
9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 1/15

SMA Technical Memo #162

Subject: A TOOL OF SEPARATING SPECTRAL WINDOWS IN MIRIAD -
Pre-processing SMA data taken from the Hybrid SWARM+ASIC
correlator for further calibrations and imaging

Date: September 4, 2015[1]

From: Jun-Hui Zhao
[1]Updated from the versions issued on July 15, 16, 20, 23, 24, August 03, 15, 28, 2015

Abstract -

As required by SMA Miriad users, we have implemented a Miriad task swarmsplt.
This task is useful for Miriad users to separate SMA visibility data in various
spectral chunks generated via different IFs from either ASIC or SWARM correlator
components. Given two independent backends for the ASIC and SWARM data streamers
and opposite sign of the channel increments for the two spectral chunks in a SWARM
quadrant given a sideband, the separation is necessary in calibrations of the SMA
hybrid correlator data using the existing routines in Miriad. In addition, swarmsplt
provides a function to average the spectral resolution. Using the new SMA-Miriad
pipeline task smalod along with swarmsplt, a pre-processing C-shell script for the new
SMA data generated from the hybrid SWARM+ASIC correlator has been implemented. The
products of the pre-processing data are compatible with the latest version of
SMA-Miriad 1.5.1[2] that has been globally distributed. The pre-processing has provided
a quick and useful way for Miriad users inside or outside CfA in handling the interferometer
data produced from the SWARM correlator during SMA backend upgrading. RTDC can use
the scripts to distribute SMA data upon request from Miriad users outside CfA.

The users'interface program in Fortran, swarmsplt.for, is given to demonstrate how to
make SMA SWARM data be adapted generally to the tasks in Miriad. The new Miriad task has
been implemented in Miriad SWARM3.1.0 or newer versions.

[2]The version SMA-Miriad 1.5.* was configured and developed for the SMA ASIC correlator with a total bandwidth (BW) of 4 GHz.
The 4 GHz mode of the legacy ASIC correlator is also referred as doubleband, versus the early version of ASIC correlator with the
first IF component in BW of 2 GHz. This software package has been well tested and is stabilized for global distribution.

1. Why swarmsplt -

There are good reasons to separate between the SWARM and ASIC correlator data prior to
calibrating and imaging in Miriad. The main concerns for handling SWARM data with general
Miriad tasks are summarized in the following aspects:

1) The SWARM and ASIC data streamers are produced from independent electronic and
digital backend systems; the error sources are different. In particular, one needs to
pay attention to the variations of the complex gains due to instrumental issues during
an observation track although the results of the preliminary analysis show that the
phase drifting of the SWRAM and ASIC data appeared to track each other in an observing
run of 8 hours. (see Thechincal Highlights in SMA Newsletter Number 20[3], July 13, 2015)

2) Spectral resolutions across the data chunks produced from SMA hybrid correlator
are not uniform. In particular, the channel resolution of the SWARM chunks is about
an order of magnitude finer than those of ASIC chunks. Each of SWARM chunks contains
16384 channels including those low amplitude guard-band channels near the edges of the
spectra[4]. Extra programming efforts in the specific treatment for low S/N and
the implementation for large memory buffers in the Miriad code are needed in further
calibrating the SWARM data in high spectral resolution.

3) In Miriad convention, the signs of spectral channel increments from various spectral
windows (chunks) are assumed to be the same given a sideband. However, the signs of
spectral channel increment are opposite for the two chunks in a SWARM quadrant given a
sideband. The new SWARM data structure is confusing. In particular, for the calibration
and continuum imaging routines, averaging is inevitable. The resultant frequency from
averaging without separating the two SWARM chunks leads to an incorrect reference
frequency, which could become problems in further reduction of the SWARM data, and

https://www.cfa.harvard.edu/rtdc/

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 2/15

could cause a failure in imaging.

4) This task can be used to pre-process the new SMA data produced from the hybrid
SWARM+ASIC correlator. It is necessary for users to separate the data between ASIC
and SWARM chunks in order to use the existing Miriad routines and example scripts for
the reduction of the SMA SWARM data in Miriad. By separating the ASIC and SWARM chunks,
and reducing a factor of two in the spectral resolution for the SWARM data, swarmsplt
can furnish users a set of pre-processed ASIC and SWARM data that is compatible
with Miriad software in the previous distributions.

Finally, Ch0 contains only 1 channel of pseudo continuum visibility data that is designed
for the SMA scheduler to make a quick image with Miriad in the data quality assurance routine.
This channel window is recommended to be eliminated prior to further data processing in
Miriad in order to avoid problems related to the single-channel window.

