Submm Imaging of High-z Galaxies: SMA's Achievement

Wei-Hao Wang (Academia Sinica)

Lennox L. Cowie (UH), Amy J. Barger (UW-Madison, UH), Chian-Chou Chen (Durham), Jonathan P. Williams (UH), Li-Yen Hsu (UH), Frazer N. Owen (NRAO)

Outline

- Why submm?
- Identification of submm galaxies (SMGs)
 - radio bias and the high-z tail of SMGs
 - groups, pairs, clustering
- High resolution imaging of SMGs
 - structure of SMGs
 - strongly lensed SMGs
- Future Prospect

Why is submm important?

Extragalactic Background Light

Negative K-correction

- The submm window can provide the dust-hidden half of the story.
- Submm observations are sensitive to high-z sources.

Hughes et al. (1998)

Identification of Submm Sources

HDF 850.1

Cowie et al. (2009)

Walter et al. (2012)

Position pinned down 11 years after its discovery.

Radio Identification and Bias

Redshifted Arp 220 SED

Radio is less sensitive to SMGs at z > 3.

Submm-Bright, Radio-Faint Sources

Submm-Bright, Radio-Faint Sources

 $890\mu m$ ACS/F814W $3.6\mu m$ $24 \mu m$ 20cm 10 -Arp 220 Redshift Younger et al. (2007) Younger et al. (2009)

Submm-Bright, Radio-Faint Sources

PdBI Detection of CO(4–3): z = 4.042

Daddi et al. (2009)

Wang et al. (2007, 2009)

When SMA Meets SCUBA-2

49 SCUBA-2 sources in the GOODS-N
 24 SMA identifications, 18 unambiguous radio identifications

Barger et al. (2014)

When SMA Meets SCUBA-2

- rest-frame UV selected galaxies max out at ~400 M_☉/yr (even after extinction correction)
- 400 M_☉/yr is also the confusion limit of single-dish surveys.
- Are the < 400 M_{\odot} /yr optically selected galaxies also the faint submm sources in the lensed sample?

When SMA Meets SCUBA-2

- rest-frame UV selected galaxies max out at ~400 M_☉/yr (even after extinction correction)
- 400 M_{\odot} /yr is also the confusion limit of single-dish surveys.
- Are the < 400 M_{\odot} /yr optically selected galaxies also the faint submm sources in the lensed sample?

SMA Imaging of Cluster-Lensed SCUBA-2 Sources

optically faint

ACS detected

optically faint

optically faint

Chen et al. (2014)

SMA Imaging of Cluster-Lensed SCUBA-2 Sources

Chen et al. (2014)

New Capability Brings Surprise

After the bandwidth doubling in 2010.....

GOODS 850-11

GOODS 850-13

Many New Issues

- Fraction of multiple sources, as functions of
 - submm flux
 - single-dish beam size (SCUBA vs. LABOCA vs AzTEC, etc)
 - sensitivity of interferometer (SMA vs. PdBI vs. ALMA)
 - primary beam size of interferometer
- Nature of the multiple sources
 - unassociated galaxies
 - close pairs/groups
- True shape of the source counts

High Resolution Imaging of Submm Sources

Structure of Submm Galaxies

 larger than AGN cores, but probably smaller than disks: merger driven?

Cluster-Lensed Submm Source

- z = 2.326
- strongly lensed by a z = 0.325 cluster, with $\mu = 32.5$.
- S_{345,int} = 3.0 mJy, SFR = 210 M_☉/yr. (not a typical high-z galaxy, still in the ultraluminous class)
- 1.5 kpc total extent. 100–400 pc for the size of star-forming regions.
- follows the same luminosity density—size relation as in Arp 220

SMA 345 GHz beam = 0.2" (90 pc)

1"

Bright SPT Lensed Sources

- SMA: many are compact sources sitting on/next to (foreground) massive galaxies.
- Recently better imaged by ALMA.
 (too far south for SMA to make decent images)

SPT 0538-050 z = 2.782

Bothwell et al. (2013)

Bussmann et al. (2013)

new parameter space opened up by Herschel+SMA dark matter models, IMF, etc

new parameter space opened up by Herschel+SMA dark matter models, IMF, etc

- Typical lensing factor = 2 to 20
- They are still intrinsically ultraluminous.

Bussmann et al. (2013)

Galaxy vs. Cluster Lensing

optical sample (ext. corrected)

?=

cluster lensed faint submm sources

Galaxy vs. Cluster Lensing

- Bright, galaxy-lensed submm samples do not probe the < 100 400 M_☉/yr regime.
- We still need faint, cluster-lensed samples.

LOG SFR (Solar masses per year)

Herschel Bright Sources

observed

flux

intrinsic

flux

 $S_{850} [m]$

Summary

- SMA has played a critical role in the following topics:
 - more complete redshift distribution of submm galaxies
 - true shape of the submm counts and multiplicity
 - structure of submm galaxies
 - high-z galaxy masses measured with lensing
 - nature of faint submm sources and optically selected galaxies?
- SAO, ASIAA, UH, and external users all have produced major results.

Future Prospect

- The SWARM correlator will soon further double SMA's bandwidth. New surprises?
- Even broader bandwidth in the future?
 Good for continuum and line (CO, [CII]?) survey can enable new studies.
- SMA remains the only submm interferometer in the north (HDF, Lockman Hole...).