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ABSTRACT

We lay out the design of Diagnostic and Error Reporting System of SMA. We

describe the implementation of the software and results from test runs on the

SMA two-element interferometer.

1. Introduction

SMA is a complex system that involves thousands of electronic and mechanical com-

ponents and many pieces of controlling software. In such a system, one expects some com-

ponents fail or do not perform the function they are commanded to. When a component

fails or presents a fault status, other components that rely on it may be a�ected. An ex-

treme example may be the disruption of power to a correlator, which triggers fault in all

its components. Should this occur, an array operator would be swamped by error messages

were there no error sorting system that performs �ltering. In addition, there are pieces of

equipment in the array that are delicate. The occurrence of fault status in those components

(rising receiver cryostat temperatures, for instance) needs to be brought to the immediate

attention of the array operator. And after all, SMA is built to acquire astronomical data.

To maximize the use and minimize the corruption of data, one needs to determine the e�ect

of a fault component on the data quality and provide blanking/
agging to the astronomical

data steam. All these needs call for an error detecting/sorting system.

The Diagnostic and Error Reporting System (DERS) of the SMA is a piece of computer

software that meets these needs. It surveys the status of various test points associated with

the hardware and software components in the array. DERS tracks the system fault status

and resolves the e�ect that faults have on data quality. It provides real time blanking and

o�ine 
agging information to the astronomical data stream. The software also traces the

root cause of the fault and reports error messages to the operator's console and alerts the

array operator and engineers via alarm/paging system in case of an emergency.
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2. Basic Design

The current design of DERS consists of four major functions:

1. Real time \blanking" information to be passed to the correlator, allowing individual

Walsh cycles to be dropped from an integration.

2. Flagging information to be passed to SMADATA after each integration.

3. Error reporting to alert the array operator. A graphic interface to assist troubleshoot-

ing.

4. Engineering data to be stored in Sybase for performance analysis.

The underlying design of DERS follows to a large extent the model of the Caltech

Millimeter Array (Finch & Scott 1996). The key ingredients in this model are the dependency

relationship between nodes and rules that govern fault propagation. An example of the

dependency tree is shown in Figure 1. This example was used for the SMA two-element

interferometer test during December 1998. Nodes toward the top levels of the tree are

the successors of those toward the lower levels. For instance, receiver dewar pressures are

logged to re
ective memory by the process BALZERS. If BALZERS terminates, the dewar

pressure is no longer updated. Therefore, the node Dewar Pressure is a successor of the

node BALZERS Timestamp. Conversely, the node BALZERS Timestamp is a predecessor

of the node Dewar Pressure. In this example, we have designated the �rst two working SMA

antennas as antenna 2 (node Ant 2) and antenna 3 (node Ant 3) following the nomenclature

used in the group.

The idea of a dependency tree remains the central part of the error system. In order for

it to work and function e�ectively, one needs to introduce various concepts associated with

nodes and rules governing the fault propagation. We elaborate them in the following:

Node Type: There are three types of nodes in DERS, sense, diagnostic and concate-

nate. Both the sense and diagnostic nodes are test points and have their associated values

or status. Unlike a sense node, error status in a diagnostic node does not propagate to its

successors. This distinction is drawn for a practical need: some nodes that are monitored do

not a�ect the quality of astronomical data. The third type of node is concatenate. They are

virtual nodes that have no associated test points. Their status depends solely on the status

of their predecessors. An example of such nodes is Ant 2.

Node Status: There are up to three types of fault status associated with each node.

Table 1 summarizes the status and corresponding conditions.
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Fig. 1.| DERS logic dependency tree. The nodes on the left are successors to those on the

right.

Node State and Recon�guration: Array operations sometimes require taking a

component in the dependency tree o�ine or disable the entire branch of the dependency tree.

For example, a malfunctioning sensor generates false alarms and the status reported from the

sensor needs to be ignored. This capability, which is part of recon�guring dependency trees,
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Table 1: Node Status
Node Type Status Conditions

GOOD if within tolerance and all predecessors GOOD

Sense/ BAD if out of tolerance and all predecessors GOOD

Diagnostic AFFECTED if one of predecessors BAD or AFFECTED

Concatenate GOOD if all predecessors GOOD

AFFECTED if one of predecessors BAD or AFFECTED

is accomplished by introducing node state. A node state can either be ONLINE/OFFLINE,

or ENABLED/DISABLED. If a node is taken o�ine, its state is changed to OFFLINE. The

recon�guration of the dependency tree obeys the following rules:

1. The recon�guration proceeds toward predecessors starting from the node being taken

o�ine;

2. Propagation stops when there are no more predecessors;

3. Propagation stops when an o�ine node is encountered;

4. The node state changes to DISABLED if all the successors are in OFFLINE or DIS-

ABLED state.

Fault Propagation: We design fault propagation rules following the error detection

system of the Caltech Millimeter Array. A node status propagates only to its successors along

the dependency tree. Both the sense and diagnostic nodes are sampled for status update.

