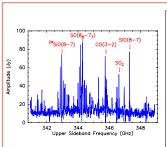


Wideband Receiver Upgrade for the Submillimeter Array (SMA)



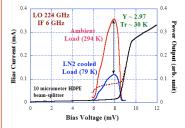
C.-Y. Edward Tong^a, Ray Blundell^a, Chih-Chiang Han^b, Tse-Jun Chen^b, Wei-Chun Lu^b, and Ming-Jye Wang^b

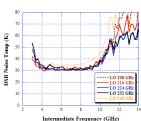

Summary

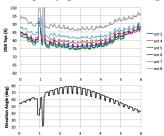
- First generation SMA receivers employed end-loaded stub type single junction SIS mixer with large IF output capacitance (> 0.3~pF) .
- Original IF for the SMA was 4 6 GHz, but later expanded to 4 – 8 GHz.
- Gain compression was observed when the receiver was terminated with an ambient calibration load.
- Second generation SMA receivers are based on seriesconnected distributed SIS mixers with lower IF capacitance.
- The upgraded SIS mixers employ junction arrays made up of 2-4 SIS junctions to provide usable photon step width of ~ 3 mV. This increases both the dynamic range and the IF bandwidth of the receiver.
- SMA receivers can currently be operated over an IF of 4 –
 12 GHz. Future goal of operation is 4 16 GHz.
- Wideband receivers for 200 and 300 GHz bands have competitive on-sky noise performance and they are currently used for routine astronomical observations in the SMA.
- SMA Wideband Astronomical ROACH2 Machine (SWARM) correlator will unleash full bandwidth capability of the SMA wideband receivers.

SMA Receiver Insert

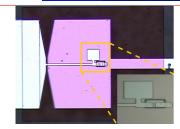
Spectrum from Orion BN/KL


- Dec. 2013 Test observation.
- LO frequency 337 GHz.
- USB spectrum from a single baseline.
- IF 4 12 GHz, constructed from 2 GHz scans provided by current SMA corrrelator.
- Continuous IF coverage will be provided by upcoming SWARM digital backend.


200 GHz SIS Receiver


- 3 junction array
- J_c 7 kA/cm²
- Φ_{SIS} 1.7 μm
- $\omega C_i R_n \sim 3$
- \bullet C_{IF} ~ 0.25 pF

Laboratory Performance



On sky performance of receivers on Jan 10, 2014. Opacity @ 225 GHz ~ 0.05 (good weather)

- Actual IF BW ~ 11 GHz
- Min Tsys ~ 75 K (DSB)
- Sub-mJy sensitivity easily achievable
- Pending upgrade to 4junction array and LNF 4-16 GHz amplifier

300 GHz SIS Receiver

- Use of 4-16 GHz LNA in conjunction with lower IF capacitance allows broader IF bandwidth, BW bottleneck is then the isolator.
- The SIS junction array is tuned by the CPW connecting the first 2 junctions.

- J_c / KA/cm²
- Φ_{SIS} 1.5 μm
- ω C_j R_n ~ 4.5 • C_{IF} ~ 0.18 pF
- SAO-300-2-2 #F1-29
 August 28, 2013

 LO 345 GHz
 LO 339 GHz
 LO 324 GHz
 LO 300 GHz
 LO 280 GHz
 LO 280 GHz
 Intermediate Frequency (GHz)

- ^a Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA.
- ^b Academic Sinica, Institute for Astronomy & Astrophysics, Taipei, Taiwan.

