most mosaiced experiments will continually switch between the different pointing
centres (or a subset of them, if there are too many pointing centres to visit in a single observation).

21.4. VISIBILITY PROCESSING 21-3

Normally they will be visited in a raster scan fashion. Switching to a new pointing centre typically
results in 0.5 to 4 seconds of ‘lost’ time while the antennas are slewing to the new pointing. This
time can be a significant consideration in some experiments – e.g. if the integration time was 10
seconds, and the pointing centre was switched every integration, up to about 40% of the observing
time could be lost. To avoid this, you will want to dwell on a given pointing centre for as long as
reasonable. This must, however, be traded against loss of tangential u − v coverage that occurs
when each pointing is not visited sufficiently frequently. To determine the balance, recall that a
correlation does not measure the value of a single point in the u−v plane, but a region corresponding
to twice the diameter of the dishes. At transit (when the projected baselines are changing fastest),
the time taken for a baseline to rotate to a completely independent visibility point is

τ =
86400

2π

2D

L
seconds

Here L is the maximum baseline length of interest when imaging and D is the dish diameter. Ideally
you will want to sample twice as frequently as this, i.e. for N pointings, a dwell time of τ/2N would
be best. You may, however, decide to suffer tangential holes in the u − v coverage.

• Field Naming Convention: When preparing the observe files for an ATCA mosaic experiment, you
will create a ‘mosaic file’. This gives a field offset, integration time and field name for each pointing
centre. To simplify a step in the reduction process (the splitting step only), it is recommended that
field names be composed of two parts, separated by an underscore character. This recommendation
is purely to simplify some steps in the data reduction in MIRIAD. The first part should be
common to all fields. Typically this will be the name of the object being mosaiced. The second
part is unique to each field, typically being a field number. For example, the field name for pointing
123 for a Large Magellanic Cloud mosaic would be called lmc_123.

21.4 Visibility Processing

The flagging, splitting and calibration of a mosaic experiment are rather similar to a conventional exper-
iment. The following concentrates on the differences only. This section will assume that, as is usual, only
a single phase calibrator is used for all pointings.

• Flagging: Flagging differs only in that, when the instrument is continually changing to a new
pointing centre, it can be more difficult to spot the outliers which indicate bad data.

In its processing, tvflag usually produces a gap in its display every time the source being observed
is changed. When mosaicing, this can very quickly mount up to taking the entire display (and
tvflag will complain about not being able to determine an appropriate averaging interval). In this
case, options=nosrc can be used to suppress the gap and allow tvflag to average across source
changes.

• Splitting: As with conventional reduction, for calibration and imaging purposes, it is easiest in
MIRIAD to split the data into datasets containing a ‘single source’ and single frequency band.
For a mosaic experiment, all the pointings from the object of interest should be considered a ‘single
source’. As the ATCA on-line system labels each pointing with a different field name, uvsplit would
normally break the dataset into one file per pointing. To avoid this, use uvsplit’s mosaic option.
This causes uvsplit to use the source name up to any underscore character. Thus, assuming you
have used the field naming convention of Section 21.3, uvsplit will not split apart all the separate
pointings.

If you failed to follow the naming convention, the select keyword of uvaver and uvsplit can be
used to split the dataset up. This is left as an exercise for the reader.

For example, assuming a dataset containing calibrators and an observation of the LMC (with
appropriately named fields), the following inputs will generate datasets for the calibrators and a
single dataset for all the LMC data.

21-4 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

UVSPLIT
vis=mosaic.uv The input dataset.
options=mosaic Assume mosaic experiment, so create

multi-pointing output where necessary.

• Data Selection: With mosaic visibility datasets, the select=ra and select=dec selection sub-
commands can be useful to extract or manipulate a subset of the visibility data.

• Calibration: Determining the calibration solutions does not differ from that described in Chapter 12.
You will then use gpcopy to copy the calibration tables to the multi-pointing dataset.

21.5 Summary of Imaging Strategies

There are two quite distinct methods for reducing a mosaic experiment – the so-called “joint” and
“individual” approaches. Although hybrid approaches are also conceivable, they will not be discussed.

The joint approach, which is the simplest, takes advantage of MIRIAD’s mosaicing software. In this
case, all pointings are handled simultaneously by the imaging and deconvolution software. With the
individual approach, a mosaic experiment is treated like a large number of conventional observations,
where each pointing is imaged and deconvolved separately. In this case you, the user, are responsible for
keeping track of all the pointings. Only as a final step are all the pointings pieced together.

The advantage of the joint approach is speed and simplicity. Also because the deconvolution of all the
pointings is done together, it can produce fundamentally better deconvolutions. This is particularly so
for low signal-to-noise ratio mosaics and for extended emission (emission comparable in extent to the
primary beam – see Cornwell’s papers for the argument). It is the approach normally used. However
there are disadvantages – the joint approach depends more critically on the model of the primary beam.
Errors in the model of the primary beam will tend to be amplified by this approach, particularly when
the u − v coverage is poor. Generally the joint approach will be limited to dynamic ranges of several
hundred or so.

A more practical difference between the two approaches is that the joint approach generally uses sig-
nificantly less disk space (this can be an order of magnitude or more for spectral line experiments).
However, because the joint approach does all pointings simultaneously, it does use significantly more
computer memory in its reduction steps. With current computers, the joint approach is not possible for
full resolution ATCA images (6 km array) if you have more that a few pointings.

21.6 The Joint Approach

For the joint approach, the reduction proceeds in a fashion which appears very similar to conventional
observations. First a dirty image is formed (with associated point-spread function), and then a decon-
volution algorithm is used to ‘clean’ this dirty image. Finally the ‘restore’ step is performed. There are,
however, substantial differences – although these are largely hidden from the user.

The task to form the dirty image is still invert. The dirty image is formed by imaging (using a conven-
tional algorithm) each of the pointings separately. These individual pointing images are them combined
in a linear mosaicing process. This linear mosaicing simply consists of a weighted average of the pixels in
the individual pointings, with the weights determined by the primary beam response and the expected
noise level. The resultant output dirty image is thus an image of the entire region mosaiced.

The weights are computed to minimise the noise in the resultant image as well as to correct for primary
beam attenuation. The output image, I(`, m), is given by

I(`, m) = g(`, m)

∑

i P (` − `i, m− mi)Ii(`, m)/σ2
i

∑

i P 2(` − `i, m− mi)/σ2
i

.

Here the summation, i, is over the set of pointing centres, (`i, mi). Ii(`, m) is the image formed from the

21.6. THE JOINT APPROACH 21-5

i’th pointing, and P (`, m) is the primary beam pattern. The expected noise variance in the i’th field is
σ2

i .

Primary beam attenuation is only corrected for within limits. Because there are large variations in
sensitivity across a mosaiced image (the edges of a mosaiced region will have low sensitivity), the imaging
software does not always attempt to fully correct for primary beam attenuation. Instead, it constrains
the weights so that the noise level does not exceed a certain limit (this limit is based on the noise in
individual pointings). This results in some residual primary beam attenuation at the edges of a mosaic
(or in holes in the pointing grid). This is done by the function g(`, m). This function normally has a
value of 1, but its value drops towards 0 at edges or holes. In this way, the noise level across a mosaiced
image is crudely uniform.

Task invert also applies geometric corrections to account for the fact that the sky is not a plane. For an
east-west array, such as the ATCA, these corrections are exact, meaning that the coordinate geometry of
the resultant images is also (nominally) exact. For other array types, the corrections are optimal in the
sense that they are the best approximation that still results in a convolution relationship (in the sense
that such arrays obey a convolution relationship!).

Because the u− v coverage of the different pointings will not be identical, the synthesised beam patterns
will differ between pointings. This, and the weighted average process, means that the point-spread
function of the resultant dirty image is position-dependent. As most deconvolution algorithms assume a
position-independent point-spread function, a conventional algorithm cannot be used. However the point-
spread function from the linear mosaicing process is still reasonably compactly described and readily
computed. The beam dataset that invert produces is not a normal one; it is a cube of beam patterns,
one for each pointing. Given this, and some information stored in an auxiliary mosaic information table,
the deconvolution tasks can compute the true point-spread function at any position in the dirty image.
Being able to compute a point-spread function (or rather, being able to compute a dirty image, given a
trial deconvolved image) is the difficult part of writing a deconvolution task. A maximum entropy-based
deconvolution algorithm is readily implemented.

The practicalities of this processing are now described.

Imaging – INVERT

Most of the inputs to invert are the same as with conventional imaging. Only mosaic-specific con-
siderations will be mentioned here. See Chapter 13 for more information. Note that invert supports
multi-frequency synthesis, Stokes and spectral imaging.

• options=mosaic: The most important thing to remember is to invoke invert’s mosaic mode! This
causes invert to expect multiple pointings in the input visibility data, and to perform the linear
mosaicing steps and geometric corrections.

• options=double: If you intend to deconvolve, options=double should always be used. This is
because the full field of the each individual pointing is potentially filled with emission.

• vis: When mosaicing, invert handles input datasets which contain multiple pointing centres.

• imsize: In mosaic mode, this is interpreted as the image size, in pixels, of each subfield. There
are two constraints that are important if you wish to deconvolve. These can be relaxed, with
corresponding degradation in deconvolution.

– Ideally imsize should be large enough to contain all emission in the main lobe of the primary
beam (as MIRIAD only models the main lobe, making it larger has no beneficial effect).
Table 21.2 gives these sizes as a function of frequency for the ATCA.

– The image size should not be a power of 2, or a number within the range (approximately)
[0.9× 2n, 2n] (note that just 1 pixel more than a power of 2 is fine – and indeed good). This
restriction is to help reduce the effects of the aliasing caused by a “grid-and-FFT” imaging
algorithm which invert uses.

21-6 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

Table 21.2: Size of Main Lobe of the Primary Beam for ATCA dishes

Frequency Primary Beam Main Lobe Size
ν (GHz) θ (arcmin)

1.384 70.0
2.496 42.4
4.800 20.6
8.640 12.2

• sup: Recall that sup gives the sidelobe suppression region, and is a way of setting uniform, super-
uniform and sub-uniform weights. In mosaic mode, invert’s default is to suppress the sidelobes in
a region the size of each sub-image. However suppressing sidelobes in an individual sub-images is
not the same as suppressing them in the linear mosaic of the sub-images. This is because the linear
mosaicing process weights down sidelobes some distance from the pointing centre. In mosaicing,
minimum sidelobes will be achieved by setting sup equal to about twice the pointing separation
(which should be about the side of the primary beam FWHM).

As always, best point-source sensitivity results by setting sup equal to 0.

• offset: This has a different meaning in mosaic mode. It gives the position on the sky (the so-called
tangent point), in RA and DEC, which is used for geometry calculations. The value is given in the
form hh:mm:ss,dd:mm:ss, or as decimal hours and degrees. Normally you can allow this to default,
and invert will choose a central pointing centre as the tangent point.

Typical inputs to invert would be:

INVERT

vis=lmc.uv The input multi-pointing dataset.
options=mosaic,double Use mosaic mode and make large beam.
offset Usually can leave blank.
map=lmc.map Output image name.
beam=lmc.beam Output beam name.
cell= Set cell size.
imsize= Set output image size.
sup=2000 Set to approximately twice the pointing separation for

minimum sidelobes, or
sup=0 set to zero for best point-source sensitivity.

Deconvolution and Restoration

MIRIAD contains two tasks to deconvolve the mosaiced dirty images produced by invert. In terms of
theory, practical use and indeed internal implementation, these tasks are quite similar to the deconvolution
tasks described in Chapter 14. The major difference is that the ‘convolution’ operation (which turns a
prospective model into a dirty image) is somewhat more involved. Also account must be made of the
changing noise level across the dirty image.

The two mosaic deconvolution tasks are mosmem, which implements a maximum-entropy-based deconvolu-
tion algorithm, and task mossdi, which uses a Steer, Dewdney & Ito (SDI) CLEAN algorithm. Generally
mosmem is superior, although mossdi can be better for images containing point sources. Note that, al-
though you can make mosaiced, multi-frequency synthesis images with invert (and, indeed, produce a
mosaiced, spectral dirty beam), there is no mosaic equivalent to mfclean. In deconvolving a mosaiced,
multi-frequency image you will have to tactically assume that the spectral index is 0. This should not
be a problem – primary beam model errors are probably more significant than spectral errors in these
deconvolutions.

If you are deconvolving, note the recommendations for invert’s imsize parameter, and the use of
options=double.

21.6. THE JOINT APPROACH 21-7

If you are familiar with the inputs to the conventional deconvolvers, the inputs to mosmem and mossdi

should be fairly straightforward. In the case of the inputs to mosmem and maxen, apart from differences
in the options, the meaning of the flux keyword and the default region, the only significant difference
is in specifying the expected RMS noise level in the dirty image. Because the noise level varies across the
dirty image, mosmem uses the theoretically expected noise level (which it computes) times a user-specified
fudge factor, rmsfac. That is, if rmsfac is set at 1 (the default), then mosmem uses the theoretical noise
level when calculating its χ2 statistic.

Typical inputs to mosmem are:

MOSMEM
map=lmc.map Dirty image produced by invert.
beam=lmc.beam Beam dataset.
model An initial model estimate – generally unset.
default The image that the solution should tend

towards – generally unset.
out=lmc.model The output dataset.
niters=30 Maximum number of iterations – default is 30.
region= Region to deconvolve. The default is the entire image.
measure Leave unset gives you the Gull measure.
flux= Estimate of the total flux – its best to give a value.
rmsfac=1 RMS noise fudge factor. Default is 1.
q An initial estimate of the beams volume. Generally

you can leave this unset.
options Generally leave unset, or
options=doflux use doflux to enforce the flux constraint.

The inputs and use of mossdi should be equally simple for someone familiar with clean.

Having produced a model, we generally want to convolve this with a Gaussian CLEAN beam and add
in the deconvolution residuals. This is done by restor. The inputs and use of restor is identical to a
conventional observation (restor is the only general task which is smart enough to recognise a mosaiced
experiment directly). Task restor uses a constant CLEAN beam – it is not a function of position. The
only caveat is that, when determining a default CLEAN beam, restor fits a Gaussian to the synthesised
beam which corresponds to the first pointing. Provided the first pointing is a fairly typical pointing,
this will probably be adequate. Otherwise you may wish to use task mospsf (see Section 21.6 below) to
generate an actual point-spread function (at some position) and then use imfit to determine Gaussian
parameters for it.

Typical inputs to restor are:

RESTOR
map=lmc.map Dirty image produced by invert.
beam=lmc.beam Beam dataset.
model=lmc.model Model produced by mosmem.
mode Leave unset to get restored image.
fwhm Beam size – leave unset to let restor

fit it, but to the first pointing!
pa Again leave unset to let restor fit it.