[3]SMA Newsletter Number 20, July 13, 2015
[4]SMA Operations Logs #29874 and #29990

2. Help deck -

The Miriad help deck provides a description for the task swarmsplt,
including the programmer who wrote the code and who is responsible to modification
and further implementation. The description also gives the Keywords that are used
in the task and can be supplied by users via the input deck or a Miriad command
line in a shell environment.

Task: swarmsplt
Responsible: Jun-Hui Zhao

 SWARMSPLT special for SMA data produced from the hybrid correlators
 ASIC and SWARM, splitting the uv dataset into either the ch0 or
 the 48 spectral chunks produced from the ASIC correlator, or the
 broadband spectral chunks produced from the SWARM correlator.

Keyword: vis
 The name of the input uv data sets. The input data must be in the
 original format generated with SMALOD in converting SMA data produced
 from the hybrid correlator SWARM and ASIC; i.e. the
 data with 51 spectral windows (ch0 + 48 ASIC chunks and 2 SWARM
 chunks). No default.

Keyword: out
 The name of the output uv data set. No default.

Keyword: options
 This gives extra processing options. Eight options given below can be
 used one at a time. No multiple options are allowed:
 ch0 Means taking the first channel (ch0) data for continuum.
 asic Means all the 48 spectral chunk data produced from the
 legacy ASIC correlator including two IF chunks.
 if1 Means the first IF in the sideband--the first 24 spectral
 chunk data (S1,S2,...S24) produced from the legacy ASIC
 correlator.
 if2 Means the second IF in the sideband--the rest 24 spectral
 chunk data (S25,S26,...S48) produced from the legacy ASIC
 correlator.
 swarm Means two SWARM spectral chunks (S49, S50).
 sw1 the first SWARM chunk (S49).
 sw2 the second SWARM chunk (S50).
 sw3 the third SWARM chunk (S51)[5].
 sw4 the third SWARM chunk (S52)[5].
 sw5 the third SWARM chunk (S53)[5].
 sw6 the third SWARM chunk (S54)[5].
 sw7 the third SWARM chunk (S55)[5].
 sw8 the third SWARM chunk (S56)[5].
 Default is the ASIC N (48 or less) spectral chunks' data and
 the two (eight eventually) SWARM chunks, excluding the ch0.

https://www.cfa.harvard.edu/sma/newsletter/SMA_NewsJuly2015.pdf
http://sma1.sma.hawaii.edu/internal/log/view.html?entrynumber=29874
http://sma1.sma.hawaii.edu/internal/log/view.html?entrynumber=29990

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 3/15

Keyword: line
 The normal uv linetype in the form:
 line,nchan,start,width,step
 The default is all channels.
 To reduce down spectral resolution for swarm data,
 one may set the keyword - line as:
 line = channel,8192,1,2
 for optiions = sw1 or sw2 or other SWARM chunks; or
 line = channel,16384,1,2
 for optiions = swarm.

[5]To be implemented.

3. Usage -

Examples are given for usage in the current version implemented for the first SWARM
quadrant or two SWARM chunks:

1) for all spectral chunks excluding ch0, the pseudo continuum
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.spc
 options =

2) for all swarm chunk data
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.swarm
 options = swarm

3) for 1st swarm chunk (S49) data
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.sw1
 options = sw1

4) for 2nd swarm chunk (S50) data
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.sw2
 options = sw2

5) for all swarm chunk data, averaging every two channels
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.swarm
 options = swarm
 line = channel,16384,1,2

6) for 1st swarm chunk (S49) data, averaging every two channels
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.sw1
 options = sw1
 line = channel,8192,1,2

7) for 2nd swarm chunk (S50) data, averaging every two channels
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 4/15

 out = 150519_rx0.usb.sw2
 options = sw2
 line = channel,8192,1,2

8) for all asic chunk data, doubleband data
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.asic
 options = asic

9) for the 1st IF chunk data from the ASIC correlator
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.if1
 options = if1

10) for the 2nd IF chunk data from the ASIC correlator
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.if2
 options = if2

11) for ch0 data
swarmsplt% inp
 Task: swarmsplt
 vis = 150519_rx0.usb
 out = 150519_rx0.usb.ch0
 options = ch0