However, diagnostic nodes are sampled only for monitoring purpose and their status does

not propagate along the dependency tree. Only the sense node or concatenate node status

propagates through the tree. The propagation obeys the following rules:

1. The node status propagates only to successors;

2. Propagation stops when the node status are the same as its successor's;

3. Propagation stops when a diagnostic node is encountered;

4. The node status changes to AFFECTED if one of the predecessors are in BAD or

AFFECTED status;



{ 5 {

5. The node status can only change to GOOD if the node value is within tolerance (for

sense/diagnostic nodes) and all the predecessors are in GOOD status.

Error Reporting: As mentioned earlier, the failure of a key component in the array

may trigger fault status in large number of nodes. For example, a power disruption to the

correlator (we pray that this never happens!) will generate massive amount of error status.

To minimize the 
ux of error messages and more importantly to help locating the trouble

spots, it is desirable to have only the root cause of the fault reported. To accomplish this,

we introduce the following rules:

1. Messages are sent only for sense or diagnostic nodes;

2. A message is sent only when a status change is detected and the change is not caused

by the change in its predecessors.

The second rule ensures that the error is reported only for the root node that initiated

the fault.

3. Implementation

A prototype DERS was implemented and tested later during December 1998 on the SMA

two-element interferometer. Figure 2 shows the 
ow chart of DERS. At run time, DERS

reads ASCII �les that de�ne the dependency relationship among nodes. DERS accesses

both the shared memory (SM) and the re
ective memory (RM) area to update values for

the sense/diagnostic nodes. These values are compared with the associated limits, which

derives the updated status. The status then propagates through the tree according to the

fault propagation rules. Error messages are logged to SMA1 via a RPC (Remote Procedure

Calls). A shell script is de�ned for SMA sta� to view the error messages. For critical nodes

such as dewar temperature and dewar pressure, we also implemented e-mailing mechanism

when values are out of tolerance.

Figure 3 shows an on-screen print-out of the DERS dependency tree for the two-element

interferometer test. Compared to Figure 1, node names are pre�xed and su�xed to identify

the antenna and the data type of each node. To ensure that the diagnostic data that

DERS is reading are being updated, we introduced timestamps for processes running on

computers. Those processes update values for relevant nodes to the re
ective memory. If

any of the processes die, errors in its succeeding nodes are ignored until the concerned process
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Fig. 2.| Block diagram for DERS. SMA1 and SMADATA are two Sun workstations.

is started again. For example, the process BALZERS updates receiver dewar pressures to

re
ective memory. If BALZERS is stalled, the pressure is no longer updated. In this case, a

fault related to the process BALZERS will be reported. However, any errors related to the

node DEWAR PRESSURE (if exists) will not be reported unless BALZERS is restored. The

test points in Figure 3 represent essentially all the relevant nodes in the re
ective memory

available for monotoring. During DERS test runs, data blanking/
agging was not performed.

Figure 4 shows information DERS reported to the screen at run time. It is a snapshot

and is updated each time after all nodes are sampled. In this example, the phase lock loop in

the 225 GHz receiver in antenna 2 was out of locked and presented a BAD status. This fault

propagates to its successors ANT2 and BSLN 2 3. Both nodes are shown to be AFFECTED.

A message was sent to SMA1 via RPC, which is shown in Figure 5a. We also have a few

nodes that are deemed critical (receiver dewar pressure, for instance). When their values

go out of tolerance, electronic mails are sent to related SMA sta�, in addition to regular
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0(BSLN_2_3)
1(ANT2)

2(WEATHER_WINDSPEED_F)
3(ANT2_DEWAR_TEMP1_S)

11(ANT2_LAKESHORE_TSTAMP_L)
14(UNIX_TIME_L)

4(ANT2_DEWAR_TEMP3_S)
11(ANT2_LAKESHORE_TSTAMP_L)

14(UNIX_TIME_L)
5(ANT2_DEWAR_PRESSURE_F)

10(ANT2_BALZERS_TSTAMP_L)
14(UNIX_TIME_L)

7(ANT2_CABIN_TEMP_F)
6(ANT2_CABIN_TEMP_TSTAMP_L)

14(UNIX_TIME_L)
8(ANT2_PHASE_LOCK_S)

12(ANT2_PHASE_LOCK_TSTAMP_L)
14(UNIX_TIME_L)

9(ANT2_YIG1_LOCKED_S)
13(ANT2_YIG_SVC_TSTAMP_L)

14(UNIX_TIME_L)
15(ANT3)

2(WEATHER_WINDSPEED_F)
16(ANT3_DEWAR_PRESSURE_F)

18(ANT3_BALZERS_TSTAMP_L)
14(UNIX_TIME_L)

17(ANT3_YIG1_LOCKED_S)
19(ANT3_YIG_SVC_TSTAMP_L)

14(UNIX_TIME_L)

Fig. 3.| On-screen print out of the DERS dependency tree.

warnings sent to SMA1 through RPC. An example of such a warning is shown in Figure 5b.

4. Results from Test Runs

DERS has been running on HAL at the SMA Haystack site since December 1998, with

brief disruptions for revision. During the run, DERS has proven to be very e�ective in tracing

the root cause of errors in the system. In a number of occasions, the process UNIX TSTAMP

stopped running, which a�ected the entire dependency tree. However, only the error on

UNIX TSTAMP was reported.