Self-Calibration

The software to perform self-calibration is workable and reasonable flexible, although it is rather inelegant.
In part, this software has not been upgraded from the time before the ‘joint approach’ suite was developed
in MIRIAD.

The self-calibration process is performed in two main steps (there is a minor third step). First the
task demos (“de-mosaic”) is used to break the model produced by mosmem into models for individual

21-8 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

pointings. That is, demos produces many models each one of which corresponds to the nominally true
sky multiplied by the primary beam pattern at a pointing. The second step is performed by task selfcal

(gpscal cannot cope with mosaiced observations). Task selfcal takes all the models simultaneously
and then, for each visibility in the input visibility dataset, it computes a model visibility using the model
with the same pointing centre. The observed and model visibilities are then processed by a conventional
antenna-gain solver, to produce a table of antenna gains vs time.

In reality, antenna gains will be a function of both time and pointing centre. However selfcal assumes
that the gains are purely a function of time – not pointing. In practice this should not be a great problem,
as time and pointing change together, and integrations that are close in time will also be close on the sky.
Note that, short of setting a self-calibration solution interval to be smaller than the integration time, you
cannot be sure that a solution interval will contain data from a single pointing.

In the above process, only a subset of all pointings need be used in the self-calibration process. If, for
example, you have a strong source in one pointing and all the other pointings have only weak emission,
it may well be appropriate to assume that the antenna gains are completely independent of pointing. In
this case, the gains can be determined from the one strong field.

We now address the steps in more detail:

1. The demos step: This step consists of producing a number of models, one for each pointing. The
inputs are described in turn.

• map: This gives the name of the input model image (produced by mosmem) to be de-mosaiced.

• vis This will usually be the visibility dataset to be self-calibrated. This dataset is used to
determine the pointings present and the primary beam to be used.

• select: This provides normal visibility selection. If only a subset of pointings are being
processed, it is convenient to select them here. In this way, models are not generated for
pointings that are not of interest. Typically, if you wish to self-calibrate with only a subset of
pointings, you would use the ra, dec and/or source subcommands to select the appropriate
ones.

• out: This gives a template for the names of the output de-mosaiced models. Task demos will
generate an output name by appending a number to the template name. For example, the
output template lmc.dmos. would produce names such as lmc.dmos.1, lmc.dmos.2, etc.

• imsize: This gives the maximum size of the output models. Task demos may make the outputs
smaller where needed. The default used by demos is derived from the primary beam size and
the input model, and should be adequate (although if disk-space is tight, you might set a
smaller number than that chosen by demos).

• pbtype: This gives the primary beam type to use in the de-mosaicing process. The default,
which is determined from the vis dataset, should be adequate.

• options: You must invoke the option detaper. This causes demos to account for any residual
primary beam attenuation that mosmem has left.

Typical inputs to demos are:

DEMOS
map=lmc.model Model produced by mosmem.
vis=lmc.uv The visibility dataset to be self-calibrated.
select Leave unset if self-calibrating with all pointings, or
select=source(lmc 123,lmc 124) select just the fields to be used in the self-calibration process.
out=lmc.dmos. Output name template.
options=detaper Account for any residual primary beam attenuation.
pbtype Generally leave unset.
imsize Generally leave unset.

2. The selfcal step: In general, the inputs to selfcal are fairly conventional – see Chapter 15 for
more information. There are, however, multiple input models (produced by demos) corresponding

21.6. THE JOINT APPROACH 21-9

to each of the pointings to be used in the self-calibration. Note that wildcards will generally make
this easy. The other difference which you must remember is to use options=mosaic to invoke the
mosaicing machinery. Note also that selfcal will not use a visibility of a particular pointing if
there is no model for this pointing. Thus, if you are self-calibrating using only a few of the stronger
pointings, you do not have to explicitly select the data for these pointings.

Typical inputs are:

SELFCAL
model=lmc.dmos.* Models produced by demos.
vis=lmc.uv The vis dataset to be self-calibrated.
select Set as with normal self-calibration.
options=mosaic,phase Use mosaic mode and phase self-calibration, or
options=mosaic,amp amplitude/phase self-calibration.

3. Fixing the interpolation tolerance: As noted in Section 12.4, a MIRIAD gain table has an as-
sociated interpolation tolerance (the time interval over which you can interpolate or extrapolate
a gain). Task selfcal will set this to the solution interval. If you are self-calibrating with only
a few pointing centres, you will want the gains to apply to the entire cycle through the mosaic
grid. In this case, you may well want to increase the interpolation tolerance from the default. See
Section 12.4 for the details. In summary, you use puthd with inputs like:

PUTHD
in=lmc.uv/interval Set the ‘interval’ item of a vis dataset.
value=0.1 Set the tolerance to 2.4 hours (0.1 days).

Some Additional Tools

We briefly describe some other useful tools.

• Mosaic Coverage – MOSLST: In doing a mosaic observation, you will want to good Fourier sampling
(coverage) as well as even sampling of the different pointing centres. Task moslst produces a simple
plot of LST vs point number for mosaiced visibility files. In doing this, it required that you follow
the field naming convention mentioned earlier (see Section 21.3).

• Listing Mosaic Tables – IMLIST: Task invert stores information concerning its linear mosaic
operation in the item mostable (stored in both the map and beam datasets). The table can be
printed by imlist, using options=mosaic.

• Mosaic Point-Spread Function – MOSPSF: It is occasionally instructive to look at the point-spread
function at a particular position in a mosaic experiment. Task mospsf can compute this. Apart
from the input beam data-set, the user must specify a position and frequency of interest (the
point-spread function is also frequency dependent).

• Mosaic Sensitivity and Gain Images – MOSSEN: Just as the point-spread function varies, so does
the expected noise level in an output mosaiced image. Additionally, as mentioned above, invert
does not attempt to completely correct for the primary beam attenuation where there is too little
data (i.e. some primary beam attenuation is in the output image). The task mossen can produce
images of the expected rms noise and the remaining primary beam attenuation given a mosaiced
image.

• MOSTESS: mostess implements a mosaicing algorithm identical to the AIPS VTESS program. It
is more cumbersome to use, and produces results which are no better than mosmem. Its use is not
recommended.

• PMOSMEM: pmosmem can be used to do a joint deconvolution of a polarimetric mosaic. The “joint”
in this case applies to both jointly processing the multiple Stokes parameters as well as processing
the different pointings. With polarised emission being potentially positive and negative valued, the
entropy measure for this is different from a simple total intensity deconvolution. See Sault et al.
(1999) (A&A 139, 387) for more background on joint polarimetric deconvolution.

21-10 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

21.7 The Individual Approach

The individual approach images, deconvolves, self-calibrates and restores each pointing separately. It
is only when you are happy with the individual images that you would combine them – using a linear
mosaicing algorithm.

As noted above, the individual approach is less automated and can produce fundamentally poorer decon-
volutions. However in some high-dynamic range applications, it may be preferable. The reason for this
is that the deconvolution process does not depend on the primary beam model (nor do some errors such
as a constant pointing error affect the deconvolution). With the ‘individual approach’, it is possible to
deconvolve sources (and thus eliminate their sidelobes – which is the important issue) beyond the limit
where MIRIAD’s primary beam model gives up. To do this, however, you must make images larger
than the main primary beam lobe (see Table 21.2 above).

In the following, we assume that the ‘joint approach’ section has been read and understood.

Splitting and Imaging

Although this is largely a matter of taste, it may be convenient (particularly if self-calibration is to be
used) to split the multi-pointing visibility dataset into single pointing ones. Task uvsplit (with no
options, and only the multi-pointing visibility dataset as input) will do this function. It will also copy
across any calibration tables associated with the input dataset.

In the individual approach, you will run invert many times, once for each pointing (you may have split
the multi-pointing visibility dataset into single pointing ones, or you could use selection by source name
to select out the appropriate subset of data). Apart from possibly the names of the input and output
datasets, the parameters to invert should not be changed between runs.

Even though you are imaging just a single pointing, you will still want to use invert’s mosaic mode
(options=mosaic). This causes invert to perform its geometry corrections and to create the the images
of the different pointings on the same pixel grid. In this way, no interpolation will be needed when
the images from the different pointing are finally combined. Consequently the artifacts and problems
associated with interpolation can be avoided.

To compute the geometry, however, you must provide a reference position on the sky – the tangent point.
The default tangent point is the pointing centre of the data being imaged – this is not appropriate as it
will vary from pointing to pointing. You will want a tangent point which is the same for all the pointings.
Although it can be any arbitrary point, it is best to make it near the centre of the source being imaged.
If there is a point source which dominates the image, you might choose its position as the tangent point
to help reduce deconvolution problems. The tangent point is given through the offset keyword, in the
format hh:mm:ss,dd:mm:ss (or as decimal hours and degrees).

As an example, consider an LMC observation, where we wish to image field 123 (which has field name
lmc_123). Assuming we have a multi-pointing dataset, and wish to use position (RA,DEC)=(4:30,-71:00)
as the tangent point. Typical inputs to invert would be:

INVERT
vis=lmc.uv The input dataset.
select=source(lmc 123) Select a single pointing.
options=mosaic Use mosaic mode.
offset=4:30,-71:00 Set position for geometry computation.
map=lmc 123.map Output image name.
beam=lmc 123.beam Output beam name.
cell= Set cell size.
imsize= Set output image size.

21.8. COMBINING MOSAICS AND SINGLE DISH DATA 21-11

Deconvolution, Restoration and Self-Calibration

Deconvolution is no different to conventional observing. When restoring, you may wish to use the same
restoring beam size for all fields. Otherwise treat each pointing as a separate observation.

Much of the discussion in the self-calibration section of the ‘joint approach’ applies equally well here. The
major difference is, of course, that because the deconvolution step has been performed on the individual
fields, the demos step is not required. If you have split the visibility data into separate single-pointing
datasets, you will not need to use options=mosaic (although it will not hurt). Also for single-pointing
datasets, if you wish to use just one or a few of the stronger fields for self-calibration, you will need to
copy the resultant antenna gain tables across to the other datasets, using gpcopy.

Image Combination

When you are satisfied with the deconvolution, restoration and self-calibration of all the individual images,
task linmos can be used to combine them in a linear mosaic. Usually you will just combine the restored
images (if you are going to do quantitative analysis on the composite image, it may be best to do a
deep CLEAN and use the same restoring beam for all pointings). Although linmos can interpolate input
images to align them, its algorithm, particularly for geometric correction, is very poor, and so this is
strongly discouraged. You should use invert to make all the input images on the same grid, by setting
a common tangent point (offset keyword).

Task linmos uses the same weighted sum of the input pointings as the ‘joint approach’ software (see
Section 21.6). Normally the expected rms noise in the image is determined from the images themselves
(image item rms). However if this item is missing, or if you wish to override it to get a different weighting,
you may enter the expected rms noise via keyword rms. Also note that linmos, by default, fully corrects
for the primary beam attenuation even when this excessively amplifies the noise. The taper option can
be used to reduce the correction at the edge of the field, and thus avoid excessive noise amplification.

Typical inputs to linmos are:

LINMOS
in=lmc *.cln Use wildcards to select all images.
out=lmc.mos The output linearly mosaiced image.
rms Generally left unset.
options Leave blank to fully correct primary beam,
options=taper or set to taper at the edge of the mosaic.

Miscellaneous

In a similar way to mossen, linmos can also produce an image giving the expected rms noise as a function
of position, and a gain image – see the help file on using the options keyword for these.

21.8 Combining Mosaics and Single Dish Data

For a good discussion of the theory and practice of combining single dish and mosaic data, see the paper
by Snezana Stanimirovic (ASP Conf. Series, vol 278, p 375).

One of the benefits of mosaicing is that it partially recovers spacings shorter than the shortest projected
interferometer spacing. In principle, the shortest spacing present in a mosaic can be the projected
interferometer spacing minus the antenna diameter, D (see the references mentioned earlier for the
argument). When antennas are as closely packed as is physically possible, the minimum physical spacing
will be D, and so in principle a mosaic can reduce the effective minimum spacing almost down to the zero
spacing. In practise, mosaicing tends to reduce the effective minimum spacing by about D/2, rather than
the theoretical D. For the ATCA observations of sources appreciable far south, the effective minimum
spacing in a mosaic is about 20 m (the minimum physical interferometer spacing is 31 m).

21-12 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

So whereas mosaicing helps recover short spacings, there are invariably some short spacing missing.
To fill these spacings, interferometer data must be augmented with single-dish data. Just as there are
two approaches to mosaicing (the joint and individual approach), MIRIAD provides two approaches
to single-dish combination – the linear and a non-linear methods, using tasks immerge and mosmem

respectively. Which method produces best results is quite problem specific, and indeed it is perhaps best
to try both if possible. However,

• The non-linear combination method works on the dirty mosaic produced by invert, whereas the
linear method works from deconvolved images. Thus the non-linear method cannot be used with
the “individual” mosaicing approach.

• The linear method can be more robust to the single-dish data failing to satisfy some of the assump-
tions of the non-linear method.

• The non-linear technique can perform better when there is emission right to the edge of the sampled
region of the sky.

• The linear method assumes that the single-dish point-spread function is a gaussian. For the non-
linear method, you give a “beam” dataset, which can be an actual measurement of the single-dish
point-spread function (which can be asymmetric).

Given that combining mosaic and single-dish data can be a bit of an art, its worth doing a few checks of
the result:

• The simplest check is to see that the total flux agrees with what you expect. Task histo is
the simplest way of measuring the total flux in a continuum image (or plane of a spectral cube).
Otherwise imstat can be used.

• The non-linear methods produce model outputs, that need to go through a restore step. Task
restor will also generate residual images. You probably want to look at the residuals for both the
mosaic and single-dish images, which is readily done with restor using mode=residual.

In general, to combine single dish and interferometer data, you need to image the complete region
containing emission. In practise this means that sidelobes, from emission outside the region of interest, are
not significant. This applies both to the single-dish and interferometric observations. Both observations
should map the complete region of the emission.

Some Theory and Preparing the Single-Dish Data

Both the linear and non-linear methods require a mosaic and a single-dish image as inputs. MIRIAD
has not tasks to form images from single-dish data. Thus you must use another package to generate the
single-dish image, which you will then import into MIRIAD (presumably via FITS – see Section 8.2).
Further massaging might then be needed within MIRIAD to prepare the single-dish image for the
combination process. The steps needed are as follows:

1. Coordinate grids: The coordinate systems of the single-dish and mosaic image must be identical.
That is the image size, pixel increment, equinox, projection geometry, etc, must be the same. Often,
the regrid task can achieve this reasonably painlessly. Given an input image and a template
image, regrid resamples (by interpolation) the input onto the grid of the template. In doing so, it
correctly handles different projection geometries, equatorial/galactic coordinate conversion, equinox
conversion and different velocity definitions.