4. Pre-processing and compatibility -

A C-shell script swarmload.csh has been implemented to pre-process the new SMA data
produced from the hybrid SWARM+ASIC correlator. The pre-processing with the C-shell
script involves two Miriad tasks, smalod and swarmsplt. The former is used to load
the new SMA data packaged in a new MIR/IDL format and write them in Miriad format.
To date (August 3, 2015), the new SWARM correlator has been implemented for two
chunks of spectral data; in the process of converting to Miriad format, the SMA
spectral data are separated with swarmsplt into six subsets of the SWARM and ASIC
data for the two sidebands. Each sideband consists of one ASIC subset and two SWARM
subsets. The spectral resolution of the two SWARM subsets can be reduced by a factor
of two. These subsets are fully compatible with the latest version of the SMA Miriad
software package that has been globally distributed, SMA Miriad 1.5.1 (RH 6 or CentOS 6).
Then users can carry out further calibrations and imaging to follow the example scripts
that have been posted in a link accesible to public, SMA MIRIAD: Data reduction scripts.

The application appears to be quite useful to the SMA users outside CfA who are not
accessible to the new Miriad-SWARM software before the new system of duplication and
distribution to be built up for handling SWARM data in a full spectral resolution. A
guideline to process the new SWARM and ASIC data using SMA Miriad 1.5.1 (RH 6 or CentOS 6)
has been posted in both the SMA data reduction page and the SMA Miriad web site,
MIRIAD-SWARM Software for Users Outside CfA. With a minimum assistance from RTDC or
SMA staff, SMA users who are not able to acess to the CfA computer systems will be able
to process the new hybrid SWARM+ASIC data in Miriad.

As more SWARM hardware components to be implemented, the pre-processing will be implemented
for handling more subsets of SWARM data with the globally-distributed SMA Miriad package.

5. Source code -

The relevant Fortran code that is used for user's interface is given below along with
the header file. This is a special program implemented for pre-processing the new SMA
data generated from the SWARM+ASIC hybrid correlator. This new Miriad task is developed
based on smasplt. The current version distributed in Miriad-SWARM 3.1.1 has been
implemented for the first SWARM quadrant (two SWARM chunks). Eight options are support
to separate the new SMA data generated from the different correlator and IF components.

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/swarmload.csh.html
https://www.cfa.harvard.edu/sma/miriad/miriad4GHz/SMAMiriad4GHz.html
https://www.cfa.harvard.edu/sma/miriad/spec/SMAscripts/
https://www.cfa.harvard.edu/sma/miriad/miriad4GHz/SMAMiriad4GHz.html
https://www.cfa.harvard.edu/sma/miriad/swarm/swarmoutsider.html

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 5/15

Also, a function of linetype has been implemented; with averaging down the spectral
resolution of the SWARM chunks, the pre-processed SWARM data are compatible with
the SMA-Miriad package that was specially or originally configured and developed
for reduction of the SMA ASIC correlator data with a BW of 4GHz, or doubleband.

5.1 swarmsplt.for

c**
 program swarmsplt
 implicit none
c
c= swarmsplt - split uv dataset into either ch0 or ASIC or SWARM chunks.
c& jhz
c: uv handling
c+
c SWARMSPLT is a special tool for handling SMA data produced from
c the hybrid correlators ASIC and SWARM, splitting the uv dataset
c into either the ch0 or the ASIC (48 or smaller) spectral chunks
c or the two SWARM chunks produced from the SMA hybrid correlator
c (ASIC + SWARM).
c@ vis
c The name of the input uv data sets. The input data must be in the
c original format generated with SMALOD in converting SMA data produced
c from the hybrid correlator SWARM and ASIC; i.e. the
c data with 51 spectral windows (ch0 + 48 ASIC chunks and 2 SWARM
c chunks). No default.
c@ out
c The name of the output uv data set. No default.
c@ options
c This gives extra processing options. Eight options given below can be
c used one at a time. No multiple options are allowed:
c ch0 Means taking the first channel (ch0) data for continuum.
c asic Means all the 48 spectral chunk data produced from the
c legacy ASIC correlator including two IF chunks.
c if1 Means the first IF in the sideband--the first 24 spectral
c chunk data (S1,S2,...S24) produced from the legacy ASIC
c correlator.
c if2 Means the second IF in the sideband--the rest 24 spectral
c chunk data (S25,S26,...S48) produced from the legacy ASIC
c correlator.
c swarm Means two SWARM spectral chunks (S49,S50).
c sw1 the first SWARM chunk (S49).
c sw2 the second SWARM chunk (S50).
c Default is the ASIC N (48 or less) spectral chunks data and
c the two SWARM chunks, excluding the ch0.
c@ line
c The normal uv linetype in the form:
c line,nchan,start,width,step
c The default is all channels.
c To reduce down spectral resolution for swarm data,
c one may set the keyword - line as:
c line = channel,8192,1,2
c for optiions = sw1 or sw2; or
c line = channel,16384,1,2
c for optiions = swarm.
c
c--
c History:
c jhz 25Nov14 borrowed setup for ASIC correlator from
c smasplit
c jhz 15Feb15 re-config uvflags index for SWARM chunks in a uv handling
c subroutine
c jhz 20Feb15 tested for ASIC data only
c jhz 15Jun15 implemented select functions for spectral chunks from SWARM
c correlator for two spectral chunks (1st quadrant)
c jhz 01jul15 implemented for SWARM+ASIC hybrid correlator
c jhz 14jul15 increased MAXVIS and updated inline doc
c jhz 20jul15 implement function of linetype for swarm data
c to reduce down spectral resolution

