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T, calibration serves several purposes.

a) Transfer cross correlation coefficients to approximate physical units (Jy)
b) Correct for atmospheric absorption
c) To properly weight data

The correlator output in it’s ‘raw’ format is essentially a fractional correlation measure; it
is a measure of the correlation (over time) of the signal at antenna j with that of antenna j, as a
fraction of the total input, e.g. it is the fraction of the measured geometric mean system
temperature that is correlated. Thus, for each baseline pair, the correlated antenna temperature
can be determined by multiplying the correlator output by the system temperature for that
baseline. This is analogous to the antenna temperature of a source in a single dish
measurement. To place onto an approximate physical scale, the antenna temperature is
multiplied by the raw antenna gain: for the SMA this is 130 Jy/K. (Here, a digression, feel free to
move right along if you want: the SMA correlator units are not quite the fractional power that is
correlated. Many moons ago it was determined that there was a scaling factor offset, probably
due to an incomplete normalization during one of the FFT. The nomalization factor of 1/+/2mis
accounted for within the apply_tsys routine. See SMA Log Entry 7457 and related poem
“Noiserwocky” for all the delirious details).

Note that when we typically talk about T ;' what we are really referring to is the system
temperature corrected to outside the earth’'s atmosphere (oft denoted as T_ _*). Itis an estimate

sys

of the equivalent ‘temperature’ of a source at the top of the atmosphere needed to create a T

defined by the power measured by the system (e.g. T, ;" = T e*™A with 7 = zenith opacity
and A = airmass). The standard chopper wheel calibration that Eric discussed last week
provides an estimate of (DSB, in our case) T * rather than T , but that's ok, because we want
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to remove the atmospheric transmission effects as much as possible.

I'm going to use some simplified equations for T, and T ;* so that the process can be
written a bit more clearly and hopefully illuminate how it works. First, T, . is a measure of the
power received, and (in the simplification here) is made up of the receiver noise power T, the
emission from the earth’s atmosphere (which is related to the opacity 7 and it's temperature

T..), and the equivalent source antenna temperature T (we're going to assume it is a point
source for the moment), reduced by the atmosphere:

Toys = Tt (1-€7A)T
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+e™ Ty [1]
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[We're ignoring many things here, like certain gain terms, hot spillover, cold spillover, exact form
of the source coupling, etc. even how we treat DSB vs SSB measurements]

Now, the ‘corrected’ T, ;* can be written as

Toye™ = Toye €74= (Ty+ T

sys sy atm) e+TA - Tatm + TS [2]
Recall that the correlator produces correlation coefficents, that are essentially the fraction of the
system temperature that is correlated between any two antennas, or simply e= T4/ T, .*; thus to
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get the (correlated) antenna temperature for a source you simply multiply the correlator output by
the corrected system temperature. Multiplying by the standard gain for the antennas provides
the visibility amplitude (in approximate Jy units, and modified by the spatial filtering of the
baseline for a resolved source):

Vi=exT,* xG [3]
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where G is 130 Jy/K for the SMA. Super simple!

Expected Noise From Eric’s presentation last week, we also know that the rms noise level, in
Jy, on a given visibility point is directly related to T_,_*, along with the bandwidth, the integration
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time, the antenna diameter and efficiency, etc. This is also referred to as the point source
sensitivity, and for a single baseline (two element interferometer) with a single polarization the
standard formulation is:

o= V2 k Tsys« 4]
" VBWt nAeff

where k is Boltzmann’s constant, BW is the bandwidth, t is the integration time, and Aeffis the

effective collecting area of one antenna (geometric area times aperture efficiency). For an

N-element interferometer, there are N(N-1)/2 baselines. As with most applications of gaussian

random noise, the rms noise reduces by the square root of the number of samples (baselines)

and thus for the full interferometer (assuming equal T, .*, Aeff, etc) is given by the typical
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interferometer point source sensitivity equation:

o= 2 k T'sys*
VBWt 4/N(N-1) Aeff

[5]

Weights In MIR we calculate for each visibility point (continuum and spectral bands) the
expected rms noise level according to Equation [4]. As with most other applications of error
estimation (particularly with gaussian noise), the optimal way to combine data is to weight each
data point by the inverse of the variance, and thus each visibility point is given an initial weight
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W; = O-_zzj [6]

The MIR routine apply_tsys handles all of these tasks:

e multiplies the correlator output by the single sideband system temperature (which in turn
is determined to be simply twice the double sideband system temperature, assuming
balanced receiver performance and atmospheric transmission)

e multiplies that result with the standard gain of 130 Jy/K appropriate for the SMA antennas,
placing the visibility data on an approximate Jansky scale

e calculates weights based upon the bandwidth, system temperature, integration time, etc.
with the weights calculated as the inverse of the expected variance for each point.

Further Handling of Weights Within MIR

There are several calibration steps which impact the flux scale, and thus affect the
weights. In addition, in certain cases the continuum channel bandwidth can change (for
example, exclusion of a strong broad line when generating the continuum from the spectral band
data will result in a smaller continuum bandwidth), which will also change the weights of the
continuum channel visibility data.

The primary routines that affect the flux density calibration are gain_cal and
sma_flux_cal. These routines seek to improve the calibration of the data by removing time
and/or elevation dependent amplitude variations, based upon looking at (one hope’s) strong point
source calibrators which traverse a similar path through the sky as the target (gain_cal) or seek
to improve the overall flux scale calibration by observation of a standard source of ‘known’ flux
density, often a moon or planet (both gain_cal and sma_flux_cal). In either case the visibility
data amplitudes are multiplied by a correction factor:

V=V x f [7]
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where f can be a function of time, elevation, baseline, etc.

For any visibility point, any scaling factors affecting amplitude should also be applied to
the expected rms noise (and thus maintain SNR). For example, if sma_flux_cal suggests that
visibility data on a baseline should be scaled by f, then to maintain the SNR of that visibility point
the expected rms noise should be scaled by the same factor. Thus, the weight (which is the
inverse of the variance) becomes:

W' = 1 _ Wy 8]
i ;i?j fT

Hopefully this makes some intuitive sense: if you have to scale up a visibility point then you



should scale down the weight. Both gain_cal and sma_flux_cal handle weights in this way.

As mentioned above, if you change the bandwidth of the continuum channel, this will also

affect the expected rms noise (as shown in Eqg. 4). This in turn will affect the weights:

’ BW'
W = W; B% [

As you increase the bandwidth, you decrease the expected rms noise and thus increase the
weight. The MIR tool uti_avgband is used to generate the continuum from a selected part of the
full spectral data, and makes this weight correction.

Finally, a useful little tool in MIR is uti_rms which can calculate the expected rms noise in
a map based upon the weights in the data. To use, simply select the source, sideband and band
(can be used for either continuum or spectral band), and then type uti_rms; it will return the
expected rms noise you should get when mapping the data. |find that it generally gives a pretty
accurate estimate.