Note you should not regrid the mosaiced image. In regridding, the information that describes the
mosaicing process is lost, which will make life difficult for you.

Typical inputs to regrid would be

21.8. COMBINING MOSAICS AND SINGLE DISH DATA 21-13

REGRID
in=lmc.sd Input single dish image.
tin=lmc.mosaic The mosaic giving the coordinate system

that we want to regrid to.
out=lmc.sd regrid The output, regridded, single-dish image.

For interpolation to produce a faithful output, the grid of the input cannot be too coarse – the
number of pixels across the single-dish beam should be at least 3. Although this is usually readily
satisfied on the spatial axes, spectral line users should be more wary: the number of channels across
the spectral axis response function is usually very small. In addition, whereas the spatial resolution
of the single dish will be poorer than the mosaic, this is not necessarily true for the spectral axis.
So, in addition to regridding, some spectral smearing might need to be performed to reduce the
spectral resolution of the single-dish image to that of the mosaic. Unfortunately, MIRIAD is
poorly equipped to solve these problems; these issues are left as a difficult exercise for the user.

2. Flux scale calibration: The single-dish and mosaic images both should have flux units of Jy/beam.
Although appropriate calibration during the observations is obviously the best method to ensuring
that the flux scales of the mosaic and single-dish images are the same, this is not always achieved.
The flux scales of two images, that are nominally in the same units, can differ by a modest, but
appreciable, amount.

A common approach to estimating flux calibration factor is to compare the single-dish and mosaic
images in that annulus of spatial frequencies where both are sensitive. For example, a Parkes
observation will sample spatial frequencies from 0 to near 64 meters, and a ATCA mosaic (assuming
the shortest ATCA spacing is observed) will be sensitive from about 20 meters upwards. As the
reliability of the data near the extremes is suspect, spatial frequencies from 25 to 40 meters should
be modestly reliably represented in both an ATCA mosaic and a Parkes image. Comparing in the
overlap annulus works very well when there is a simple source which is well represented in this
region (e.g. a dominant point source).

The tasks to perform the linear and non-linear combination both have parameters for setting and
deducing the flux calibration factor.

3. Point-spread function: In principle, knowing the point-spread function (the “beam”) of the single-
dish image is just as important as it is for the mosaic. It is best to ‘map’ this at the time of the
single-dish observations and to account for any change in the beam that is caused by the single-dish
imaging process.

While it is possible to imagine algorithms that could deduce the beamwidth based on the spatial
frequency overlap between the single-dish and mosaic data, in practise this is not possible (the
overlap region is not wide nor is the data reliable enough). In estimating beamwidth parameters,
the beamwidth and flux calibration factor are highly coupled; an error in the beamwidth has much
the same effect in the overlap region as an error in the flux scale. Thus you cannot determine the
beamwidth and flux scale simultaneously.

The linear combination method assumes the single-dish point-spread function is a gaussian form,
whereas the non-linear method takes a image dataset as the point-spread function (the point-spread
function need not be symmetric). If a point-spread function is not readily available for the non-linear
method, a gaussian dataset can be produced.

The Linear Method – IMMERGE

The linear method, sometimes known as feathering, can be thought of in terms of operations in the
Fourier (spatial frequency) domain of the images. If the single-dish image is a good representation of the
object at low spatial frequencies, and if the mosaic image is a good representation at mid to high spatial
frequencies, then the two sorts of data can be merged in the Fourier plane to form an image accurate up
to the resolution of the mosaic image. This is exactly what immerge does.

The way that immerge normally combines the data is to give unit weight to the single-dish data at all
spatial frequencies, and to taper the low spatial frequencies of the mosaic data. This tapering is such that
the sum of single dish and tapered mosaic data produces a gaussian beam equal to the mosaic gaussian

21-14 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

A
m

pl
itu

de

Spatial Frequency (wavelengths)

Parkes
Tapered ATCA

Merged

Figure 21.1: Spatial frequencies sampled by Parkes and the ATCA

beam. Figure 21.1 shows this process for a point source. The Parkes data plus the tapered ATCA data
neatly add to give an overall response of a gaussian form.

The inputs to immerge are moderately straightforward: the in parameter gives the name of the input
mosaic and single-dish image (in that order), whereas the out parameter gives the name of the output
dataset. Because immerge assumes that the beams of both the single-dish and mosaic images are gaussian
forms, you will want to use images which approximate this. Whereas single-dish images usually approx-
imate this reasonably, a dirty mosaic does not. Instead, you will want to use a deconvolved/restored
mosaic in the immerge process.

Task immerge allows you to set a parameter giving the flux calibration factor, factor: immerge multiplies
the single-dish image by this factor before further processing. If you believe your calibration, you should
set this parameter to 1 (or whatever number you believe the calibration factor to be). Note that if the
parameter is unset, immerge attempts to deduce this factor (i.e. the default is not simply to use a value of
1). It does this by comparing data in the overlap annulus in the spatial frequency coverage of the mosaic
and single-dish images. In doing this immerge first convolves the mosaic image to the same resolution
as the single dish data (including scaling fiddles to account for the inputs being in Jy/beam in differing
resolutions), and it then performs a robust (L1) fit between the two sets of pixel data. If you use immerge

to determine the flux calibration factor, you will want to consider setting the following parameters:

• uvrange giving the range in the Fourier domain where there is overlap. This parameter can take
two or three values, the first two being the numbers giving the inner and outer radius of the overlap
region, and the third parameter giving the units of the first two values. The most useful units are
meters and klambda (kilowavelengths – which is the default). For example, typically the overlap
between a Parkes and ATCA observation (assuming the shortest ATCA spacing is included in the
observation) would be

uvrange=25,40,meters

The default is to use all spatial frequencies.

• region parameter allows you to select those planes used in determining the flux calibration factor.
Unlike the normal behaviour of region parameter, only plane selection is allowed, with the image

21.8. COMBINING MOSAICS AND SINGLE DISH DATA 21-15

sub-command being the only really useful command. Generally you would choose planes with
appreciable structure which is well represented in both single-dish and mosaic data. The default is
to include all planes.

• device sets the PGPLOT plotting device where plots are make of a comparison between the data
in the overlap region. Two plots are produced. For the first plot, the axes gives the value of a pixel
(both real or imaginary values are included) in the mosaic (x axis) and single-dish data (y axis).
These pixel values are after tapering, scale factor fiddles, and after applying the calibration scale
factor that has just be deduced. The data should follow a “y = x” form (which is also plotted in
red). The second plot gives the residual difference between the mosaic and single-dish data (i.e. the
difference from y = x) as a function of spatial frequency. A trend in these residuals might suggest
that the single-dish beam parameters are grossly wrong. Although the default is not to create a
plot, there seems little reason why you would not want to inspect it.

The gaussian parameters of the mosaic and single-dish beams are important parameters in the processing
that immerge performs. Task immerge tries to determine these by first looking for the relevant gaussian
beam parameters within the image datasets. If it cannot find these, it will attempt to estimate the beams,
based on its knowledge of the telescope and the observing frequency. These estimates, however, are far
from perfect – it is far better to ensure that the beam parameters are within the dataset before using
immerge. If you are unsure whether the beam parameters have been set for a dataset, prthd includes
these (if found) in amongst the information it prints out. For the mosaic, normally restor will have
saved the beam parameters in the dataset. However it is likely that you will need to add the single-dish
beam parameters to the single-dish dataset. The items you want to set are bmaj, bmin and possible bpa

(beam major, minor axis size and position angle respectively), which are set using puthd.

PUTHD
in=lmc.sd/bmaj Set beam major axis.
value=18.8,arcmin Width is 18.8 arcminutes.

PUTHD
in=lmc.sd/bmin Set beam minor axis.
value=18.8,arcmin Width is 18.8 arcminutes.

When emission continues to the edge of the image (or near the edge), algorithms such as that used by
immerge can suffer edge artifacts. If these are problematic, immerge has a some parameters which you
might like to try to reduce the problem. Task immerge pads images with a guard band before doing a
Fourier transform. Edge effects may be lessened by increasing this from the default value by setting the
guard parameter. Task immerge also tries to avoid edge discontinuities by padding the guard band with
a mirror image of some of the data. If the image is mostly zero, then zero padding (rather than than a
reflection) might be better. In this case use options=zero.

Typical inputs for immerge are

IMMERGE

in=lmc.mosaic,lmc.sd Give the mosaic and single-dish inputs
out=lmc.combo Give output combination dataset.
factor=1 Set to the correct flux scales, or
factor leave blank and
uvrange=25,40,meters specify the spatial frequency overlap annulus,
region=image(10,20) and use planes 10 to 20 inclusive,
device=/xs and let it plot the comparison.

The Non-Linear Method – MOSMEM

The non-linear path to combination is conceptually quite different to the linear one, even though its
success ultimately rests on the same data. The non-linear combination uses the task mosmem (and the

21-16 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

maximum entropy principle) to perform a joint deconvolution of the mosaic and single-dish images. It
finds the model which maximises the entropy, subject to two separate χ2 constraints (one each for the
mosaic and single-dish images). Usage of mosmem is similar to that in Section 21.6, expect that there are
now two parameter values for the map, beam, rmsfac and q keywords, with these corresponding to the
mosaic and single-dish values (in that order).

Unlike immerge, the non-linear approach works with dirty images.

Note that you have to give a single-dish beam dataset. Unlike all the other deconvolution tasks, the
image size of this dataset can be much smaller than the image being deconvolved (mosmem will zero pad
to make it the size that it requires), and it can be asymmetric (normally beams are assumed to have
“even” symmetry). If you do not have a beam dataset, then probably the best thing you can do (apart
from actually going out and determining it through an observation) is to generate a gaussian image,
with the appropriate resolution, with imgen. Task imgen takes a template image as its input, multiplies
the template by a scale factor, and then adds an “object”. A convenient approach would be to use the
single-dish image as the template (or a single plane of this in spectral line experiments), multiply this by
0 and then add a gaussian. Typical inputs would be:

IMGEN

in=lmc.sd Give the single-dish image as template.
factor=0 Multiply template by 0.
object=gaussian Add a gaussian.
spar=1,0,0,1128,1128,0 Gaussian is 18.8× 18.8 arcmin

(1128 arcsec) at image centre and with amplitude 1.
out=lmc.sd beam Output is the beam dataset.

Task mosmem needs to know the rms noise in the two input images. It determines this by multiplying
the theoretical rms noise (the theoretical noise is required to be present in the dataset) with the rmsfac

input parameter. While invert will have saved the required noise information in the mosaic dataset,
you will most likely have to add some estimate of the theoretical noise level to the single-dish dataset.
You could estimate this by using cgcurs (using options=stat) to determine the rms level in some blank
part of the sky (see Section 17.3). Task puthd can then be used to set the appropriate item (named,
surprisingly, rms) in the single-dish image. For example:

PUTHD

in=lmc.sd/rms Set the rms item in the single-dish dataset.
value=5.0 Set the theoretical noise as 5.0 Jy/beam.

As you have probably set the rms item in the dataset to the noise level that you believe is true, the
rmsfac parameter for the single-dish image that you input to mosmem can usually be left unset (it will
default to 1).

As with immerge, parameter factor allows you to set the flux calibration factor (the factor by which
the single-dish is scaled) as one of the inputs to mosmem. However, unlike immerge, if you do not set
the parameter, mosmem assumes the flux calibration factor is 1 – that is, mosmem does not determine
this parameter by default. However mosmem still has the ability to solve for the calibration factor – use
options=dofactor to turn this on. In this case, the factor parameter is used as an initial estimate (it
should be a reasonably good estimate). Unlike immerge, you do not need to tell mosmem what the overlap
annulus is – this information is implicit in the beam datasets.

It might be instructive to compare the factor estimated by mosmem and immerge – they can differ signif-
icantly, and yet both seem to be consistent with the data.

If you use options=dofactor with a spectral cube, mosmem will work out a separate flux calibration factor
for each plane. This is not what you probably want (particularly for planes that are predominantly noise!).
In this case, its better to deduce the calibration factor beforehand, and not to use options=dofactor in
mosmem. Some approaches to deduce the calibration factor beforehand include:

• use immerge (but recall that immerge requires a deconvolved mosaic), or

21.8. COMBINING MOSAICS AND SINGLE DISH DATA 21-17

• use mosmem on an integrated intensity (zeroth-order moment) image or on a plane with substantial
emission.

Note that options=doflux cannot be used when doing a joint mosaic/single-dish deconvolution – an
integrated flux constraint is implicit in the single-dish data.

Typical inputs to mosmem would be

MOSMEM

map=lmc.mosaic,lmc.sd Inputs are the dirty mosaic and
single-dish datasets.

beam=lmc.beam,lmc.sd beam Mosaic and single-dish beams.
niters=30 Maximum number of iterations.
region= Region to deconvolve.
rmsfac=1,1 RMS noise fudge factors.
out=lmc.model The output model.
factor= Set this to the calibration factor, or

it defaults to 1.
options Leave unset to fix the calibration factor, or
options=dofactor get MOSMEM to solve for this.

Having performed a joint deconvolved, you will want to use restor with the model produced by mosmem

along with the mosaic dirty image and beam.

Some Alternative Non-Linear Methods

Here we describe two ad hoc methods of combining single-dish and mosaic images. To some extent, these
are of historical interest only – the linear and non-linear methods mentioned before are to be preferred.

These alternative methods are not implemented as tasks within MIRIAD, so the steps to implement
them are more hands-on. For example, if needed, you will want to correct the flux calibration factor
manually before using either of these (e.g. immerge can do this for you). Some examples of using these
approaches are given in the paper by Snezana Stanimirovic (ASP Conf. Series, vol. 278, p. 375).

• An alternative combination technique using mosmem is to use the single-dish image as the default
image (default keyword) rather than as a separate χ2 constraint. That is, you use just the mosaic
image and beam with the map and beam parameters, and set the single-dish image as the default

image. Strictly the default image should be in units of Jy/pixel. However mosmem is smart enough
to divide the pixel values by the beam volume (where necessary) to perform some sort of crude
conversion from Jy/beam to Jy/pixel. You can constrain the total flux of the resultant model to
agree with the single-dish total flux, by using options=doflux. Task mosmem is smart enough to
use the default image as an flux estimate when the doflux option is used and when the flux is left
unset.