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 6/15

c
c To do:
c To implement more SWARM chunks.
c--
 include 'maxdim.h'
 character version*(*)
 parameter(version='SwarmSplt: version1.0.6 20-July-2015')
 character uvflags*12,ltype*16,out*64
 integer npol,Snpol,pol,tIn,tOut,vupd,nread,nrec,i,nbin
 real inttime,jyperk
 logical dotaver,doflush,buffered,PolVary,first
 logical ok,donenpol,doasic,doch0,doif1,doif2,dohyb
 logical doswarm,dosw1,dosw2,doasicsw
 double precision preamble(5),Tmin,Tmax,Tprev,interval
 complex data(MAXCHAN)
 logical flags(MAXCHAN)
 logical ampsc,vecamp,relax,doprt
 integer nspect, s2m(2,2)
 integer nschan(MAXWIN)
 double precision sfreq(MAXWIN)

c character in*80
c integer tno
c
c Externals.
c
 logical uvDatPrb,uvDatOpn,uvVarUpd
 logical doSMAorg
c
 common/nswindows/nspect
 common/SMAIFS/s2m

c Get the input parameters.
c
 nspect = 51
 dohyb = .false.
 doprt = .false.
 call output(version)
 call keyini
 uvflags = 'slr3'
 call uvDatInp('vis',uvflags)
 if(uvDatOpn(tIn)) then
 call uvDatRd(preamble,data,flags,maxchan,nread)
 dowhile(nread.gt.0)
 call uvrdvri(tin,'nspect',nspect,0)
 call uvgetvri(tin,'nschan',nschan,nspect)
 call uvgetvrd(tin,'sfreq',sfreq,nspect)
 call SpecSMA(tin,
 * nspect,nschan,sfreq,MAXWIN,doprt)
 call uvDatRd(preamble,data,flags,maxchan,nread)
 if (nspect.gt.2) nread=0
 end do
 if (nspect.lt.51) dohyb = .true.
 end if
 call uvDatCls
 doSMAorg=.false.
 if(nschan(1).eq.1) doSMAorg=.true.
 if(.not.doSMAorg) call bug('f',
 * 'SWARMSPLT: does not work for this dataset')
 call keyini
 uvflags = 'dslr3'
 call
 * getopt(uvflags,doasic,doch0,doif1,doif2,doswarm,
 * dosw1,dosw2,doasicsw)
 call uvDatInp('vis',uvflags)
 call keyd('interval',interval,0.d0)
 call keya('out',out,' ')
 call keyfin
c

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 7/15

c check the logic conflict in options
 if(doif2.and.doif1)
 * call bug ('f','Hybrid-mode: do one IF at a time.')
c
c make a certain no averaging in the splitting
c
 interval = 0.d0
 ampsc = .false.
 vecamp = .false.
 relax = .false.
c
c Check the input parameters.
c
 if(doasic.and.(.not.dohyb))
 * call bug ('w',
 * 'Split the SMA ASIC data into 48 spectral chunks data.')
 if(doch0)
 * call bug ('w',
 * 'Split the first channel (Ch0) from the SMA ASIC data.')
 if(doif1)
 * call bug ('w',
 * 'Split the first IF data from the SMA ASIC data.')
 if(doif2)
 * call bug ('w',
 * 'Split the second IF data from the SMA ASIC data.')
 if(dohyb)
 * call bug ('w',
 * 'Handling the hybrid-resolution SMA ASIC data,')
 if(dohyb)
 * call bug ('w', 'split all spectral chunks data.')
 if(doswarm)
 * call bug ('w', 'Split all SWARM chunks.')
 if(dosw1)
 * call bug ('w', 'Split 1st SWARM chunk S49.')
 if(dosw2)
 * call bug ('w', 'Split 2nd SWARM chunk S50.')
 if(doasicsw)
 * call bug ('w', 'Split all SWARM and ASIC chunks.')