At the time of this writing, antenna 2 has been taken apart and began to be shipped to
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the SMA site in Mauna Kea. The node ANT2 was taken o�ine.

5. Future Work

DERS will expand as new pieces of hardware are integrated into the array and more

test points become available. In the immediate future, we will implement the engineering

data archive, DERS-SMARTS communication capabilities and the graphic status display.
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Node Id = 0: (BSLN_2_3)       baseline 2-3 
parents = NONE
children = 1 15 
type = CONCAT   state = ONLINE,ENABLED   status = AFFECTED 

Node Id = 1: (ANT2)       Antenna 2 
parents = 0 
children = 2 3 4 5 7 8 9 
type = CONCAT   state = ONLINE,ENABLED   status = AFFECTED 

Node Id = 2: (WEATHER_WINDSPEED_F)  wind speed 
parents = 1 15 
children = NONE
type = DIAG    state = ONLINE,ENABLED    status = GOOD 

Node Id = 3: (ANT2_DEWAR_TEMP1_S)   Ant 2 225 GHz receiver dewar temp 
parents = 1 
children = 11 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 4: (ANT2_DEWAR_TEMP3_S)   Ant 2 350 GHz receiver dewar temp 
parents = 1 
children = 11 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 5: (ANT2_DEWAR_PRESSURE_F) Ant 2 dewar pressure 
parents = 1 
children = 10 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 6: (ANT2_CABIN_TEMP_TSTAMP_L)    Ant 2 cabin temp time stamp 
parents = 7 
children = 14 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 7: (ANT2_CABIN_TEMP_F)     Ant 2 cabin temperature 
parents = 1 
children = 6 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 8: (ANT2_PHASE_LOCK_S)     Ant 2 phase lock 
parents = 1 
children = 12 
type = SENSE   state = ONLINE,ENABLED    status = BAD 

Node Id = 9: (ANT2_YIG1_LOCKED_S)    Ant 2, RX 1 YIG lock status 
parents = 1 
children = 13 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 10: (ANT2_BALZERS_TSTAMP_L)   Ant 2 monotorBalzers’s time stamp 
parents = 5 
children = 14 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 11: (ANT2_LAKESHORE_TSTAMP_L) Ant 2  monotorLakeshore’s time stamp 
parents = 3 4 
children = 14 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 12: (ANT2_PHASE_LOCK_TSTAMP_L)Ant 2  phase lock’s time stamp 
parents = 8 
children = 14 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 13: (ANT2_YIG_SVC_TSTAMP_L)   Ant 2  YIG lock’s time stamp 
parents = 9 
children = 14 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 
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Node Id = 14: (UNIX_TIME_L)     Unix time stamp on HAL 
parents = 6 10 11 12 13 18 19 
children = NONE
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 15: (ANT3)       Antenna 3 
parents = 0 
children = 2 16 17 
type = CONCAT   state = ONLINE,ENABLED   status = GOOD 

Node Id = 16: (ANT3_DEWAR_PRESSURE_F)   Ant 3 dewar pressure 
parents = 15 
children = 18 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 17: (ANT3_YIG1_LOCKED_S)    Ant 3, RX 1 YIG lock status 
parents = 15 
children = 19 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 18: (ANT3_BALZERS_TSTAMP_L)   Ant 3  monotorBalzers’s time stamp 
parents = 16 
children = 14 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Node Id = 19: (ANT3_YIG_SVC_TSTAMP_L)   Ant 3  YIG lock’s time stamp 
parents = 17 
children = 14 
type = SENSE   state = ONLINE,ENABLED    status = GOOD 

Fig. 4.| On-screen print out of the state and the status for all the nodes shown in Figure

3. Note that the phase lock loop on antenna 2 (see Node ID = 8) was out of locked and

displayed a BAD status. This a�ected its succeeding nodes ANT2 and BSLN 2 3.

1998 12 23 22 12 45 ANT2_PHASE_LOCK_S=0.0  Ant 2 phase loop not locked. ^G
1998 12 23 39 34 27 ANT2_PHASE_LOCK_S=1.0  Back to normal ^G

Fig. 5a.| Messages sent to SMA1 via RPC regarding the phase lock loop. The �rst six

�elds in the message are year, month, day in the month, hours, minutes and seconds in UT,

followed by the node name, node value and a brief message. When the phase loop is locked,

an all clear message was sent.
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From hal@sma1.haystack.edu Wed Jan 06:19:32 1999
Subject: Warning from DERS
Content-Length: 105
X-Lines: 3

ANT3_DEWAR_PRESSURE_F=0.098000
Ant 3 dewar pressure high.

From hal@sma1.haystack.edu Wed Jan 06:19:34 1999
Subject: Warning from DERS
Content-Length: 105
X-Lines: 3

ANT3_DEWAR_PRESSURE_F=0.000019  
Back to normal.

Fig. 5b.| E-mail messages sent to the SMA sta� regarding the rising and restoration of the

receiver dewar pressure on antenna 3. Each e-mail contains the node name, node value and

a brief description of the situation. A relief e-mail is sent after the node value is restored to

within the limit.