• You could form an image which is a simple weighted average of the mosaic and single-dish dirty
images (i.e. before any deconvolution), and then pass this to mosmem as if it was a normal mosaic.
In doing this, you are trying to fool mosmem to some extent, so there are a number of fudges that
you should do to make the data better approximate what mosmem expects.

Before adding the mosaic and single-dish images, you should apply the residual primary beam
attenuation present in the mosaic to the single-dish data. Task mossen will generate an image of
the residual primary beam attenuation (set the gain parameter). Having generated a the residual
primary beam attenuation, you can then apply this to the single-dish image using maths.

The weights used to add the mosaic and single-dish images should sum to 1, but the actual way of
determining the relative weights is not well defined. One good choice, advocated by Stanimirovic
et al., is to weight the images in inverse proportional to the beam volumes. When the difference in
resolution between the mosaic and single-dish observations is appreciable (i.e. the normal situation),

21-18 CHAPTER 21. PRIMARY BEAMS AND MOSAICING

this weighting reduces to nearly the same as that performed by immerge. Normalisation the weights
to add to 1 gives

wmos =
ΩSD

Ωmos + ΩSD

wSD =
Ωmos

Ωmos + ΩSD

(where Ωmos and ΩSD are the beam volumes of the synthesised mosaic beam and the single-dish
beam respectively).

To generate the effective beam dataset, you will also want to add a component to the mosaic beam.
Because of the process that mosmem believes was used to generate a mosaic, the component you add
is not simply the single-dish beam – the mosaicing process narrows down the width of the beams
from that of individual pointings. If both the interferometer primary beam and the single-dish beam
are gaussian forms with widths θint and θSD respectively, then you will want to add a gaussian to
the mosaic beam dataset which has a width

θ =

√

2θ2
intθ

2
SD

2θ2
int − θ2

SD

.

This gaussian will be somewhat broader than the single-dish resolution (for an ATCA and Parkes
combination, it will be about 7% broader than the Parkes beam). You will want to add this gaussian
and the mosaic beam with the same weights that were used for the single-dish and mosaic images.
Note that the mosaic beam dataset consists of one image per pointing, and that you will want to
add a gaussian to each plane. Task imgen can be used to do this, although it warns you that its
handling of cubes is crude! With imgen, you can set the weighting by appropriately setting the
scaling factor (factor parameter) and the amplitude of the gaussian (spar parameter).

Note that this technique ignores some edge effects. Also it uses the theoretical noise level derived
for the mosaic observation. This will be close to what you want if the noise levels for all pointings
are about the same.

Chapter 22

Reducing 12-mm ATCA observations

22.1 Loading data into MIRIAD: ATLOD

ATCA millimetre observations are loaded into MIRIAD in the same fashion as centimetre data: task
atlod is used.

At 12mm, the opacity of the atmosphere can be significant: in mediocre conditions, the signal loss is
can be a 20% at low elevations. With 12-mm data, an opacity correction should be applied to the data
during the atlod step. To apply this correction, atlod uses a model of the atmosphere (gained from
meteorological data contained within the dataset) to compute a model opacity. Note that this is just that
– a model – and so has its limitation. To apply atmospheric opacity correction, use options=opcorr.

ATLOD

options=birdie,reweight,xycorr,opcorr Options for typical 12-mm
continuum observation, or

options=birdie,opcorr,hanning,compress possible options for spectral
line observations.

Note that ATCA observations made before October 2003 failed to contain the meteorological data, and so
options=opcorr cannot be used. In this case, you will need to use the scheme described in Section 23.4.

22.2 Initial “fixes” to the data

Section 23.4 describes a collection of fixes to the data, using task atfix that are important at 3-mm
wavelengths. Assuming opacity correction has been done by atlod, these initial fixes are of limited
relevance to 12-mm observers. However some applications might find some of the fixes relevant.

22.3 Calibration

For 12-mm data, calibration is essentially identical to the centimetre bands. Primary flux calibration can
be done using gpboot and observations of 1934-638, in much the same fashion as at the lower frequencies.
1934-638 is about 1 Jy at 12mm wavelengths: the MIRIAD calibration software contains a built-in
model of 1934-638’s change of flux density with frequency. For information about this flux scale, see the
memo by Bob Sault. An alternative flux calibration technique is to use a planet as the primary: see
Section 23.6.2 for more information.

Because atmospheric opacity affects the amplitude gain calibration step, it is important to consider its
effects. In the flux bootstrapping step, gpboot determines the boot factor to be applied to the gains

22-1

22-2 CHAPTER 22. REDUCING 12-MM ATCA OBSERVATIONS

of the secondary calibrator to make them the same as the primary. As the opacity correction done by
atlod (or atfix) is only correct to first order, ideally the comparison between primary and secondary
gains would be made at the same elevation and under the same weather conditions. Unfortunately this is
usually impossible. Selecting the range of times that the gains should be compared is a more important
issue at 12mm than at lower frequencies. To select the time range of the secondary to compare, use time

selection in the select keyword.

Some judgement will need to be made about the set of amplitude gains of the secondary to use in the
comparison. In stable weather conditions, it is probably best to select the time range of the secondary
where its elevation corresponds most closely to the elevation during the primary’s observation. When
the weather changes significantly during the observation, it is probably best to use a time range of the
secondary which is close to the primary’s observation. Tasks uvplt and varplt can plot source elevation
as a function of time.

Typical inputs to gpboot are:

GPBOOT
vis=vela.uv Input visibility dataset.
select=time(1:00,2:00) Select a time range in the “vela.uv”

dataset where the amplitude gains should be
comparable to those in the primary calibrator.

cal=1934-638.18001 Primary flux calibrator.

Chapter 23

Reducing 3-mm ATCA observations

Currently the ATCA has 3-mm receivers installed on three antennas. This chapter lists some of the steps
specific to this system.

23.1 Differences at millimetre wavelengths

Differences in handling millimetre data come about because of the nature of the atmosphere and cali-
brators at these wavelengths, the nature of preliminary system at 3mm, and as a result of the greater
technical challenges that observing at these wavelengths entails. Some differences include:

• The preliminary system at 3 mm does not have a noise source calibration system. This means that
a room temperature paddle is used as a calibration load, using the so-called chopper-wheel method.

• The antenna gain and beamshape is a significant function of elevation, particularly at 3mm. The
gain is at a maximum at about 60◦ elevation.

• For poorly understood reasons, the effective locations of are ATCA antennas are a function of
frequency. Currently the on-line system uses the centimetre solution for the antenna location. You
will need to correct for this error in the data reduction process.

• There is no such thing as a constant point source flux standard at 3-mm wavelengths, and they are
rare at 12-mm. Generally point sources should be assumed to be variable. Planets are usually used
as the primary flux standard, although 1934-638 is still a good primary calibrator at 12mm.

23.2 Atmospheric opacity and system temperature at millime-
tre wavelengths

To provide correct flux units for the correlations from an interferometer, we need to scale the measured
correlation coefficient at the correlator (ρ) by a system temperature Tsys and a telescope sensitivity factor
(K). The telescope sensitivity factor is determined by the overall antenna size and system efficiency.

V = KTsysρ

At millimetre wavelengths, the atmosphere can no longer be approximated as perfectly transparent.
It degrades overall sensitivity in two ways: the atmosphere emits radiation, and so raises the system
temperature, and the atmosphere attenuates the astronomical signal. For a zenith opacity τ , observing at
an elevation of e, and uniform atmosphere at T0, then the atmospheric contribution to system temperature
is

Tsky = T0 (1 − exp(−τ/ sin e))

23-1

23-2 CHAPTER 23. REDUCING 3-MM ATCA OBSERVATIONS

and the atmospheric attenuation factor is exp(−τ/ sin e).

In converting correlation coefficients to visibility measurements, we can notionally include the effect of
the atmospheric attenuation either in the effective system efficiency factor, or in an effective system
temperature. The approach used will depend on the calibration scheme implemented at the telescope.

• To account for it in the system temperature, one uses the so-called “above atmosphere” system
temperature rather than a physical system temperature. At its most basic, the above atmosphere
system temperature is simply the physical system temperature divided by the atmospheric attenu-
ation. Its significance, however, is that the above atmosphere system temperature can be measured
directly: it can be deduced by periodically flipping an absorber at atmospheric temperature in front
of the feed system. The technique to do this, the so-called “chopper wheel” method, was devised
by (Ulich 1980). The ATCA uses the chopper wheel method in its 3-mm system to determine an
above atmosphere system temperature.

• At the ATCA, the 12-mm system uses a noise diode calibration scheme, and so measures the
physical system temperature of the receiver - not an above atmosphere value. The correction for
atmospheric attenuation for this receiver package is generally handled in the atlod step.

23.3 Loading data into MIRIAD: ATLOD

ATCA millimetre observations are loaded into MIRIAD in the same fashion as centimetre data: task
atlod is used. Note atlod is smart enough to switch off the checks of the 3-mm data that are not possible
because of the lack of noise source calibration.

23.4 Initial “fixes” to millimetre data

This section details corrections that are often initially performed on 3-mm data. Generally they are less
important or not relevant at 12-mm, and so can be skipped.

These first steps after loading can be done using the atfix task. Steps that atfix performs are:

• dantpos: Generally applicable at both 3- and 12-mm: This parameter is used to correct for the
apparent difference in antenna locations between the millimetre and centimetre systems. This
correction should be performed on 3-mm data. It may also be helpful 12-mm data, although it is
much less important. The input is typically an antenna parameter file that has been determined for
each array configuration. A collection of these parameter files is stored in the MIRIAD system
directory $MIRCAT, and should be updated as these solutions are found (and MIRIAD updated!).
These parameter files have names of the form “dantpos.yymmdd” where “yymmdd” is the date
of the start of a new array configuration. If a data file is present, you can instruct atfix to read
this directly using the indirect parameter input. For example, to read parameters appropriate for
a hypothetical array configuration starting on 16 October 2002, use

dantpos=@$MIRCAT/dantpos.021016

• array: Generally applicable at 3-mm only: One of the flaws of the current ATCA datafiles is that
antenna locations are not saved in the RPFITS file when antennas are off-line. While this might not
seem a serious flaw, the off-line antennas can still cause shadowing. This will be an issue when using
the 3-antenna system in compact arrays, i.e. 3-mm observing. By giving a value to this parameter,
atfix will fill in any antenna locations that are missing from the input visibility file. NOTE: This
just fills in missing antenna locations, it does not perform any flagging of shadowed data.

The value given to this parameter is either an array configuration name (e.g. EW352 or 750A) or a
list of six station names (e.g. W106 or N3). When giving the station names, these must be in the
order of the antennas (i.e. CA01, CA02, CA03 etc), regardless of any possible array shuffles.

23.5. TRACKING ERRORS 23-3

NOTE: When antennas are in a shuffled order, or for arrays using the north spur, you should
generally give the list of station names, as the standard array configuration names assume the
standard antenna order (not the shuffled order).

If in doubt the on-line configuration history should be consulted.

• options=tsys: Generally applicable at 3-mm only: When observing at 3mm, it is common to
disable the scaling of the visibility data to account for varying system temperature. options=tsys
applies the system temperature data where needed.

• options=gainel: Generally applicable at 3mm: Gravitational deformations in the ATCA antennas
become significant at 3mm, and so the antenna efficiency is a function of elevation. This option
applies corrections to the data to account for the change in antenna efficiency.

No data is yet available on the gain/elevation effects at 12mm. They can be assumed to be negligible.

• options=opcorr: Not relevant at 3mm: For 12mm observations, where the system temperature
measurements are the physical system temperature (not the above atmosphere value), a correction
needs to be made for atmospheric opacity. Generally this step will be done by using options=opcorr
in atlod. However if you failed to do it there, or if you have an observation made before October
2003 where atlod cannot apply the opacity correction, then you will need to use atfix to perform
this function. Option opcorr invokes this function. For observations before October 2003, you will
also need to set the mdata keyword (see below).

• mdata: Not relevant at 3mm: When applying an opacity correction to 12-mm data, meteorological
measurements is required. However for observations before October 2003, meteorological data
was not included within MIRIAD datasets. This parameter gives the name of a file containing
meteorological measurements at the ATCA.

Meteorological parameters are continuously measured at the ATCA. The data files giving these
measurements are available on the web, and are updated at midnight (Narrabri time) each night.
You will want to use your browser to download the appropriate weather data from

http://www.narrabri.atnf.csiro.au/cgi-bin/Weather/hisdata.cgi

This has monthly weather files, with the boundary at midnight at the end of the month – Australian
Eastern Standard time. If you observe over a month boundary, you will need to download both
months and concatenate them together before running atfix.

Typical inputs at 3mm are:

ATFIX

in=vela.uv Input visibility dataset.
out=vela.fixed.uv Output corrected visibility dataset.
arrray=ew214 Allow antenna locations to allow

for shadowing computation.
dantpos=@$MIRCAT/dantpos.030716 Millimetre antenna location

correction.
options=tsys,gainel Correct for Tsys and gain/elevation

changes.

23.5 Tracking errors

With the ATCA beam at 3mm being comparatively small (35′′), it is possible in some circumstances
for tracking errors to be significant. Significant tracking errors may occur during windy weather (gusts
can blow the antennas off the directed tracking position). Additionally occassionally poor tuning of the
antenna drive systems can cause poor tracking, particiularly soon after a change in source.

Note that tracking errors should be distinguished from pointing errors. Tracking errors correspond to
the inability of the antenna drive system to follow the requested path. Pointing errors correspond to the

23-4 CHAPTER 23. REDUCING 3-MM ATCA OBSERVATIONS

difference between the position that the astronomer requests and the actual position. Tracking errors are
caused by flaws in the drive servo system, whereas pointing errors are a sum of tracking errors and errors
in the antenna pointing model.

Since October 2003, tracking errors are saved in the MIRIAD dataset. The errors can be plotted and
the visibility data can be flagged based on their value. The uv variables corresponding to the rms and
maximum tracking error in a cycle are axisrms and axismax.

Both the maximum and rms give two tracking error values for each antenna, nominally corresponding
to the tracking error in the azimuth and elevation axes. However the ATCA on-line system produces a
single composite value, which is replicated for the two axes in the output.

Tracking errors can be plotted with varplt.

VARPLT

in=vela.uv Input visibility dataset.
device=/xs PGPLOT plotting device.
yaxis=axisrms Plot rms tracking error.

When the tracking error is less than 2′, the ATCA on-line system believes that this error sufficiently small
to consider that the antenna is tracking. However this tolerance is not generally good enough for 3-mm
observations. To flag based upon rms tracking error, the task uvflag can be used by selecting visibilities
using the pointing subcommand (note this is an inappropriate and misleading name).