 if(out.eq.' ')call bug('f','Output file must be specified')
 if(interval.lt.0)call bug('f','Illegal value for interval')
c
c Various initialisation.
c
 interval = interval/(24.*60.)
 npol = 0
 Snpol = 0
 first = .true.
 PolVary = .false.
 doflush = .false.
 buffered = .false.
 donenpol = .false.
 dotaver = interval.gt.0.or.uvDatPrb('polarization?',0.d0)
 call BufIni
 nrec = 0
c
c Open the input and the output files.
c
 dowhile(uvDatOpn(tIn))
 nbin = 1
 if(dotaver)then
 call uvrdvri(tIn,'nbin',nbin,1)
 if(nbin.gt.1)then
 call bug('w',
 * 'Time averaging or pol''n selection of bin-mode data')
 call bug('w',
 * 'This will average all bins together')
 endif
 endif

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 8/15

 call uvDatGta('ltype',ltype)
 call VarInit(tIn,ltype)
 call uvVarIni(tIn,vupd)
 call uvVarSet(vupd,'dra')
 call uvVarSet(vupd,'ddec')
 call uvVarSet(vupd,'source')
 call uvVarSet(vupd,'on')
c
c Special processing the first time around.
c
 if(first)then
 call uvopen(tOut,out,'new')
 call uvset(tOut,'preamble','uvw/time/baseline',0,0.,0.,0.)
 call hdcopy(tIn,tOut,'history')
 call hisopen(tOut,'append')
 call hiswrite(tOut,'SWARMSPLT: Miriad '//version)
 call hisinput(tOut,'SWARMSPLT')
 call hisclose(tOut)
 first = .false.
 endif
 call VarOnit(tIn,tOut,ltype)
c
c Loop over the data.
c
 call uvDatRd(preamble,data,flags,maxchan,nread)
 Tprev = preamble(4)
 Tmin = Tprev
 Tmax = Tmin
 dowhile(nread.gt.0)
c
c Count the number of records read.
c
 nrec = nrec + 1
c
c Do we want to keep this record.
c
 ok = relax.or.donenpol
 if(.not.ok)then
 do i=1,nread
 ok = ok.or.flags(i)
 enddo
 endif
c
c Determine if we need to flush out the averaged data.
c
 doflush = ok.and.dotaver
 if(doflush)then
 doflush = uvVarUpd(vupd)
 doflush = (doflush.or.preamble(4)-Tmin.gt.interval.or.
 * Tmax-preamble(4).gt.interval)
 * .and.buffered
 endif
c
c Flush out the accumulated data -- the case of time averaging.
c
 if(doflush)then
 call bufflush(tOut,ampsc,vecamp,npol)
 PolVary = PolVary.or.npol.eq.0.or.
 * (Snpol.ne.npol.and.Snpol.gt.0)
 Snpol = npol
 Tmin = preamble(4)
 Tmax = Tmin
 buffered = .false.
c
c Flush out the accumulated data -- the case of no time averaging.
c
 else if(.not.dotaver)then
 if(npol.le.0)call uvDatGti('npol',npol)
 if(ok)then

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 9/15

 if(.not.donenpol)then
 call uvputvri(tOut,'npol',npol,1)
 PolVary = PolVary.or.
 * (Snpol.ne.npol.and.Snpol.gt.0)
 Snpol = npol
 endif
 call uvDatGti('pol',pol)
 call uvputvri(tOut,'pol',pol,1)
 call VarCopy(tIn,tOut)
 call uvDatGtr('jyperk',jyperk)
 call uvputvrr(tOut,'jyperk',jyperk,1)
 call uvwrite(tOut,preamble,data,flags,nread)
 donenpol = npol.gt.1
 endif
 npol = npol - 1
 endif
c
c Accumulate more data, if we are time averaging.
c
 if(dotaver.and.ok)then
 call uvrdvrr(tIn,'inttime',inttime,10.)
 call bufacc(preamble,inttime,data,flags,nread)
 buffered = .true.
 call VarCopy(tIn,tOut)
 if(nbin.gt.1)call uvputvri(tOut,'nbin',1,1)
 endif
c
c Keep on going. Read in another record.
c
 if(ok)then
 Tprev = preamble(4)
 Tmin = min(Tmin,Tprev)
 Tmax = max(Tmax,Tprev)
 endif
 call uvDatRd(preamble,data,flags,maxchan,nread)
 enddo
c
c Flush out anything remaining.
c
 if(buffered)then
 call bufflush(tOut,ampsc,vecamp,npol)
 PolVary = PolVary.or.npol.le.0.or.
 * (Snpol.ne.npol.and.Snpol.gt.0)
 Snpol = npol
 buffered = .false.
 endif
 call uvDatCls
 enddo
c
c Write things to the header which describe the data as a whole.
c
 if(first)call bug('f','Error opening input')
 if(nrec.eq.0)call bug('f','No data found')
 if(.not.PolVary)call wrhdi(tOut,'npol',Snpol)
c
c Update the history and close up files.
c
 call uvclose(tOut)
 if(doasic.or.doasicsw.or.doswarm.or.
 * doif1.or.doif2.or.dosw1.or.dosw2)
 * call output('The program ends successfully.')
 end
c
c**
c
 subroutine getopt(uvflags,doasic,doch0,doif1,doif2,
 * doswarm,dosw1,dosw2,doasicsw)
 implicit none
 logical doasic,doch0,doif1,doif2

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 10/15

 logical doswarm,dosw1,dosw2,doasicsw
 character uvflags*(*)
c
c Determine the flags to pass to the uvdat routines.
c
c Output:
c uvflags Flags to pass to the uvdat routines.
c doasic Handling the SMA DB data for the 48 spectral windows.
c doch0 Handling the SMA DB data for the ch0, the 1st window.
c doif1 Handling the SMA DB data for the first 24 windows
c (2,3,...,25).
c doif2 Handling the SMA DB data for the next 24 windows
c (26,27,...,49).
c doswarm Handling the SMA SWARM data for 50 (S50) and 51 (S49)
c dosw1 Handling the SMA SWARM data for 51 (S49), the 1st swarm chunk
c dosw2 Handling the SMA SWARM data for 50 (S50), the 2nd swarm chunk
c doasicsw Handling all the spectral windows from both ASIC and SWARM
c but excluding the single-channel window Ch0
c--
 integer nopts
 parameter(nopts=10)
 character opts(nopts)*8
 integer l, nopt
 logical present(nopts),docal,dopol,dopass
 data opts/'nocal ','nopol ','nopass ', 'ch0 ',
 * 'asic ','if1 ','if2 ', 'swarm ',
 * 'sw1 ','sw2 '/
c
 call options('options',opts,present,nopts)
 nopt=0
 doch0 = present(4)
 doasic = present(5)
 doif1 = present(6)
 doif2 = present(7)
 doswarm = present(8)
 dosw1 = present(9)
 dosw2 = present(10)
 if(doch0) nopt=nopt+1
 if(doasic) nopt=nopt+1
 if(doif1) nopt=nopt+1
 if(doif2) nopt=nopt+1
 if(doswarm) nopt=nopt+1
 if(dosw1) nopt=nopt+1
 if(dosw2) nopt=nopt+1
 if(nopt.gt.1) call bug('f', 'One options at a time.')
 nopt=0
 if(.not.doch0) nopt=nopt+1
 if(.not.doasic) nopt=nopt+1
 if(.not.doif1) nopt=nopt+1
 if(.not.doif2) nopt=nopt+1
 if(.not.doswarm) nopt=nopt+1
 if(.not.dosw1) nopt=nopt+1
 if(.not.dosw2) nopt=nopt+1
 if(nopt.eq.7) doasicsw = .true.
 docal = .false.
 dopol = .false.
 dopass = .false.
c
c Set up calibration flags
c
 uvflags = 'dslr3'
 l = 5
 if(docal)then
 l = l + 1
 uvflags(l:l) = 'c'
 endif
 if(dopass)then
 l = l + 1
 uvflags(l:l) = 'f'