UVFLAG

in=vela.uv Input visibility dataset.
flagval=flag Flag selected points.
select=pointing(15,1000) Flag when the rms tracking error

is between 15′′ and 1000′′.

23.6 Calibration

23.6.1 Bandpass, gain and polarimetric calibration

Observations at 12mm follow an the same steps as at the centimetre wavelengths to determining bandpass,
gain and polarimetric calibration. There is no difference in the use of mfcal and gpcal - see Chapter 11.

Observations at 3-mm is, however, differ. Polarimetry is not currently possible with the 3-mm system,
and consequently only task mfcal is needed to perform bandpass and antenna calibration. One performs
calibration as one would as if the XY and YX correlations were not present. See Chapter 11 for more
details.

23.6.2 Absolute flux calibration: Flux boot-strapping using planets

At wavelengths shorter than a few centimetres, extragalactic sources prove to be generally too variable
or too resolved to be useful as flux calibrators. So at these wavelengths, the blackbody emission from
the planets are often used as flux standards, with the two most commonly used planets being Mars and
Jupiter. Mars’ lack of a thick atmosphere, and its near absence of phases when seen from Earth makes it
a particularly simple object to model. Jupiter’s lack of prominent rings and its internal heat source also
make it attractive.

In a somewhat analagous way to using observations of 1934-638 and gpboot at centimetre wavelengths to
correct the flux scale of an observation, in a millimetre observation you can use observations of Jupiter or
Mars and plboot. plboot contains models of the planets (planet major and minor diameters, ephemerides
giving distance and orientation, and a model of the change in brightness temperature with frequency),
and so it can compute the expected visibility function of a particular planetary observation.

23.6. CALIBRATION 23-5

PLBOOT

Program SourceSecondary Calibrator Planet

Flux Density Scale

GPCOPY

MFCAL

GPCOPY

Figure 23.1: Flow chart for flux boot-strapping from a planet.

However, the usefulness of Mars and Jupiter depends very much on the array configuration, and their
distance to the Earth:

• The planets are large, and so are commonly resolved out on typical ATCA baselines. At 3-mm,
Jupiter is always resolved out, and so Jupiter is only useful as a 12-mm calibrator. At its closest
approach approach to Earth, Mars is also resolved out at 3mm on all ATCA baselines.

• The distance between the Earth and Mars varies by a factor of 7, and so the flux density varies by
a factor of 50. At times, Mars can be too weak to be useful at 12mm. Jupiter’s variation is more
modest: the distance to Earth varies by 50%, and so the flux density varies by a factor of about 2.

Using planets as flux calibrators is somewhat different to 1934-638. The normal calibration tasks (mfcal
and gpcal) handle point sources only. As far as most of the calibration process goes, the planet obser-
vation should be treated as a program source. The steps to take to flux bootstrap from a planet (see
Fig. 23.1) are as follows:

• Derive calibration tables with your secondary calibrator (and perhaps bandpass calibrator).

• Copy these tables across to your planetary observation, using gpcopy.

• Use plboot to correct the flux scale of the calibration tables. Note that plboot can take multiple
input datasets. In this case, it takes all the data from these, computes the needed factor to correct

23-6 CHAPTER 23. REDUCING 3-MM ATCA OBSERVATIONS

the flux scale, and then applies it to the gain tables of all the datasets. You could ask plboot to
process either just your planet dataset. Alternatively you could ask it to process both the planet
and secondary calibrator. As plboot ignores sources it does not recognise as planets, there is no
harm in doing the latter - it has the advantage that the secondary is then flux calibrated.

• Having generated calibration tables with the right flux scale, these can then be copied across to the
program sources.

Given the observing time and frequency, task plplt plots the expected visibility function for a planet.
You will most likely want to check this visibility function before observing and discovering that the planet
is resolved out! NOTE that plboot and plplt do not include the effect of the ATCA’s primary beam –
the planet is implicitly (and silently) assumed to be small compared with the primary beam. This may
not be the case at 3-mm. If there is a significant change in the visibility function between baseline lengths
of 0 and 22 metres, then primary beam effects are important, and you probably do not want to use the
planet (its probably resolved out anyway).

Task planets can give you basic information about a planet, including rise and set times (but note these
are quoted at the horizon, not the ATCA’s elevation limit), the planet’s angular size at a particular time,
and its RA and DEC (note that the ephemeris used for RA and DEC is not sufficiently accurate for
pointing the telescope).

Information on using the ATCA to observe a planet is available from

http://www.narrabri.atnf.csiro.au/software/on-line/user/sched/solsys.html

23.7 Handling large spectral bandwidths

When using a single spectral window, and observing spectral lines, the bandwidth of the ATCA can be
problematically narrow, or the channel widths can be too coarse. This is most likely to be an issue when
observing spectral lines of extragalactic sources at high frequencies.

A partial work around for this situation is to use the two ATCA spectral windows to observe in adjacent
somewhat overlapping windows, and using the same bandwidths and channel counts for the two windows.
With the ATCA this is possible with some correlator configurations when observing with bandwidths of
64 MHz or 128 MHz. MIRIAD allows you to stitch these two spectral windows together in a reasonably
straightforward fashion (although some quirks do become apparent). In so doing, it handles any overlap
region between the two windows in a sensible fashion. The steps to achieve this are as follows:

• Make sure you set a rest frequency in atlod (or during the subsequent processing). If you are really
want to view the spectrum in frequency (rather than velocity), then you might set a dummy rest
frequency as the average of the centre frequencies of the two spectral windows.

• During the flagging process, flag any channels in the overlap region between the two spectral
windows which you do not wish to contribute to the final outut stitched spectrum. These would
be channels in one spectral window where the bandpass gain is quite low in one, but reasonable in
another spectrum. Task uvflag’s edge parameter is the easiest way to flag these channels.

• When running uvsplit, use options=nowindow. This ensures that the two spectral windows are
not split apart by uvsplit. The output of uvsplit will be datasets which contain the two spectral
windows.

• Use tasks mfcal, gpcal and uvlin as normal. These tasks all handle multiple spectral windows
within a single dataset.

However you will want to give some thought when using task uvlin. Task uvlin processes each
spectral window individually. So if the spectral of interest in near the edge of the individual
spectra, you will want to set the channels to use in uvlin’s fitting process carefully. You may wish
to use a zeroth order fit, and just fit using channels at the edges away from the overlap region.
Alternatively you may wish to run uvlin after the two spectra are stitched together instead. Some
experimentation (and certainly thought) will be required.

23.7. HANDLING LARGE SPECTRAL BANDWIDTHS 23-7

• It is nearly time to stitch the two spectral windows together. To do this you will need to use
the “velocity linetype” One of MIRIAD’s quirks is that you cannot apply on-the-fly bandpass
calibration and use a “velocity linetype” within the same task. You will need to make a copy of
the dataset with the bandpass (and presumably other calibration) applied directly to the data. If
you have used uvlin, you will have done this already. If not, create a copy of your dataset using
uvaver.

• With a dataset with calibration applied, you can now stitch the two spectral windows together.
See Sections 5.4 and 16.8 for information on using velocity linetypes. Do the copying and linetype
conversion with uvaver (or possible uvlin if you have not already used it) to generate a new stitched
copy of the data. By using a velocity linetype, when creating an output spectrum, MIRIAD copies
channels by their velocity. Any channels that overlap between the two spectral windows are averaged
together.

23-8 CHAPTER 23. REDUCING 3-MM ATCA OBSERVATIONS

Chapter 24

ATCA Bin Mode Observations

24.1 ATCA Correlator Bin Modes

The ATCA correlator has a mode whereby each correlator cycle (which is normally the same as an
integration cycle) can be broken into a number of time bins. This capacity can be used in two different
modes:

• Pulsar bin mode: This mode is useful for a periodic signal with a period much shorter than the
correlator cycle, i.e. pulsars. In pulsar bin mode, the bins produced by the correlator correspond
to the integration during a particular phase of the pulsar cycle.

• High time resolution bin mode: This mode is useful for observations which, for some reason, require
higher time resolution than the normal correlator cycle time (the minimum correlator cycle time
is about 10 s). In this mode, the correlator cycle is broken up into a number of finer time bins,
effectively working around the minimum correlator cycle time limit.

24.2 High time resolution bin-mode observations

MIRIAD’s atlod task has an option, options=hires which converts a RPFITS file observed in high
time resolution bin-mode into an apparently normal dataset with fine time resolution. You should note
the following caveats:

• Although the timestamp of each correlation reflects the observing time of that correlation, the
u− v −w coordinate is that for the midpoint of the correlator cycle (i.e. the u − v − w coordinate
is not recomputed at the high time resolution).

• Certain MIRIAD tasks that need to detect the end of an integration do this by checking whether
consecutive timestamps differ by some tolerance. In high resolution time mode, the time difference
between consecutive integrations might be smaller than this tolerance. There may be some resulting
confusion.

24.3 Pulsar bin-mode observations

When observing pulsars with the ATCA, the correlator is capable of sampling synchronously with a
pulsar. In this way, during a single integration, the correlator will produce a number of bins, each of
which sample at a particular range in phase of the pulsar cycle. Much of the time, when reducing a
bin-mode experiment, you will want to process all the bins without regard to the bin number. In this
case, to a large degree, processing a bin-mode observation differs little from a normal observation. In
particular:

24-1

24-2 CHAPTER 24. ATCA BIN MODE OBSERVATIONS

• No special action is needed in loading the data with atlod.

• During the flagging process, tasks tvflag and blflag will simply average together all the pulsar
bins before display. When you flag a point on the display as bad, all the bins which are used to
generate that point are flagged as bad.

• Generally the calibrators in such an experiment will be observed in a binning mode. The calibration
software combines the different bins together before determining their calibration solutions.

Obviously, however, there are times that you will want to distinguish between the bins. The bin visibility
selection sub-command is the main mechanism for this. The general form is:

select=bin(n1,n2)

This selects bins n1 to n2 inclusive. If only a single bin is given, then only that bin is selected – numbering
of the bins starts at 1.

The most common places where you will want to select a subset of bins is in the imaging and possibly
self-calibration steps (the pulsar, during its ‘on’ phase, may make an excellent phase self-calibration
source).

Although almost all visibility-data tasks support bin-mode observations, there are a few exceptions. These
give warnings when they are used on bin-mode data. These warnings should be heeded!. The most notable
task which fails to properly handle bin-mode experiments is uvaver when time averaging of the data is
being performed. When used to time-average, uvaver will average all the bins together. Note, however,
that uvaver works correctly (i.e. treating the bins as separate) when no time averaging is involved.

24.4 Tasks Specific to Pulsar Bin-Mode Observations

We now mention a few bin-mode specific tasks.

• Pulse profiles – PSRPLT: Task psrplt produces a pulse profile (amplitude against bin number).
It can also produce a greyscale with axes of bin number and frequency and the greyscale intensity
being pulsar amplitude.

• De-dispersion, rebinning and timing correction – PSRFIX: Task psrfix performs three related
functions. De-dispersion consists of a channel-dependent shift of bins.

Appendix A

Setting Up Your Account

Setting up your account to use MIRIAD and the ATNF Visualisation Software varies from system to
system. If in doubt, ask a local! We will assume you are using the csh shell.

If you are using the ‘standard’ login scripts on the ATNF machines (Marsfield, Narrabri, Parkes), you
will be prompted whether you wish to use MIRIAD and the ATNF Visualisation Software when you
first log in. If you fail to do this, then you can edit the file .login.packages in your login directory, and
change -miriad to +miriad. After this change, MIRIAD will be set-up after your next login.

If you are not using the standard login scripts on ATNF machines, you will need to include three lines in
your .login script. include;

source /applic/miriad/bin/MIRRC

set path = ($path $MIRBIN)

source /appplic/karma/.login

Other sites should have similar arrangements – only the directory should change.

The operations performed by these lines are simple enough. The MIRRC script, in the first line, sets up
environment variables (including MIRBIN) to point to the appropriate directories. The second line includes
the MIRIAD executables in your executable search path (you may choose to place it somewhere other
than the end of the search path). The third line sets up the ATNF Visualisation Software.

You may also wish to set the environment variable MIRDEF to point to a directory where the keyword
files generated by the miriad front-end should be stored. For example:

% setenv MIRDEF /mydirectory/mirdef

By default these keyword files are stored in the directory ~/mirdef, if it exists when MIRRC is invoked,
or in your current working directory.

The login initialisation script, MIRRC.sh, exists for users of the Bourne or Bash shells. This would
typically be invoked in your .profile script. Like its csh cousin, MIRRC.sh does not modify the PATH

environment variable. You will want to include $MIRBIN in your path.

A-1

A-2 APPENDIX A. SETTING UP YOUR ACCOUNT

Appendix B

Image Items

In this Appendix we will describe the items that can be present in an image dataset. MIRIAD utilities
such as prthd, imlist, itemize, puthd, copyhd and delhd may be used to browse or modify these
‘header variables’.

Note that the units used in MIRIAD are not always FITS-like, e.g. frequencies are stored in GHz
in MIRIAD, whereas in FITS one finds Hz. For example, MIRIAD keeps velocity in km s−1, sky
coordinates in radians and frequencies in GHz.

B-1

B-2 APPENDIX B. IMAGE ITEMS

Table B.1: Item names in MIRIAD image datasets

Item Type Units Description/Comments

bmaj,bmin real radians Beam major and minor axis FWHM.
bpa real degrees Beam position angle, measured

east from north.
bunit character The units of the pixels.
btype character The type of the image. Possible values:

intensity – Normal map.
beam – Point spread function.
depolarisation_ratio

fractional_polarisation

optical_depth

polarised_intensity

position_angle

rotation_measure

spectral_index

cdelt1,cdelt2,... double ⇒ ctype The increment between pixels.
cellscal character Latitude/longitude cell scaling

convention with frequency/velocity.
Possible values are:
CONSTANT

1/F

crpix1,crpix2,... real pixels The pixel coordinate of the reference pixel.
crval1,crval2,... double The coordinate value at the reference pixel.

radians if ctype represents a celestial coordinate.
km s−1 if ctype VELO or FELO
GHz if ctype FREQ

ctype1,ctype2,... character The type of the nth axis (as FITS CTYPE).
datamin,datamax real ⇒ bunit The minimum and maximum pixel values.
epoch real years The epoch of the coordinate system.
history text A text item containing the history of

processing performed to the data set.
image real ⇒ bunit The pixel data.
llrot double radians Eastward rotation relative to north of the

sky grid relative to the pixel grid.
lstart,lstep,lwidth real
ltype character The linetype used in making the map.
mask integer # Bitmap used to determine which pixels in

the image have been blanked.
mostable binary Mosaic information table.
naxis integer # Number of dimensions.
naxis1,naxis2,... integer # Number of pixels along each dimension.
niters integer # The total number of deconvolution iterations

performed on the image.
object character source name
observer character observers name
obsra,obsdec double radians The apparent RA and DEC of the observation

centre.
obstime double Julian date The mean observing time.
pbfwhm real arcsec Gaussian primary beam size (deprecated).
pbtype character Primary beam type. Standard values include:

HATCREEK, VLA, ATCA, WSRT

restfreq double GHz The rest frequency of the observed data.
telescop character Telescope name. Standard values include:

HATCREEK, VLA, ATCA, WSRT

vobs real km s−1 Velocity of the observatory
with respect to the rest frame,
during the observation.