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 11/15

 endif
 if(dopol)then
 l = l + 1
 uvflags(l:l) = 'e'
 endif
 if(doasic) then
 l = l + 1
 uvflags(l:l) = 'z'
 endif
 if(doch0) then
 l = l + 1
 uvflags(l:l) = '0'
 endif
 if(doif1) then
 l = l + 1
 uvflags(l:l) = 'y'
 endif
 if(doif2) then
 l = l + 1
 uvflags(l:l) = '2'
 endif
 if(doswarm) then
 l = l + 1
 uvflags(l:l) = '4'
 endif
 if(dosw1) then
 l = l + 1
 uvflags(l:l) = '5'
 endif
 if(dosw2) then
 l = l + 1
 uvflags(l:l) = '6'
 endif
 if(doasicsw) then
 l = l + 1
 uvflags(l:l) = '7'
 endif
 end
c
c**
c
 subroutine bufini
 implicit none
c
c Initialise the routines which do the buffering and averaging of
c the visibility data.
c All the buffering/averaging is performed in arrays stored in a
c common block.
c
c--
 include 'swarmsplt.h'
 free = 1
 mbase = 0
 end
c
c**
c
 subroutine bufflush(tOut,ampsc,vecamp,npol)
c
 implicit none
 integer tOut,npol
 logical ampsc,vecamp
c
c This writes out the averaged data. The accumulated data is in common.
c This starts by dividing the accumulated data by "N", and then writes
c it out.
c
c Inputs:
c tOut The handle of the output file.

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 12/15

c ampsc True for amp scalar averaging
c vecamp True for amp scalar averaging of only parallel hand
c amplitudes.
c Output:
c npol The number of polarisations in the output. If this
c varies, a zero is returned.
c--
 include 'swarmsplt.h'
 complex data(MAXCHAN)
 real amp,inttime
 double precision preambl(5),time(MAXBASE)
 logical flags(MAXCHAN)
 integer i,j,jd,k,ngood,nbp,p,idx1(MAXBASE),idx2(MAXBASE)
 logical PolVary,doamp
c
c Externals.
c
 logical PolsPara
 PolVary=.false.
c
c Determine the number of good baselines, and sort them so we have an
c index of increasing time.
c
 ngood = 0
 do j=1,mbase
 if(cnt(j).gt.0)then
 ngood = ngood + 1
 time(ngood) = preamble(4,j) / cnt(j)
 idx2(ngood) = j
 endif
 enddo
 if(ngood.le.0)return
 call sortidxd(ngood,time,idx1)
c
c Now loop through the good baselines, writing them out.
c
 nbp = 0
 npol = 0
 do jd=1,ngood
 j = idx2(idx1(jd))
 if(npols(j).ne.npol)then
 call uvputvri(tOut,'npol',npols(j),1)
 PolVary = npol.gt.0
 npol = npols(j)
 endif
 preambl(1) = preamble(1,j) / cnt(j)
 preambl(2) = preamble(2,j) / cnt(j)
 preambl(3) = preamble(3,j) / cnt(j)
 preambl(4) = preamble(4,j) / cnt(j)
 preambl(5) = preamble(5,j) / cnt(j)
 inttime = preamble(6,j) / npols(j)
 call uvputvrr(tOut,'inttime',inttime,1)
c
c Average the data in each polarisation. If there is only one scan in the
c average, not bother to average it.
c
 do i=1,npol
 p = pnt(i,j) - 1
 call uvputvri(tOut,'pol',pols(i,j),1)
 doamp = ampsc.or.(vecamp.and.PolsPara(pols(i,j)))
 nbp = nbp + 1
c
c Loop over the channels. If we are doing amp-scalar averaging, and
c the average visibility is zero, flag the data. Otherwise just
c depend on whether we have good data or not.
c
 do k=1,nchan(i,j)
 if(doamp.and.
 * abs(real(buf(k+p)))+abs(aimag(buf(k+p))).eq.0)

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 13/15

 * count(k+p) = 0
 flags(k) = count(k+p).gt.0
 if(.not.flags(k))then
 data(k) = 0
 else if(doamp)then
 amp = abs(buf(k+p))
 data(k) = (bufr(k+p) / count(k+p)) *
 * (buf(k+p) / amp)
 else
 data(k) = buf(k+p) / count(k+p)
 endif
 enddo
 call uvwrite(tOut,preambl,data,flags,nchan(i,j))
 enddo
 enddo
c
c Reset the counters.
c
 free = 1
 mbase = 0

c If the number of polarisations varied, zero npol.
c
 if(PolVary) npol = 0
 end
c
c**
c
 subroutine bufacc(preambl,inttime,data,flags,nread)
c
 implicit none
 integer nread
 double precision preambl(5)
 real inttime
 complex data(nread)
 logical flags(nread)
c
c This accumulates the visibility data. The accumulated data is left
c in common.
c
c Input/Output:
c preambl Preamble. Destroyed on output.
c data The correlation data to be averaged. Destroyed on output.
c flags The data flags.
c nread The number of channels.
c--
 include 'swarmsplt.h'
 integer i,i1,i2,p,bl,pol
c
c Determine the baseline number, and conjugate the data if necessary.
c
 call BasAnt(preambl(5),i1,i2)
 bl = ((i2-1)*i2)/2 + i1
 if(bl.gt.MAXBASE)
 * call bug('f','Too many baselines for me to handle, in BUFACC')
c
c Zero up to, and including, this baseline.
c
 do i=mbase+1,bl
 cnt(i) = 0
 enddo
 mbase = max(mbase,bl)
c
c Add in this visibility.
c
 if(cnt(bl).eq.0)then
 cnt(bl) = inttime
 npols(bl) = 0
 preamble(1,bl) = inttime * preambl(1)

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 14/15

 preamble(2,bl) = inttime * preambl(2)
 preamble(3,bl) = inttime * preambl(3)
 preamble(4,bl) = inttime * preambl(4)
 preamble(5,bl) = inttime * preambl(5)
 preamble(6,bl) = inttime
 else
 cnt(bl) = cnt(bl) + inttime
 preamble(1,bl) = preamble(1,bl) + inttime * preambl(1)
 preamble(2,bl) = preamble(2,bl) + inttime * preambl(2)
 preamble(3,bl) = preamble(3,bl) + inttime * preambl(3)
 preamble(4,bl) = preamble(4,bl) + inttime * preambl(4)
 preamble(5,bl) = preamble(5,bl) + inttime * preambl(5)
 preamble(6,bl) = preamble(6,bl) + inttime
 endif
c
c Determine the polarisation.
c
 call uvDatGti('pol',pol)
 p = 0
 do i=1,npols(bl)
 if(pols(i,bl).eq.pol) p = i
 enddo
c
c A new baseline. Set up the description of it.
c
 if(p.eq.0)then
 npols(bl) = npols(bl) + 1
 p = npols(bl)
 if(p.gt.MAXPOL) call bug('f',
 * 'Too many polarizations, in BufAcc')
 pols(p,bl) = pol
 nchan(p,bl) = nread
 pnt(p,bl) = free
 free = free + nread
 if(free.gt.MAXAVER)call bug('f',
 * 'Too much data to accumulate, in BufAcc')
c
c Copy across the new data.
c
 p = pnt(p,bl) - 1
 do i=1,nread
 if(flags(i))then
 buf(i+p) = inttime * data(i)
 bufr(i+p) = inttime * abs(data(i))
 count(i+p) = inttime
 else
 buf(i+p) = (0.0,0.0)
 bufr(i+p) = 0.0
 count(i+p) = 0
 endif
 enddo
c
c Else accumulate new data for old baseline.
c
 else
 nread = min(nread,nchan(p,bl))
 nchan(p,bl) = nread
 p = pnt(p,bl) - 1
 do i=1,nread
 if(flags(i))then
 buf(i+p) = buf(i+p) + inttime * data(i)
 bufr(i+p) = bufr(i+p) + inttime * abs(data(i))
 count(i+p) = count(i+p) + inttime
 endif
 enddo
 endif
c
 end

9/4/2015 SMA Technical Memo

https://www.cfa.harvard.edu/sma/miriad/wbcorrTest/testrslt/SMATechMemo_2015jul.html 15/15

5.2 swarmsplt.h

c**
c jhz: 2014-11-25
c jhz: 2015-07-14
c Include file for swarmsplt.for
c
c Buf Buffer used to accumulate the data.
c Bufr Buffer used to accumulate amplitudes
c for amp-scalar averaging
c Count(i) Weights of the correlations added into Data(i).
c free Points to the first unused location in Data and Count.
c pnt For a baseline, points to location of data in Data and Count.
c nchan Number of channels for a given baseline.
c npols Number of polarisations.
c pols The polarisation codes.
c preamble The accumulated preambles.
c cnt Weights of the things accumulated into the preambles.
c
 include 'maxdim.h'
 integer MAXAVER,MAXPOL
 parameter(MAXAVER=20000000,MAXPOL=4)
 complex buf(MAXAVER)
 real bufr(MAXAVER)
 double precision count(MAXAVER),cnt(MAXBASE)
 integer pnt(MAXPOL,MAXBASE),nchan(MAXPOL,MAXBASE),free,mbase
 integer npols(MAXBASE),pols(MAXPOL,MAXBASE)
 double precision preamble(6,MAXBASE)
 common/uvavcom/preamble,count,cnt,buf,bufr,pnt,nchan,npols,
 * pols,free,mbase