Appendix C

UV Variables

A MIRIAD uv dataset is composed of a collection of items and ‘u − v variables’. The variables are
parameters that are known at the time of the observation, and include measured data, and the description
of the observation set up (e.g. correlator set up and observing centres).

Table C.1 gives a list of the items that are used to build up a MIRIAD uv dataset.

The Programmers Guide contains more detailed information on how a visibility dataset is constructed,
this Appendix only reports which variables can be found in the item visdata. The text item vartable

contains an ordered (for quick indexing) list of all the variables which exist in the visdata item.

A list of all items in a visibility dataset is summarised in Table C.1 below. A list of all the uv variables
can be obtained with the MIRIAD program uvlist.

The storage types (2nd column) in the table below are:

A -- ascii (NULL terminated)

R -- real (32 bit IEEE)

D -- double (64 bit IEEE)

C -- complex (2 * 32 bit IEEE)

I -- integer (32 bit twos complement)

J -- short (16 bit twos complement)

They are the same as the data type in the first column of the vartable item in a MIRIAD uv dataset.

Variables with two dimensions have the first dimension varying fastest, the usual FORTRAN notation.

C-1

C-2 APPENDIX C. UV VARIABLES

Table C.1: MIRIAD items in a uv visibility dataset

Item name Type Description

obstype ascii value: ‘cross’, ‘auto’ or ‘mixed’
history text history text file (in principle editable)
vartable text lookup table for all uv variables (do not edit!)
visdata mixed data stream of uv variables

flags integer optional flags for narrowband data
wflags integer optional flags for wideband data
gains mixed antenna gain table
nfeeds integer number of feeds on each antenna
ntau integer Number of delay/spectral index terms per antenna

in ‘gains’
nsols integer number of records in ‘gains’
ngains integer number of antenna gains in each record of ‘gains’
interval double gain interpolation time tolerance (days)
leakage complex polarization leakage parameters
freq0 double reference frequency for delay terms
freqs mixed frequency set up description table for ‘bandpass’
bandpass complex bandpass function gains
nspect0 integer number of windows in the bandpass function
nchan0 integer total number of channels in the bandpass function

Name Ty Units Comments

airtemp R centigr. Air temperature at observatory
antaz(nants) D deg. azimuth of antennas
antdiam R meters Antenna diameter
antel(nants) D deg. elevation of antennas
antpos(nants, 3) D nanosec Antenna equatorial coordinates
atten(nants) I dB Attenuator setting (Hat Ck)
axisrms(2,nants) R arcsec RMS tracking error.

axisrms(1,?) is azimuth error,
axisrms(2,?) is the elevation error.

baseline R - The current antenna baseline
Baseline is stored as 256 ∗ ant1 + ant2 or
2048 ∗ ant1 + ant2 + 65536
The uv coordinates are calculated as
uvw = xyz(ant2) − xyz(ant1).
Note that this is different from the AIPS/FITS convention
(where uvw = xyz(ant1) − xyz(ant2)).
When writing this variable, software must ensure that
ant1 < ant2.
baseline is also known as preamble(4)

bin I - Pulsar bin number.
cable(nants) D nanosec measured length of IF cable (Hat Ck)
chi R radians Position angle of the X feed relative to the sky. This is the
or chi(nants) sum of the parallactic angle and the evector variable.

If only one value is present, all antennas are
assumed to have identical values.

coord(2) D nanosec uv baseline coordinates
coord is also known as preamble(1:2)

corbit R - Number of correlator bits (Hat Ck)
corbw(2) R MHz Correlator bandwidth setting (Hat Ck)

Must take the values
1.25, 2.5, 5.0, 10.0, 20.0, 40.0 & 80.0 MHz.

corfin(4) R MHz Correlator LO setting before Doppler tracking (Hat Ck)
This is the LO frequency at zero telescope velocity
Must be in the range 80 to 550 MHz.

C-3

cormode I - Correlator mode (Hat Ck). Values are:
1 : 1 window /sideband by 256 channels
2 : 2 windows/sideband by 128 channels
3 : 4 windows/sideband by 64 channels, single sideband
4 : 4 windows/sideband by 64 channels, double sideband

coropt I - Correlator option (Hat Ck)
0 means cross-correlation
1 means auto-correlation
Same as the obstype item?

corr(nchan) J or - Correlation data
R corr is really a complex quantity, but the

data stream variable can be stored otherwise
for efficiency.

cortaper R - On-line correlation taper (Hat Ck)
This is the value at the edge of the window
The value is from 0-1.

ddec R radians Offset in declination from dec in epoch coordinates.
The actual observed DEC is calculated as dec + ddec.

dec R or radians Declination of the phase center/tangent point. See epoch for coordinate
D definition.

delay(nants) D nanosec delay setting at beginning of integration (Hat Ck)
delay0(nants) R nanosec delay offset for antennas (Hat Ck)
deldec R or radians Declination of the delay tracking center. See epoch for coordinate

D definition.
delra R or radians Right ascension of the delay tracking center. See epoch

D for coordinate definition.
dewpoint R centigr. Dew point at weather station (Hat Ck)
dra R radians Offset in right ascension from ra in epoch coords.

The actual observed RA is calculated as
ra + dra/cos(dec).

epoch R years A badly named variable – this defines the mean equinox and
equator for the equatorial coordinates ra, dec,
dra and ddec. The epoch of the coordinates is
actually the observing time. Values less than 1984.0 are
Besselian with coordinates in the FK4 system. Values greater
than 1984.0 are Julian with coordinates in the FK5 system.

evector R radians Position angle of the X feed, to the local vertical.
or evector(nants) If only one value is present, all antennas are

assumed to be identical.
focus(nants) R volts Focus setting (Hat Ck)
freq D GHz Rest frequency of the primary line
freqif D GHz ? (Hat Ck only?)
inttime R seconds Integration time
ischan(nspect) I - Starting channel of spectral window
ivalued(nants) I ? Delay step (Hat Ck)

Used in an attempt to calibrate amp and phase vs. delay.
jyperk R Jy/K The efficiency Jy/K,

calculated during calibration
latitud D radians Geodetic latitude of the observatory.
lo1 D GHz First local oscillator (Hat Ck)

lo1 is in the range 70 GHz - 115 GHz.
lo2 D GHz Second local oscillator (Hat Ck)
longitu D radians Longitude of the observatory.
lst D radians Local apparent sidereal time.
mount I - The type of antenna mounts.
or mount(nants) If only one value is given, all antennas

are assumed to be the same. Possible values are:
0: Alt-az mount.
1: Equatorial mount.
2: X-Y.
3: orbiting.
4: bizarre.

nants I - The number of antennas

C-4 APPENDIX C. UV VARIABLES

Following variables use a dimension of nants:
antpos(nants, 3)
focus(nants)
phaselo[1-2](nants)
phasem1(nants)
systemp(nants, nspect)
wsystemp(nants, nwide)
temp(nants, ntemp)
tpower(nants, ntpower)
axisrms(2,nants)
The antennas are always numbered starting at 1.

nbin I - Total number of pulsar bins.
nchan I - The total number of individual frequency channels

The following variables have the dimension of nchan:
corr(nchan)

npol I - The number of simultaneous polarisations
nschan(nspect) I - Number of channels in spectral window
nspect I Number of spectral windows

Following variables use a dimension of nspect:
ischan(nspect)
nschan(nspect)
restfreq(nspect)
sdf(nspect)
sfreq(nspect)
systemp(nants, nspect)

ntemp I - Number of antenna thermisters
Following variables use a dimension of ntemp:
temp(nants, ntemp)

ntpower I - Number of total power measurements
The following variable depends on ntpower:
tpower(nants,ntpower)
ntpower is currently 1, could be more later.

nwide I - Number of wideband channels
Variables which depend on nwide are:
wfreq(nwide)
wwidth(nwide)
wcorr(nwide)
wsystemp(nants,nwide)

obsdec D radians Apparent declination of the phase centre/tangent point
at time of observation.

observer(*) A - The name of the observer
obsra D radians Apparent right ascension of the phase centre/tangent point

at time of observation.
on I - Either 0 or 1, for on and off pointing,

for auto-correlation data.
operator(*) A - The name of the current operator
pbfwhm R arcsec (Deprecated) Primary Beam at Full Width Half Maximum

For Hat Ck, it is approximately 11040.0/lo1.
pbtype A - Primary beam type to be used in imaging.
phaselo1(nants) R radians Antenna phase offset (Hat Ck)
phaselo2(nants) R radians Second LO phase offset (Hat Ck)
phasem1(nants) R radians IF cable phase (Hat Ck)
plangle R degrees Planet angle
plmaj R arcsec Planet major axis (note units)
plmin R arcsec Planet minor axis
pltb R Kelvin Planet brightness
pntdec R or radians Declination of the pointing center. See epoch for coordinate

D definition.
pntra R or radians Right ascension of the pointing center. See epoch

D for coordinate definition.
pol I - Polarization type of the correlation data. Values

follow the AIPS/FITS convention, viz:
1: Stokes I

C-5

2: Stokes Q
3: Stokes U
4: Stokes V
-1: Circular RR
-2: Circular LL
-3: Circular RL
-4: Circular LR
-5: Linear XX
-6: Linear YY
-7: Linear XY
-8: Linear YX

precipmm R mm Mm of precipitable water vapour in the atmosphere.
pressmb R millibar atmospheric pressure.
project(*) A - The name of the current project
ra R or radians Right ascension of the phase center/tangent point. See epoch for

D the definition of the coordinate system.
relhumid R % Relative Humidity at observatory
restfreq(nspect) D GHz Rest frequency for each spectral window.

This may be zero for continuum observations.
sdf(nspect) D GHz Change in frequency per channel
sfreq(nspect) D GHz Sky frequency of first channel in window
source(*) A - The name of the source
systemp R Kelvin Antenna system temperatures
or systemp(nants)
or systemp(nants,nspect)

telescop(*) A - The telescope name. Some standard values are:
’ATCA’

’HATCREEK’

’VLA’

’WSRT’

temp R centigr. Antenna thermistor temperatures (Hat Ck)
(nants, ntemp)

themt(nants) R Kelvin temperature of the hemt amplifier (Hat Ck)
tif2(nants) R Kelvin temperature of IF amplifier (Hat Ck)
time D days The time (nominally UT1) stored as a Julian date.

For example, noon on Jan 1, 1980 is 2,444,240.0!
time is also known as preamble(3)

tpower R volts Total power measurements (Hat Ck)
(nants, ntpower)

tscale R - Optional correlation scale factor
Used only when corr is stored as J (16 bits).

tsis(nants) R Kelvin temperature of the SIS mixers (Hat Ck)
ut D radians The time since midnight Universal time (nominally UT1).
veldop R km s−1 The sum of the radial velocity of the observatory

(in the direction of the source, with respect to the rest
frame) and the nominal systemic radial velocity of the source.

veltype(*) A - Velocity rest frame. Possible values for veltype are:
VELO-LSR: rest frame is the LSR
VELO-HEL: rest frame is the barycentre
VELO-OBS: rest frame is the observatory
FELO-LSR: rest frame is the LSR (deprecated)
FELO-HEL: rest frame is the barycentre (deprecated)

version(*) A - The current hardware/software version
Current options: oldhat, newhat

vsource R km s−1 Nominal radial systemic velocity of source.
Positive velocity is away from observer.

wcorr(nwide) C - Wideband correlations. The current ordering is:
wcorr(1:2) are the digital LSB and USB.
wcorr(3:4) are the analog LSB and USB.

wfreq(nwide) R GHz Wideband correlation average frequencies
wind R km/h Wind speed in km/h
winddir R deg Wind direction

(note: originally encoded as ‘N’, ‘SE’, ‘W’, etc.)

C-6 APPENDIX C. UV VARIABLES

windmph R mph Wind speed - in imperial units!
wsystemp R K System temperature for wide channels.
or wsystemp(nants)
or wsystemp(nants,nwide)

wwidth(nwide) R GHz Wideband correlation bandwidths
xsampler R percent X sampler statistics (ATCA).
(3,nants,nspect)

xtsys(nants,nspect) R Kelvin System temperature of the X feed (ATCA).
xyamp(nants,nspect) R Jy On-line XY amplitude measurements (ATCA).
xyphase R radians On-line XY phase measurements (ATCA).
(nants,nspect)

ysampler R percent Y sampler statistics (ATCA).
(3,nants,nspect)

ytsys(nants,nspect) R Kelvin System temperature of the Y feed (ATCA).

Appendix D

Preparing Your Data in AIPS

If you feel that you would rather load and flag your data within AIPS but calibrate within MIRIAD,
a number of steps need to be performed:

1. The AIPS task to load RPFITS data is ATLOD. Copious information on this is given in Neil Killeen’s
‘Analysis of Australia Telescope Compact Array Data’. However, before loading your data into
AIPS, if you have measured all four polarisation correlations, it is best to do a preliminary run of
ATLOD using the optype =’sysc’ option. This run writes a text file (XYPHS_xx, where xx is your
AIPS number) containing the XY phase for each antenna into the FITS area (/DATA/FITS). Text
files of system temperature are also written. Although the various selection parameters of ATLOD
are still active, you probably want to see all the data. Most of the other ATLOD parameters are
unimportant for this.

AIPS/ATLOD

optype = ’sysc’ Load the data
freqsel Select all data
ifsel
source
timer

You should plot the phases (and the system temperatures) with the Unix program pltsys – which
prompts you for the name of the text file to plot as well as other information. Examine these plots
carefully to assess their quality. You should use these plots to choose your reference antenna (for
calibration purposes). Choose the reference antenna to be the antenna having the cleanest, most
stable XY phase measurements.

Determine some mean value of the XY phase for each antenna from the plots. The command
pltsys prints out both the average and median XY phase. As there are often outliers, the median
is more likely to reflect the true XY phase value. Getting a good value is only important for the
reference antenna. Do not be too concerned if there are large jumps in the XY phases on antennas
other than the reference antenna.

2. No XY Phase Correction in ATLOD: You are now confronted with the decision of where to correct
the XY phase of the reference antenna. Your choice will depend on taste, circumstances and the
quality of the XY phase measurements. There are three main options:

• Correct using the MIRIAD task atxy (described later). This is generally the best option.
This allows you to correct for the variation of XY phase with time. This will be essential if
there is significant time variability. To use this approach, you will need to keep a copy of your
XY phase text file, XYPHS_xx.

• Correct in AIPS ATLOD. This has been the approach once recommended, and is still useful if
the XY phase of at least one antenna is quite constant with time. It also has the advantage
of getting the XY correction step over and done with early. However the user input can be
error prone and tedious if the observation switches frequency with time.

D-1

D-2 APPENDIX D. PREPARING YOUR DATA IN AIPS

• When only XX and Y Y correlations have been measured, absolute XY phase becomes ir-
relevant. Indeed it is not measured. In this case you do not need to apply any XY phase
correction.

There are a number of other possibilities, which will not be described here.

If you are going to correct the XY phases in MIRIAD, or if you are not going to correct XY
phase at all, then you should now load your data without applying any XY phase. It is probably
worth your while to pretend that the polarisations are circular rather than linear with the usual
fudges, as not all the AIPS software will recognise linears (most of the calibration software will).
You must not convert to Stokes parameters. The appropriate ATLOD parameters are

AIPS/ATLOD
optype = ’load’ Load the data
aparm(1) =-1 Label as circular
cparm(5) =0 Do not apply any XY phases.

3. Correcting XY Phases with ATLOD: If you want to correct the XY phases with AIPS ATLOD, the
XY phases on at least one antenna should be reasonably constant with time (vary by no more than
a few degrees). In this case, give ATLOD the values of the XY phases that you determined from the
plots discussed above. Input these values into ATLOD with the xyphase array. You must enter one
value per antenna for each frequency. If you have more than one frequency, you must enter XY
phases for all six antennas, even if you do not have antenna 6 in the array during the observation
(the XY phase value is not important for this antenna, of course). Note that even if the values are
close to zero, you still should apply them. Applying a value of zero is different from not applying
anything. Again, you must not convert to Stokes parameters.

AIPS/ATLOD
optype = ’load’ Load the data
aparm(1) =-1 Label as circular
cparm(4) =1 Use xyphase array and

not the on-line values
cparm(5) =1 Apply XY phase to Y gains
xyphase Assign the XY phases here

4. Now flag the data in the way you would normally do with the AIPS tasks SPFLG, TVFLG, IBLED, and
UVFLG. Using SPFLG is highly recommended, particularly at 20 and 13 cm, to check for interference.

For continuum work, to save disk space and to speed access to the data, you may consider averaging
your channels together to form “channel-0” datasets, using task AVSPC. While this causes very little
degradation for 3 cm observations, forming “channel-0” results in bandwidth smearing in 13 and
20 cm observations, and so is probably inadvisable for high dynamic range work there. For high
dynamic range work at 6 cm, it is debatable whether averaging is detrimental. If in doubt, do not
average. It is always possible to form a channel-0 dataset later anyway.

One other consideration in determining whether or not to average is whether or not you are going
to apply XY phase corrections with task atxy. For obscure reasons, if you used AIPS ATLOD,
atxy needs to know the “sideband indicator” of the data. The sideband indicator, which is ±1, is
copiously reported by ATLOD, both in its output to the terminal, and in the history file. The sideband
indicator also happens to be the sign of the channel frequency increment. This is how atxy normally
determines them. However, if you form a channel-0 dataset, the sign of the frequency increment is
lost! So if you give atxy a channel-0 dataset, you will also have to tell it the sideband indicators.
You must give it a sideband indicator for each IF. Provided the sideband indicator remains constant
with time, this is little more than an annoyance. However if the sideband indicator varies with time,
you are in some trouble. Overall it is best not to form channel-0 datasets if you used AIPS ATLOD

and you are going to use atxy.

After flagging (and possibly averaging), write your data as a FITS file using FITTP. It is probably
most convenient to write out a multi-source file. At this stage you have no calibration – only
flagging tables (which you can apply in MIRIAD later).

D-3

5. Read the data into MIRIAD using fits. Task fits does not apply AIPS flagging tables (FG
tables). Instead you have to use another task to do this – fgflag. Tasks fits and fgflag are
discussed in Chapters 8 and 10 respectively, although they are usually fairly straight forward. An
exception is for spectral line observations, where the velocity system should be defined with fits

– see Chapter 16.

FITS
in=MULTI.FITS FITS multi-source file to be loaded into MIRIAD
op=uvin Read uv data in
out=multi.uv The output MIRIAD dataset.

FGFLAG

vis=multi.uv Apply AIPS flagging table to the data.

At this stage it is worth running uvindex. This produces a summary of your dataset, which you
should probably save in a log file. Inspect this summary carefully, particularly the frequencies (es-
pecially in fits complained about inconsistent frequency definitions). If the frequency information
looks incorrect, read Chapter 8 more carefully and/or seek help.

UVINDEX
vis=multi.uv Dataset to summarise.
log=multi.log Output log file.

6. Skip this step if you have only measured two polarisation products. Otherwise now is the time to
apply your XY phases to the data if you have not already done so with AIPS ATLOD. As mentioned
above, the task to do this is atxy. If you used AIPS ATLOD, you should also have XY phase text
file that it produced. Let us discuss the various input parameters:

• vis: The name of the input dataset. Generally this will be a multi-source dataset.

• xyphase: You need to give the name of the XY phase text file that AIPS ATLOD produced.
Generally this will be of the form XYPHS_xx, where xx is your AIPS user number. Task
atxy can also be used to correct the XY phases of data loaded with MIRIAD atlod where
options=xycorr was not used. In this case, the on-line XY phase measurements are contained
within the dataset (as the variable xyphase), and you do not require a input text file.

• refant: It is best to correct for a time varying XY phase on only one antenna. All other
antennas are assumed to have an XY phase of zero (in the AIPS XY phase convention – see
below). The antenna which is corrected for a time varying XY phase should be the antenna
with the cleanest, most constant XY phase (as determined by the pltsys or varplt plots).
This will be the antenna you will use as the reference antenna for calibration purposes. It is not
necessarily the same as the antenna used as the reference during the observation – although
it will often happen that it is the same. You give this antenna via the refant keyword. Note
that if you have broken a dataset up into sub-files before using atxy (e.g. break it up into a
calibrator dataset and a program source dataset), then you must correct the same antennas in
all datasets.

• interval: This gives one or two numbers, both in minutes, which determine the length
of a solution interval (the time interval over which an XY phase is solved for; should be
comparable to the time scale on which the XY phases are constant over – use varplt). The
first number gives the maximum length of a solution interval, whereas the second gives the
maximum gap within a solution interval. A new solution interval is started when either the
maximum time length is exceeded, or a gap larger than the maximum gap is encountered.
The default maximum length is 30 minutes. The default maximum gap is the same as the
maximum length.

• break: If significant steps in the XY phase occurs during the observation (usually caused
by resetting the delays), then it is best to prevent a solution interval spanning this time. To
do this, you list the times where there was a break in the XY phase. The times are given
in the normal MIRIAD time format (i.e. either hh:mm:ss or yymmmdd:hh:mm:ss, such as
93oct18:19:21:00, for 7:21 pm on 18 October, 1993).

D-4 APPENDIX D. PREPARING YOUR DATA IN AIPS

• sideband: As noted above, atxy needs to know the sideband indicator for for data loaded
with AIPS ATLOD. For multi-channel data, this will be the sign of the frequency increment.
However this sign will be lost if you form a channel-0 dataset. In this is what you have done,
you will need to tell atxy the sideband indicators for each IF band. Note that atxy cannot
cope with a channel-0 dataset if the sideband indicators change with time.

• out: The name of the output dataset. Apart from application of the XY phase, this will be
a copy of the input dataset.

Typical inputs to atxy are given below

ATXY
vis=multi.uv The input dataset.
xyphase=XYPHS 56 The input AIPS ATLOD XY

phase text file, or
xyphase leave unset if MIRIAD atlod was used.
refant=3 Correct antenna 3 in time varying way.
interval=# Solution interval. Default is 30 min
sideband Sideband indicator. Leave unset for

multi-channel data.
out=multi.uvxy Output XY phase corrected data.

Appendix E

Using xmtv and xpanel

E.1 Using xmtv

TV-related tasks use the server keyword to indicate the TV type and its host. For xmtv, this is given
in the form:

xmtv@host

Here host is the host name of the workstation running xmtv. For example

server=xmtv@tucana

indicates that xmtv is running on the machine tucana.

The TV server display can be resized, zoomed, panned and also offers the capability to change the lookup
table and transfer function. However, the current MIRIAD TV server implementation is not very well
integrated with concepts such as extracting quantitative information from the display.

Note that the computer where you are running MIRIAD tasks may differ from the computer running
xmtv (e.g. you may be running MIRIAD tasks on a compute server such as kaputar or raptor, and
running xmtv on your local workstation). The host part of the server parameter is the machine running
xmtv.

As xmtv uses a specific internet port, normally only a single instance of xmtv can run on a given machine
at a given time. This is why you should start xmtv on your local workstation, rather than a compute
server. If this is not possible, then you should attempt to run it on the compute server. If you get a
message such as:

XMTV:MakeLink - bind error (INET): Address already in use

initializeSocket - MakeLink error: Address already in use

then the internet port is already in use. In this case, you can tell xmtv to use a different port (e.g. port
5001) with

% xmtv -port 5001 &

(substitute another number for 5001 if it still fails). If you use a port number other than the default, you
will need to give this in the server keyword, e.g. for port 5001 on machine tucana, use

server=xmtv:5001@tucana

E-1

E-2 APPENDIX E. USING XMTV AND XPANEL

E.2 The Control Panel

A few tasks (notably tvflag, but also tvdisp in its movie mode) can use a “control panel”. This is a
panel of buttons that pops up, with each button performing some interactive function associated with
the TV device. Although always used in unison with the TV device, this control panel is strangely a
separate executable, which must also be started by hand. To do this, give the command

% xpanel &

to the same computer that you are using for xmtv.

Appendix F

Glossary

The following is a loose list of terms used throughout the MIRIAD manuals, and perhaps not always
explained in detail.

@file An @file (at-file) or ‘include file’ is a text file containing the value of a keyword. If multiple lines
are used, a newline is equivalent to a comma.

breakpoint A discontinuity (often in time or frequency), e.g. meant to signify that fitting data should
be done in separate intervals. Used in calibration software.

BIMA Berkeley-Illinois-Maryland Association, but also: the VAX in Maryland’s Astronomy Program.

C-shell In UNIX this is one of the possible shells that can be used to communicate with UNIX. Other
shells are tcsh, the T-shell, sh, the Bourne Shell and bash, the GNU Shell. See also: script.

dataset A MIRIAD dataset is a hierarchical set of (data) items, and has been implemented as a host
system directory.

deconvolution algorithm Algorithm by which remove instrumental point spread function from an
image. e.g. clean and maxen).

doc file See ‘help file’.

FITS Flexible Image Transport System. Standard data format to interchange data between different
computers. Can be used for image as well as visibility data.

header variable Misnomer for a MIRIAD item. Do not confuse a header variable with a uv variable.

help file File with extension .doc that explains workings of a MIRIAD task. Names of parameters and
their defaults are also in here. Help files live in directory $MIRPDOC. The command mirhelp

can be used to get any help on MIRIAD.

host Your local computer. The term host is often used as in host interpreter and host commands,
and is really meant to warn you that in this context commands may differ depending on which
host/machine (often VMS vs. UNIX) you work.

keyword file File containing ‘keyword=value’ assignments, one per line. Each user interface can read
such files, although the extension is often assumed to be .def. See Chapter 2.

image centre pixel This is the central pixel in an image. If pixel numbers vary from 1 to N , the centre
pixel is pixel int(N/2) + 1. This pixel should be distinguished from the ‘image reference pixel’ (see
below).

image reference pixel This is the pixel in an image which is used as a reference point for the image
coordinate system. If the image was produced by task invert, or derived from an image produced
by invert, the reference pixel will correspond to the same point in the sky as the observing centre
(see ‘observing centre’ and ‘image centre pixel’).

F-1

F-2 APPENDIX F. GLOSSARY

include file Other name for @file

item Name tagged data, often of the same datatype, that is part of a dataset. For images items are
what we commonly refer to as the ‘header variables’, but also the history and actual image data
are items in a dataset.

observing centre A MIRIAD uv file does not distinguish between the pointing centre, phase centre
and delay centre. All are assumed to be the same point on the sky, and are fixed by the observation
process. Documentation refers to this point simply as the observing centre.

override When an item takes precedence over a uv variable. Only applies to MIRIAD visibility
datasets.

PGPLOT Package used to get graphical displays on the screen or hardcopy device.

PostScript file An ASCII text file in the PostScript language. PostScript is a page description language,
and has become an industry standard for printing high-quality text and graphics. One of the
PGPLOT device drivers creates a PostScript file, which can be sent to a printer to get hardcopy
output.

script A set of commands bundled together in a text file, which can be executed. Depending on the
interpreter, command flow and various other programming styles are possible.

shell A supposedly easier to handle front-end command processor used to communicate with a lower
level, and often more difficult to handle program or operating system.

spectral window See ‘window’.

window A window, or spectral window, in MIRIAD usage, means a sequence of frequency channels
which are separated by the same frequency increment. The Hat Creek correlator is capable of ob-
serving eight spectral windows simultaneously, whereas the ATCA can observe two simultaneously.
This is somewhat analogous to the AIPS ‘IF band’ concept.

task A MIRIAD task is a regular executable in the sense of the host operating system, but only accepts
input parameters via a set of keyword=value assignments and/or -f keyfile keyword files, that
cannot contain blanks. Help on the program can be obtained via mirhelp the command.

uv Referring to the u, v, and formally w variables in synthesis observations, commonly called ‘uv’. Most
often this term is a shorthand notation where we could have used the word ‘visibility’.

uv variable Not to be confused with a header variable, a u − v variable is a named quantity with
a certain type (integer, real, ...) and dimension, that can change value during the course of an
observation.

Appendix G

Trouble Shooting

This appendix attempts to suggest a few ways of troubleshooting while running MIRIAD.

MIRIAD programs usually announce trouble by starting a line with the ### characters. If a ‘Fatal
Error’ message follows, the program is also aborted, although in case of a ‘Warning’ or ‘Informational’
message, the task continues to run, at your own risk.

Some messages are related to the fact that errors occur in low-level subroutines, which have no built-in
way to escape back to the user level, and be descriptive about the problem. In such cases somewhat
obscure system-like messages like ‘No such directory’ could be encountered, and other error messages
are just what we sometimes jokingly call ‘pilot errors’, where you forgot to supply the program with an
essential piece of information.

G.1 CAVEATS

• Datasets are directories, and cannot be created when they already exist in UNIX. You should not
manipulate the component files inside a MIRIAD dataset using the hosts normal utilities. Doing
so can potentially ‘corrupt’ the dataset.

• Parameter values cannot contain spaces.

G.2 Error messages

• ### Warning: Parameter vis not used or not exhausted. The parameter vis to that particular
task has been given multiple values, probably separated by commas, or the file-wild card expansion
has been used, or from a @file. The program, however, did not read and use all of them. For file
name the common error is that the program can only handle one file at a time.

• ### Fatal Error: No such file or directory. A typical UNIX error message. Your program
was either supplied with a non-existing file name or dataset name (remember, datasets are really
directories). Also, and this is more obscure, it could be that for strange reasons one of the files (or
items) which is supposed to be in the dataset directory, is missing. The file header must always be
present in a MIRIAD dataset directory.

• ### Fatal Error: Keyini: Input parameter too long for buffer The text you supplied to this
parameter had too many characters. Try using an @ (include) file. If string space is still exhausted
your system manager may have to increase a buffer length in the key.for file and recompile at
least the program it failed on.

• ### go: Failed to exec the subprocess A typical UNIX response – totally illegible for normal
humans. This means that while trying to execute your task, UNIX found it could not do it. There

G-1

G-2 APPENDIX G. TROUBLE SHOOTING

could be a lot of reasons why this was so, one of them being the wrong machine type of the
executable, but also not enough memory to start the task etc.

• Command not found. See Section G.3 below.

• Found no documentation on task xxx No .doc file; either the default task in miriad is wrong, or
someone did not install a document file. Check if the file $MIRPDOC/xxx.doc exists, where xxx is
the taskname.

G.3 Command not found

A very common error made by beginning users is that MIRIAD has not been set up properly, resulting
in a ‘Command not found’ message.

On UNIX this means that the $MIRBIN directory must be in your search path for executables. If any of
the following commands produces an Undefined variable message or the like, check your .login file to
see if it was set up properly:

% echo $MIR # check which MIR you are using

% echo $MIRBIN # see if the MIRBIN makes sense

% echo $PATH # see if MIRBIN is inside the PATH

% rehash # rehash the search (assume csh is used)

% ls $MIRBIN # see what is present in MIRBIN

If not, check a .login file from one of your colleagues to see how it should be set up. Another possibility
is that the program has not been loaded into $MIRBIN, but the documentation is present, or the other
way around. In both cases the MIRIAD system manager needs to be consulted.

G.4 Not a directory

Since MIRIAD datasets are implemented as directories, some of the system messages may complain
when you have mixed up a file with a dataset.

Index

.login, G-2

abspixel, image coordinate units, 6-2
amplitude, uv select, 5-6
ansiread, 8-1
ansitape, 8-1
antenna configuration files, ATCA, 9-2
antenna configuration files, VLA, 9-2
antennae, uv select, 5-6
APCLN, 14-11
arcsec, image coordinate units, 6-2
atfix, 22-1, 22-2, 23-2, 23-3
ATLOD, 11-5, D-1
atlod, 7-2, 8-1–8-3, 10-13, 11-5, 12-1, 12-8, 13-3,

13-5, 16-2–16-4, 22-1, 22-2, 23-2, 23-3,
23-6, 24-1, 24-2, D-3, D-4

atxy, 11-5, D-1–D-4
auto, uv select, 5-6
avmaths, 16-5

background, 2-3
blflag, 10-1, 10-2, 24-2
boxes, region of interest, 6-2

calibration, application, 5-2
calibration, bandpass, 12-3
calibration, calibration model, 5-1
calibration, copying, 11-6
calibration, deleting, 11-7
calibration, examining, 12-7
calibration, flux bootstrapping, 12-9
calibration, gain solution averaging, 12-10
calibration, general, 5-1
calibration, glitches, 12-11
calibration, interpolation, 12-9
calibration, interpolation tolerance, 12-10
calibration, plotting, 11-6
calibration, polarimetric, 11-1, 12-5, 12-6
calibration, solvers, 11-3
calibration, strategy, 12-1
calibration, XY phases, 11-5, D-1–D-3
cg, 18-8
cgcurs, 6-1, 10-7, 14-4, 17-1, 17-10, 17-11, 18-2,

18-3, 18-9, 21-16
cgdisp, 17-1–17-3, 17-6, 17-7, 17-9, 17-10, 18-4,

20-4, 20-6
cginit, 17-1, 17-6
cgslice, 17-1, 17-10, 17-11
cgspec, 17-1, 17-2, 17-10, 19-1–19-3
channel, linetype, 5-3

clean, 7-2, 14-1, 14-3–14-10, 15-1, 15-5, 21-7, F-1
closure, 10-12
command line switch, 2-8
conterr, 16-6, 16-7
contsen, 16-6
contsub, 16-5
convol, 18-7
copyhd, 4-2
CVEL, 16-3, 16-5

datasets, archiving, 8-8
datasets, deleting, 4-1
datasets, managing, 4-3
datasets, transporting, 8-8
ddec, uv select, 5-6
deconvolution, 14-1
deconvolution, Clark CLEAN, 14-2
deconvolution, CLEAN stripes, 14-3
deconvolution, Cotton-Schwab CLEAN, 14-3
deconvolution, Högbom CLEAN, 14-2
deconvolution, maximum entropy, 14-6
deconvolution, multi-frequency synthesis, 14-8
deconvolution, restoring, 14-10
deconvolution, SDI CLEAN, 14-3
delhd, 4-2, 11-7
demos, 21-7–21-9, 21-11
disks, 4-3
dra, uv select, 5-6

ellint, 18-1, 18-2, 21-1

fft, 18-11, 18-12
fgflag, 8-5, 10-6, D-3
FITS, B-1
fits, 2-10, 8-4–8-8, 10-6, 13-5, 16-2, 16-3, D-3,

F-1
FITS files, 8-4
FITS files, FG tables, 10-6
FITS files, images, 8-8
FITS files, visibility data, 8-5
frequency, uv select, 5-6

gaufit, 18-2, 18-3
gethd, 4-2
gpaver, 12-10, 12-11
gpboot, 12-9, 22-1, 22-2, 23-4
gpbreak, 12-11
gpcal, 11-3–11-6, 12-1, 12-3, 12-5–12-7, 12-9–12-

12, 23-4–23-6
gpcopy, 11-6, 12-7, 12-9, 21-4, 21-11, 23-5

I-1

I-2 INDEX

gpnorm, 12-7–12-9
gpplt, 11-6, 12-5, 12-7, 12-8
gpscal, 11-3, 15-2–15-7, 21-8

hanning, 8-2, 16-2, 20-2
help, mirhelp, 2-8
histo, 2-7, 2-9, 18-1, 18-9, 21-12

im2uv, 9-3
image analysis, 18-1
image display, 17-1
image display, contour diagrams, 17-1
image display, cursor, 17-1
image display, pixel map, 17-1
image display, region-of-interest, 17-1
images, region of interest, 6-1
imaging, 13-1
imbin, 18-7, 18-8
imblr, 18-11, 18-12
imcat, 18-4
imdiff, 18-11
imfit, 18-2, 18-3, 21-7
imframe, 18-4
imgen, 2-7, 4-2, 18-8, 20-8, 20-9, 21-16, 21-18
imheq, 18-11, 18-12
imhist, 18-1
imlist, 18-2, 21-9
immerge, 21-12–21-18
impol, 18-8–18-10
impoly, 18-11, 18-12
impos, 18-2, 18-3
imrm, 18-8–18-10
imspec, 19-1, 19-2
imspect, 19-1, 19-2
imstat, 18-1, 18-2, 21-12
imsub, 18-4, 20-2
increment, uv select, 5-6
invert, 5-4, 7-2, 13-1, 13-3–13-6, 14-1, 14-3, 14-4,

14-7, 14-9, 15-5, 16-8, 16-9, 18-5, 18-8,
21-4–21-7, 21-9–21-12, 21-16, F-1

item, F-2
item, definition, 4-1
itemize, 4-2, 6-2

keyword, files, 2-8
kms, image coordinate units, 6-2

lastexit, 2-1
line, 5-3
linear feeds, 11-1
linetype, uv, 5-3
linmos, 21-1, 21-11
load, miriad, 2-5

man, 8-1, 8-3, 8-4, 8-9
mask, region of interest, 6-2
maths, 18-4–18-6, 18-8, 20-8–20-10, 21-17
maxen, 7-2, 14-1, 14-6–14-10, 15-1, 15-5, 21-7,

F-1

maxfit, 18-2
maximum entropy, 14-6
mfcal, 5-1, 11-3–11-5, 12-3, 12-5, 12-6, 12-12, 23-

4–23-6
mfclean, 7-2, 13-1, 13-4, 13-5, 14-1, 14-8–14-10,

15-1, 15-5, 21-6
mfspin, 21-1
millimetre data, 22-1, 23-1
MIRBIN, environment, G-2
mirbug, 2-5
mirhelp, 2-8
miriad, front-end, 2-1
moment, 20-1, 20-8
mosaicing, 21-1, 21-2
mosaicing, calibration, 21-3
mosaicing, combining single dish data, 21-11
mosaicing, imaging, 21-5
mosaicing, individual approach, 21-10
mosaicing, joint approach, 21-4
mosaicing, joint deconvolution, 21-6
mosaicing, observing strategies, 21-2
mosaicing, self-calibration, 21-7
moslst, 21-9
mosmem, 14-10, 21-6–21-9, 21-12, 21-15–21-18
mospsf, 21-7, 21-9
mossdi, 21-6, 21-7
mossen, 21-9, 21-11, 21-17
mostess, 21-9
mt, 8-3, 8-4, 8-9
multi-frequency synthesis, deconvolution, 14-8
MX, 14-11

on, uv select, 5-6
or, uv select, 5-7, 5-8

pbplot, 21-1
pgplot, F-2
planets, 23-6
plboot, 23-4–23-6
plplt, 23-6
pmosmem, 14-10, 21-9
pointing, uv select, 5-6
polarimetry, fractional polarisation, rotation mea-

sure, 18-8
polarimetry, rotation measure image, 18-9
polarization, 5-9
polarization, uv select, 5-7
polygon, region of interest, 6-2
PostScript, F-2
primary beam, correction, 21-1
primary beam, models, 21-1
prthd, 4-1, 6-2, 10-8, 10-10, 21-15
psrfix, 24-2
psrplt, 24-2
pulsar bin mode, 24-1
puthd, 4-2, 8-6, 8-7, 12-10, 16-4, 21-1, 21-9, 21-

15, 21-16
PUTHEAD, 8-5, 8-7

INDEX I-3

quack, 10-6
qvack, 10-6, 10-7

region, of interest, 6-1
regrid, 18-4, 18-5, 21-12
relcenter, image coordinate units, 6-2
relpixel, image coordinate units, 6-2
reorder, 17-7, 18-4, 20-1, 20-10
restor, 7-2, 14-4, 14-7, 14-10, 14-11, 21-7, 21-12,

21-15, 21-17
rm, 4-1
RPFITS files, 8-1

save, miriad, 2-5
script, F-1
select, 5-5
select, u − v data selection, 5-5
self-calibration, 15-1
self-calibration, frequency handling, 15-4
selfcal, 5-1, 11-3, 15-2–15-7, 21-8, 21-9
shadow, uv select, 5-6
shifty, 18-11
single dish, combining with mosaics, 21-11
smooth, 18-7
source, uv select, 5-6
spectral index, 18-5
spectral line, 16-1
spectral line, continuum subtraction, 16-5
spectral line, display, 19-1
spectral line, fits and velocity definitions, 16-2
spectral line, image velocity axis, 16-8
spectral line, imaging, 16-8
spectral line, listing velocity information, 16-3
spectral line, recomputing velocity information,

16-3
spectral line, rest frequency, 16-4
spectral line, velocity definition, 16-1
spectral line, velocity linetype, 16-4
SPLIT, 8-5
stokes, 5-10
Stokes parameters, 11-1

TABED, 8-7
tar, 8-9
telepar, 9-3
time, uv select, 5-5
TMPDIR, environment, 2-6
tpcp, 8-4
tvdisp, E-2
tvflag, 10-1, 10-3–10-5, 21-3, 24-2, E-2

unset, miriad, 2-4
uv, linetypes, 5-3
uvaflag, 10-7
uvaver, 5-2, 7-2, 10-9–10-11, 12-1, 15-3, 21-3, 23-

7, 24-2
uvcat, 5-2, 5-8
uvedit, 8-7, 10-13, 10-14
uvflag, 10-1, 10-5, 23-4, 23-6

uvflux, 12-7, 12-8
uvgen, 9-1–9-3
uvindex, 8-7, 10-8, D-3
uvlin, 16-5, 16-7, 16-8, 23-6, 23-7
uvlist, 10-1, 10-8, 16-3, C-1
uvmodel, 9-3, 16-5
uvnrange, uv select, 5-6
uvplt, 2-10, 10-10, 10-11, 12-5, 12-7, 12-8, 22-2
uvputhd, 8-7
uvrange, uv select, 5-6
uvredo, 8-7, 10-14, 16-2–16-4
uvsector, 10-7, 10-8
uvspec, 5-2, 10-12
uvsplit, 10-1, 12-1, 21-3, 21-10, 23-6

varlist, 10-13
varplt, 8-3, 10-13, 12-6, 16-3, 22-2, 23-4, D-3
vartable, visibility item, C-1
velfit, 20-8
velimage, 20-8, 20-9
velmodel, 20-8, 20-9
velocity, linetype, 16-4
velocity,linetype, 5-3
velplot, 20-2–20-8
velsw, 16-2, 16-9
visdata, visibility item, C-1
visibility datasets, calibration, 5-1
visibility datasets, closure phase plotting, 10-12
visibility datasets, flagging, 10-1, 10-5–10-7
visibility datasets, generating, 9-1
visibility datasets, listing, 10-8
visibility datasets, modifying, 10-13
visibility datasets, plotting, 10-10
visibility datasets, spectral plotting, 10-12
visibility datasets, variables, 10-13
VTESS, 21-9

wide, linetype, 5-3
window, uv select, 5-6

XY phase, 11-5
XY phase, convention difference, 11-5
XY phases, D-1–D-3

Zeeman analysis, 20-10
Zeesim, 20-10
zeesim, 20-10–20-12
zeestat, 20-10–20-12

